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Abstract 

 

Liquefaction is the phenomena when there is loss of strength in saturated and cohesion-less soils 

because of increased pore water pressures and hence reduced effective stresses due to dynamic 

loading. It is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake 

shaking or other rapid loading. 

 

In this study, after the short review of liquefaction definition, the models of prediction and 

estimation of liquefaction were considered. Application of numerical modelling with two major 

software (FLAC & PLAXIS) for the Wildlife site liquefaction, under superstition earthquake in 

1987 were compared and analysed. 

 

Third step was started with introduction of Fuzzy logic and neural network as two common 

intelligent mathematical methods. These two patterns for prediction of soil liquefaction were 

combined. The “Neural network- Fuzzy logic-Liquefaction- Prediction” (NFLP) was applied for 

liquefaction prediction in Wildlife site. The results show the powerful prediction of liquefaction 

happening with high degree of accuracy in this case. 

 
Keywords: Liquefaction, Numerical modelling, Finn-Byrne, UBC3D-PLM, Neural network,    

Fuzzy logic 
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1. Overview 
 

In this chapter the liquefaction phenomena will be introduced. After that, the kind of liquefaction 

will be considered. In continue the modelling of liquefaction will be presented and the difference 

process of them will become clear. Simultaneously literatures review investigates the results and 

methodologies of papers and researches which presented liquefaction modelling briefly. In this 

chapter overall structure of this thesis will be noted. 

 

2. Introduction of Liquefaction Phenomenon  
 

Liquefaction is one of the significant, remarkable, and complex themes in geotechnical earthquake 

engineering. Liquefaction induced failure has been and continues to be a major cause of destruction 

during earthquakes. The direct and indirect costs related with ground failure may far exceed the 

damage caused by other type of failures such as structural collapses. Its devastating effects sprang 

to the attention of geotechnical engineering in 1964 when the Alaska earthquake was followed by 

the Niigata earthquake in Japan (Figure 1.1). Both earthquakes produced severe damage to 

buildings, foundation of structures and natural slopes due to liquefaction. After that soil liquefaction 

has been received lot of considerations and the corresponding technologies to analyze and prevent 

liquefaction have significantly improved over the years. A qualitative understanding of sand 

liquefaction and its effects under cyclic loading was first presented by Casagrande (Casagrande, 

1936). The term liquefaction was originally coined by Mogami and Kubo (Mogami & Kubo, 1953). 

The cause of liquefaction of sands has been understood for many years. A more specific definition 

of soil liquefaction is given by Sladen et al:  

 

“Liquefaction is a phenomenon wherein a mass of soil lose a large percentage of its 

shear resistance, when subjected to monotonic, cyclic, or shock loading, and flows 

in a manner resembling a liquid until the shear stresses acting on the mass are as 

low as the reduced shear resistance (Sladen et al, 1985)”. 
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The one of newest definition has presented with Idriss and Boulanger: 

 

“Loose cohesionless soils tend to contract during cyclic loading, which can transfer 

normal stress from the soil skeleton to pore water, if the soil is saturated and 

largely unable to drain during shaking. The result is a reduction in effective 

confining stress within the soil and an associated loss of strength and stiffness that 

contributes to deformations of the soil deposit. This loss of strength and stiffness 

due to increasing pore pressures is called liquefaction (Idriss & Boulanger, 2008).” 

 

Following the principle of effective stress states, effective stress equals to total stress minus the pore 

water pressure:  

 

σ' = σ – u (1-1) 

 

σ' = effective stress  

σ = total stress  

u = pore water pressure  

 

If the quantity of σ remains constant, as the pore water pressure u slowly increases, the effective 

stress σ' gradually decreased. If the pore water pressure builds up to the point at which it is equal to 

the total stress, the effective stress becomes zero. As the stiffness and strength of a soil depends on 

the magnitude of effective stress, the soil loses its strength completely when the effective stress 

becomes zero and the soil is in a liquefaction state (Seed & Lee, 1966).  

