tud Untersuchungen zur Optimierung eines solaren Niedertemperatur-Stirlingmotors 2005-01-14 [Electronic ed.] 4519974-7 Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden prv Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, Dresden Maschinenwesen Das Ziel der vorliegenden Dissertationsschrift bestand darin, für die äquatornahen Regionen mit hoher solarer Einstrahlung einen solaren Niedertemperatur-Stirlingmotor zu entwickeln, berechnen, konstruieren und fertigen, experimentelle Untersuchungen durchzuführen sowie die Ergebnisse auszuwerten. Des Weiteren war im Rahmen dieser Arbeiten die Gültigkeit der Schmidt-Theorie für den Niedertemperatur-Stirlingmotor zu überprüfen. Im Rahmen der durchgeführten Untersuchungen wurden drei Varianten des solaren Niedertemperatur-Stirlingmotors(Stirlingmotor III, IV und IV-A)konstruiert und gefertigt sowie mit Hilfe eines Sonnensimulators (800 W / m2) getestet. Zur Ermittlung der Heißgastemperatur wurde ein mathematisches Modell erstellt, dessen Gültigkeit für den solaren Niedertemperatur-Stirlingmotor durch umfangreiche Experimente bestätigt werden konnte. Die Voraussetzungen der Schmidt-Theorie sind relativ ideal und bei dem solaren Niedertemperatur-Stirlingmotor nicht erfüllt. Trotzdem ist die Schmidt-Theorie auch auf den Stirlingmotor anwendbar. Eine vereinfachte Beziehung zur Berechnung der Leistung (Gl. 3.80) wurde abgeleitet und experimentell überprüft. Die Leistungsoptimierung erfolgte unter Berücksichtigung des Einflusses von Phasenwinkel, Verdichtungsverhältnis und Drehzahl. Der optimale Bereich des Phasenwinkels liegt zwischen 60° und 100°, empfohlen wird ein Winkel von 90°. Der optimale Drehzahlbereich liegt zwischen 18 und 25 U / min. Solare Niedertemperatur-Stirlingmotoren zeichnen sich dadurch aus, dass sie immer die maximal mögliche mechanische Leistung abgeben, indem die Drehzahl sinkt und die Heißgastemperatur steigt. Die Reduzierung des Totvolumens ist für die Leistung des Niedertemperatur-Stirlingmotors von großer Bedeutung. So konnte durch das Einbringen eines Verdrängers in den Arbeitskolben die mechanische Leistung um etwa 10 % gesteigert werden. Weiterhin konnte experimentell nachgewiesen werden, dass sowohl das Anbringen der Abdeckungsfolie als auch der Einsatz eines Regenerators wichtige Voraussetzungen für den stabilen Betrieb des solaren Niedertemperatur-Stirlingmotors sind. Beim Stirlingmotor IV-A wurde neben der kontinuierlichen auch die diskontinuierliche Bewegung des Verdrängers realisiert. Die durchgeführten Versuche haben ergeben, dass bei letzterer Bewegungsart das übertragbare mechanische Moment größer ist. Voraussetzung für die diskontinuierliche Bewegung ist ein massenloser Verdränger. Dieser wurde durch das Anbringen von Ausgleichsgewichten verwirklicht. Die entsprechenden experimentellen Arbeiten führten zu dem Ergebnis, dass im Durchschnitt eine um ca. 10 % höhere mechanische Leistung erzielt werden kann. Im Ergebnis der durchgeführten theoretischen und experimentellen Untersuchungen an den drei Varianten des solaren Niedertemperatur-Stirlingmotors kann festgestellt werden, dass mit der Maschine IV-A die günstigsten Parameter erreicht wurden. Vorteilhaft bei dieser Version sind insbesondere einfachere Fertigung, gute Abdichtung, kleinere Strömungsverluste sowie eine um etwa 2 K niedrigere Kaltgastemperatur. Der Stirlingmotor IV-A sollte Prototyp für Feldtest werden. 620 ZL 5600 Solartechnik, Sonnenenergie, Stirling-Motor, Wärmekraftmaschine Motor, Niedertemperatur, Stirling, Stirlingmotor, solar Stirling, Stirling engine, engine, low temperature, solar urn:nbn:de:swb:14-1111049328086-35473 117590363 Technische Universität Dresden pbl Technische Universität Dresden, Dresden Dejin Chen aut J. Knorr Prof. Dr. rer. nat. dgs rev U. Rindelhardt Dr. rer. nat. habil. rev I. Kolin Prof. rev ger 2003-03-25 2004-11-26 born digital Optimization of a solar low temperature Stirling engine doctoral_thesis