 

The term of liquefaction has actually been used to describe some related phenomena. Because the 

phenomena can have similar effects, it can be problematic to distinguish between them. However 

the mechanisms causing them are different. Figure 1.2 shows intergranular contact before and after 

liquefaction. These phenomena can be divided into two main categories: flow liquefaction and 

cyclic mobility. 
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Figure 1.1 Tilting of Apartment Buildings at Kawagishi-Cho, Produced by  

1964 Niigata Earthquake (www.ce.washington.edu) 

 

2.1. Flow Liquefaction 
 

Flow liquefaction can occur when the shear stress required for static equilibrium of a soil mass is 

greater than the shear strength of the soil in its liquefaction state. Once triggered, the large 

deformations produced by flow liquefaction are actually driven by static shear stresses. In contrast 

to flow liquefaction, cyclic mobility occurs when static shear stress is less than the shear strength of 

the liquefaction soil. The deformation produced by cyclic mobility failures develop incrementally 

during earthquake shaking (Kramer, 1995). Failures caused by flow liquefaction are often 

characterized by large and rapid movements which can produce the type of disastrous effects. In 

figure 1.3 these kind of liquefaction has been presented. 
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2.2 Cyclic mobility 

 

Cyclic mobility is a liquefaction occurrence, generated by cyclic loading, occurring in soil deposits 

with static shear stresses lower than the soil strength. Deformations due to cyclic mobility develop 

incrementally because of static and dynamic stresses that exist during an earthquake. Lateral 

spreading, a common result of cyclic mobility, can occur on gently sloping and on flat ground close 

to rivers and lakes (Figure 1.4). 

 

          
Soil grains before liquefaction Soil grains after liquefaction 

Figure 1.2 Intergranular contacts before and after liquefaction 

 

As mentioned before, these two kinds of liquefaction have similar effects in the field; the term 

liquefaction will be taken to include both flow liquefaction and cyclic mobility in this dissertation. 

In figure 1.5, the differences between cyclic mobility and flow liquefaction‘s reaction under shear 

loading has been illustrated. 
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(a)                              (b) 

Figure 1.3 Flow Liquefaction damage. (www.ce.washington.edu) 

a: Alaska Earthquake, 1964, b: Santa Barbara Earthquake, 1925. 

 

 

 

 

  

(a) (b) 

Figure 1.4 Liquefaction damage from cyclic mobility. (www.ce.washington.edu) 

a: Guatemala earthquake 1976. b: El Centro earthquake 1979. 
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Figure 1.5 Reaction of soils under shear loading in cyclic mobility and flow liquefaction (Rauch, 1997) 

 

3. Method in evaluating liquefaction potential of soils 
 

Many researchers have shown that loose sandy soil is susceptible to liquefaction (Kramer, 1996; 

Youd et. al., 2001; Groot et. al., 2006). Many factors related to the property of the soil can influence 

liquefaction potential. In fact, these phenomena determined by a combination of soil properties, 

Geological and historical factors and characteristics of the loading (cyclic such as earthquake). 

Some of the main factors include the following: 

 

Soil properties: 

Dynamic shear modulus, 

Damping characteristic, 

Unit weight, 

Grain size characteristics, 

Relative density, 

Soil structure, 
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Geological and historical factors: 

 Method of soil formation, 

Aging and Cementation, 

Lateral earth pressure coefficient, 

Depth of water table, 

Effective confining pressure, 

Rate of Saturation, 

Anisotropy, 

 

Loading characteristics: 

Frequency and amplitude of ground loading (shaking), 

Duration of ground waving (shaking). 

 

Some of these factors cannot be determined directly, but their effects can be included in the 

evaluation procedure by performing cyclic loading tests on undisturbed samples or by measuring 

the liquefaction characteristics of the soil by means of some in-situ tests. 

 

Generally, 6 main groups have been presented for evaluation of soil liquefaction. These models will 

be investigated in the next sections. These methods are:  

 

Field methods, 

Laboratory methods, 

Analytical methods, 

Numerical methods, 

Geographic information system (GIS) methods, 

Intelligent mathematical methods (fuzzy logic, neural network, etc.). 
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3.1. Field methods 
 

Using of insitu testing is the principal method in common engineering practice for assessable 

evaluation of liquefaction potential. Calculation of two variables is required for evaluation of 

liquefaction resistance of soils. They are as follows: 

 

The cyclic demand on a soil layer, expressed in terms of CSR and 

The capacity of the soil to resist liquefaction, expressed in terms of CRR. 

 

The models proposed by Seed and Idriss (1971), Seed and Peacock (1971), Iwasaki (1978) and 

Robertson and Wride (1998) methods are extensively used for predicting liquefaction potential 

using field data. Youd et al. (2001) reviewed in detail the available field methods available for the 

evaluation of liquefaction potential of soils. 

 

3.1.1. SPT based methods 

 

Standard penetration test is widely used as an economical, quick and convenient method for 

investigating the penetration resistance of non-cohesive soils. This test is an indirect means to 

obtain important design parameters for non-cohesive soils. The typical SPT dimension tool has been 

illustrated in figure 1.6. The count is normalized to an over burden pressure of approximately 

100KPa and hammer energy ration or hammer efficiency of 60%. If the sample has a fine content 

more than 5%, (N1)60 should be corrected for the influence of fines content. Correlation of (N1)60 to 

an equivalent clean sand value, (N1)60cs according to Youd and Idriss, (2001) is given by:  

 

(N1)60cs = α + β(N1)60 (1-2) 

 

α = 0 for FC≤5% 

α = Exp (1.76-(190/FC2)) for 5 %< FC<35% 

α = 5 for FC≥35% 
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β = 1 for FC≤5% 

β = (0.99+ (FC1.5/1000)) for 5 %< FC<35% 

β = 1.2 for FC≥35% 

 

 
Figure 1.6 Typical SPT dimension (www.eeg.geoscienceworld.org) 

 

3.1.1.1. Seed and Idriss method 

 

The initial approach for estimating behavior of soils in the field during dynamic loading was 

developed by Seed and Idriss (1971). The process is referred to as the simplified procedure, and 

involves the comparison of the seismic stresses imparted onto a soil mass during an earthquake 

(Cyclic Stress Ratio, CSR) to the resistance of the soil to large magnitude strain and strength loss 

(Cyclic Resistance Ratio, CRR). The CSR estimation is based on the estimated ground accelerations 

produced by an earthquake, the stress conditions present in the soil, and correction factors 

accounting for the flexibility of the soil mass (Youd & Idriss 1997). Seed and Idriss developed this 

empirical method by combining the data on earthquake characteristics and in-situ properties of soil 

deposits, which is widely used all over the world for the assessment of liquefaction hazard (Figure 

1.7). 
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3.1.1.2. Seed and Peacock method 

 

In the Seed and Peacock (1971) method, the average shear stress τav will be calculated same as in 

Seed and Idriss method. Using corrected SPT ‘N’ value and the proposed chart by Seed and  

 

 
Figure 1.7 Curves recommended for calculation of CRR from SPT data 

(Youd & Idriss, 1997; Youd et al., 2001) 
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Peacock, τZ can be calculated at the chosen depth of the soil strata. If τav > τZ then soil will liquefy at 

that zone. 

 

3.1.1.3. Iwasaki et al. method 

 

Iwasaki et al. (1982) proposed a simple geotechnical method as in the Japanese Bridge Code. In this 

method, soil liquefaction capability factor R, is calculated along with a dynamic load L, and 

induced in a soil element by the seismic motion. The ratio of both is defined as ‘liquefaction 

resistance’. The soil liquefaction capacity is designed by the three factors: 

 

Account the overburden pressure, 

Grain size, 

Fine content. 

 

In this method it is presumed that the severity of liquefaction should be relative to the thickness of 

the liquefied layer, closeness of the liquefied layer to the surface, and the factor of safety of the 

liquefied layer (Figure 1.8). 

 

3.1.2. CPT based methods 

 

The CPT -Cone Penetration Test- gains improvement over SPT for its easiness, repeatability, 

truthfulness and continuous record. Using electronic transducers, it’s possible to record real time 

measurement of cone resistance (qc), sleeve friction (fs), and pore pressure (u) during penetration of 

the probe. Having a continuous soil profile allows for a more detailed definition of soil layer 

(Figure 1.9).  
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CRR curve sand-like soils CRR curve clay-like soils 

Figure 1.8 Typical CRR curve (Geotechnical seismic hazards, 2010) 

 

3.1.2.1. Robertson and Wride method 

 

A method to evaluation cyclic shear resistance (CSR) was developed by Seed and Idriss (1971) 

based on maximum ground acceleration at the site as under: 

 

CSR = τav /σ ó = 0.65 (MWF) (σo / σo)́ (a max /g) rd  

 

(1-3) 

MWF = (M)2.56 /173 

 

(1-4) 
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Figure 1.9 Typical CPT equipment (www.eeg.geoscienceworld.org) 

 

Where: 

MWF: the magnitude weighting factor. 

M: the earthquake magnitude (M = 7.5). 

rd: the shear stress reduction factor. 

amax: peak ground acceleration. 

g: gravity of earth. 
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Seed et al. (1985) also developed a method to estimate the cyclic resistance ratio (CRR) for clean 

sands and silty sands based on the CPT using normalized penetration resistance. The cone 

penetration resistance qc can be normalized as:  

 

qc1N = Cq (qc /pa )  (1-5) 

cq = ( pa/ σo ́  )n (1-6) 

 

cq: normalized factor for cone penetration resistance. 

pa: atmosphere of pressure. 

n: an exponent that varies with soil type (= 0.5 for sands and 1 for clays).  

qc: field cone penetration resistance. 

σó : effective overburden stress. 

 

The normalized penetration resistance (qc1N) for silty sands is corrected to an equivalent clean sand 

value (qc1N)CS as: 

 

(qc1N)CS = KC qc1N (1-7) 

 

KC: correction factor for grain characteristic. 

 

KC is defined as below by Robertson and Wride (1998): 

 

KC = 1.0 for IC ≤ 1.64 (1-8) 

KC = -0.403 IC
4+ 5.581 IC

3 – 21.63 IC
2 +33.75 IC –17.88 for IC >1.64 (1-9) 

 

If IC > 2.6, the soil in this range are likely to clay rich or plastic to liquefy. IC is the soil behavior 

type index and is calculated as: 

 

IC = [(3.47 – log q)2 +(1.22 +logf)2]0.5  (1-10) 
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q: normalized penetration resistance. 

 

q= [(qc-σo)/pa][ pa/ σo ́]n  (1-11) 

F = [fs / (qc- σo )]* 100 (1-12) 

 

fs: being the sleeve friction stress. 

 

CRR7.5 = 0.833[ ] +0.05     if (qc1N )cs <50 (1-13) 

CRR7.5 = 93[ ]3 +0.08     if 50 ≤  (qc1N )cs <160 (1-14) 

 

(qc1N )cs: clean sand cone penetration resistance normalized to approximately 100 kPa . 

 

 

Then, by using the equivalent clean sand normalized penetration resistance (qc1N )cs , CRR can be 

estimated from the Figure 1.10. 

 

3.1.2.2. Other research 

 

The CPT based liquefaction relationship was reevaluated by Idriss and Boulanger (2004) using case 

history data compiled by Shibata and Teparaksa (1988), Kayen et al. (1992), Boulanger (2003) and 

Moss (2003). 

 

Moss (2003) has provided a most comprehensive compilation of field data and associated 

interpretations. He used friction ratio Rf  instead of the parameter IC, soil behavior type index and 

examined for the cohesion less soils with fines content greater than or equal to 35%. 
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Figure 1.10 Calculation of CRR frome CPT qc1n (Youd et al., 2001) 

 

3.1.3. Shear wave velocity based methods 

 

The shear wave velocity (vs) based procedure has advanced significantly in recent years, with 

improved correlations and more databases as summarized by Andrus and Stokoe (2000). Shear 

wave velocity can be determined either by subsurface geophysical method or by surface 

geophysical method as explained earlier Liquefaction potential can be evaluated from the shear 

wave velocity (vs) using the following three methods. These procedures can be useful particularly 

for sites where it is difficult to penetrate or sample soils. 
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3.1.3.1. Andrus and Stokoe method 

 

Andrus and Stokoe have carried general research into the use of shear wave velocity as an index of 

liquefaction resistance. Several researchers have developed relationships between shear wave 

velocity and liquefaction resistance. 

 

Andrus and Stokoe (2000) developed liquefaction resistance criteria from field measurements of 

shear wave velocity vs. This method form the origin for the currently accepted shear wave velocity 

criteria for liquefaction potential assessment.  

 

Shear wave velocity vs is corrected similar to SPT ‘N’ value using the atmospheric pressure pa and 

initial effective vertical stress, σó. The cyclic resistance ratio (CRR) is determined empirically at 

different depths using the correlation developed between CRR and the shear wave velocity for the 

liquefaction assessment. 

 

3.1.3.2. Hatanaka, Uchida and Ohara method 

 

Hatanaka et al. (1997) made a systematic research relating the undrained cyclic shear strength of 

high quality undisturbed gravel samples to the shear wave velocity measured insitu vS1 is used for 

correcting the effect of effective confining stress on vS by using the following equation. 

 

vs1 =  

 

(1-15) 

3.1.3.3. Tokimatsu, Yamazaki, and Yoshimi method 

 

This method is proposed by Tokimatsu et al. (1986). The working principle in this procedure is that 

the liquefaction strength has a good correlation with elastic shear modulus for a given soil under a 

given confining pressure. Tsurumaki et al. (2003) verified the simplified procedure using new data  
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for different kinds of gravelly soils by undrained cyclic triaxial tests on undisturbed sample of 

gravelly soils obtained by the in-situ freezing sampling method. 

 

3.2. Laboratory methods 

 

3.2.1. Cyclic triaxial test 

 

The cyclic triaxial test is the most commonly used test for the measurement of dynamic soil 

properties at high strain levels (Figure 1.11). This test simulates the liquefaction phenomenon 

during earthquakes by applying cyclic shear to the saturated sandy soil under undrained condition. 

 

Seed and Lee (1966) were the first to reproduce liquefaction in a cyclic load triaxial test on loose 

and dense sands and concluded that liquefaction occurs more easily in sandy soils having higher 

void ratios and void ratio remaining constant, lower the effective confining pressure higher the 

liquefaction susceptibility. Numerous test results were reported by researchers, Lee and Seed 

(1967), Castro (1969), Castro and Poulos (1977), Castro et al. (1982), Seed (1983), Vaid and Chern  

 

(1983), Mohamad and Dobry (1986), Vasquez-Herrera and Dobry (1989), Konrad and Wang 

(1993). 

 

3.2.2. Cyclic direct simple shear test 

 

The cyclic direct simple shear test is capable of reproducing earthquake stress conditions much 

more accurately than the cyclic triaxial test (Figure 1.12). It is most commonly used for liquefaction 

testing. In this test, a short cylindrical specimen is restrained against lateral expansion by rigid 

boundary platens, a wire reinforced membrane or with a series of stacked rings. By applying cyclic 

horizontal shear stresses to the top or bottom of the specimen, the test sample is deformed in the 

same way as an element of soil subjected to vertically propagating S waves.  
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Figure 1.11 Typical cyclic triaxial test equipment (www.onlinemanuals.txdot.gov) 
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Figure 1.12 Typical Cyclic direct simple shear test equipment (www.ucl-sites.uclouvain.be) 

 

Recognizing the difference between field and lab conditions, Peacoch and Seed (1968) used cyclic 

simple shear tests to study liquefaction problems. Subsequently, Seed and Peacoch (1971), Finn 

(1971, 1985), Pickering (1973), Martin et al. (1975) performed considerable cyclic simple shear 

tests to study liquefaction problem.  

 

In recent years, simple shear devices that allow independent control of vertical and horizontal 

stresses have been developed. By the way, to better simulate actual earthquake conditions, Pyke 

(1979) used a large-scale simple shear apparatus. 

 

3.2.3. Centrifuge modeling 

 

The other type of laboratory test is model test. Model test usually attempt to reproduce the boundary 

condition and material property in the field by a small-scale physical model. It may be used to  
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evaluate the performance of a prototype or verify predictive theories. Model test is a useful method 

for studying dynamic behavior of earth structure and foundation.  

 

The idea of performing experiments on small scale models in the centrifuge may have been 

presented for the first time in 1869 by E. Philips, in France. Centrifuge modeling of seismically-

induced liquefaction, started at Cambridge University in England in the late 1970s, has proven to be 

a particularly useful tool in that respect. 

 

A centrifuge is any device that spins and generates centrifugal forces to achieve some practical 

purpose. It produces what is essentially an artificial gravitational field that is higher than the earth’s 

lg field. In geotechnical centrifuge, one small-scale soil or soil-structure model has subjected to a 

centrifugal acceleration typically somewhere between 30g and 200g (figure 1.13). 

 

Unfortunately, if researchers make small-scale model of a system using the same soil as in the 

prototype, the confining stresses will be too small and the stress-strain behavior of the model will be 

quite different from that of the real system. To get the stresses back up to their correct values, they 

increase the g-level by putting the model on a centrifuge (Figure 1.14). 
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Figure 1.13 Sketch of RPI geotechnical centrifuge (www.homepages.rpi.edu) 

(1. Platform, 2. Counterweights, 3. Model) 

 

 
Figure 1.14 centrifuge device (www.gsl.erdc.usace.army.mil) 
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3.2.4. Shake table test 

 

Shake table tests of many sizes are being used for liquefaction studies on saturated soil samples 

prepared in a container, fixed to a shaking platform and vibrated at the desired frequency for a 

prescribed time (Figure 1.15). A surcharge is placed on the sample to provide the confining 

pressure. The measurements of acceleration pore water pressure and settlements are made during 

the test. Shaking tables utilize a single horizontal translation degree of freedom, but shake table 

with multiple degrees of freedom have also been developed. Kokusho (1987) developed a numerical 

model based on shake table test. 

 

 
Figure 1.15 Normal shaking table equipment (www.quanser.blogspot.de) 

 

3.3. Analytical methods 

 

Several analytical approaches have been proposed to model liquefaction-induced ground 

deformation (Hamada, 1986; Youd & perkins, 1987; Yegian et al. 1991; Byrne 1991; Baziar et al. 

1992; Bartlett & Youd, 1992-1995; Jibson 1994; Towhata et al. 1996-1997; Rauch, 1997; Youd et 

al., 1999). These analytical models are capable of explaining a few, but not all aspects of  
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liquefaction-induced deformations. Most analytical models require numerous parameters for 

predicting liquefaction-induced deformation, and are therefore impractical to apply over the large 

areas covered by lifeline networks. The empirical methods based on case histories of Liquefaction-

induced deformation are alternate approaches readily applicable for assessing damage to lifeline 

networks after earthquakes. 

 

3.3.1. Hamada et al. model 

 

Hamada et al. (1986) calculate the amplitude of horizontal ground deformation only in terms of 

slope and thickness of liquefied layer: 

 

D = 0.75H 0.5 θ 0.33  (1-17) 

 

D: horizontal displacement (m). 

θ: slope (%) of ground surface or base of liquefied soil. 

H: thickness (m) of liquefied soil.  

 

Base on equation 1-17 the Hamada model is only based on topographic and geotechnical parameters 

without any seismic parameters. 

 

3.3.2. Youd & perkins model 

 

The Liquefaction Severity Index (LSI) model (Youd & Perkins, 1987) has resemblances to 

attenuation curves for peak ground acceleration. It relates the amplitude of ground deformations, 

distance, and earthquake magnitude as follows: 

 

log LSI = 3.49 - 1.86 log R + 0.98 M  (1-16) 

 

LSI: general maximum amplitude of ground failure displacement (inch),  
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R: epicentered distance (km),  

M: earthquake moment magnitude.  

 

LSI cannot exceed 100 (Youd and Perkins 1987). Figure 1.16 compares the measured displacements 

and those calculated using Equation 1-16. 

 

 
Figure 1.16  LSI model and measured versus predicted liquefaction induced 

lateral displacement (Bartlett & Youd ,1992) 

 

3.3.3. Bartlett & Youd model 

 

Bartlett and Youd (1992) proposed the following relation for predicting the amplitude of 

liquefaction-induced ground deformation: 

 

Log(D+0.01) = b0+ boff+ b1M+ b2log(R)+ b3R+ b4log(W)+ b5log(S)+  

b6 log(T15)+ b7 log(100-F15)+ b8D5015 

 

(1-17) 
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D: horizontal displacement (m). 

M: moment magnitude. 

R: epicentered distance (km). 

S: slope (%) of ground surface. 

W: free-face ratio (%). 

T15: thickness (m) of saturated cohesionless soils.  

F15: average fine content (% finer than 75 μm). 

D5015: average D50 grain size (mm) in T15. 

 

The values of the ten constant coefficients b0, boff, and b1 to b8 are given in Table 1.1. 

 
Table 1.1 Values of coefficients and adjusted R2 (Bartlett and Youd, 1992) 

Coefficient Original F15=13% 

D5015=0.292 mm 

B0 -15.787 -7.274 

Boff -0.579 -0.579 

B1 1.178 1.178 

B2 -0.927 -0.927 

B3 -0.013 -0.013 

B4 0.657 0.657 

B5 0.429 0.429 

B6 0.348 0.348 

B7 4.527 - 

B8 -0.922 - 

R2 adjusted 82.60% 61.00% 

Number of data 467 467 
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3.4. Numerical methods 
 

A numerical model is a mathematical simulation of a actual physical procedure. Not like to other 

engineering, in Geotechnical engineering it is not possible to choose a specific material type or 

geometry which one would like to work with. One has to face the fact that it is a must to work with 

what environment has to provide and make sure that it is well understood. For this reason it is wise 

to turn complex physical idea in to some mathematical systems and understand risk and 

uncertainties related.  

 

Therefor it is the role of numerical modeling to assist researchers in developing correct 

mathematical concept and make it possible for them to base our design. The role of modeling in 

geotechnical engineering composed of three major components (Burland, 1987): 

 

- Establishing the ground profile, insitu test and field measurement. 

- Defining ground behavior, defining and describing the site condition. 

- Modeling can be conceptual, analytical or physical and all are interlinked and supported 

by experience consisting of empiricism and precedent (Figure 1.17). 

 

Normally, researchers are using the numeral modelling to analyze the problem. But for a 

comprehensive and a high level viewpoint the reason for modeling can be explained as: 

 

- Make quantifiable estimates. 

- Compare another possibility. 

- Classify principal parameters. 

- Understand physical procedure. 

 

Researchers have presented several constitutive models for sand behaviors and soil liquefaction 

such as: FINN, UBCSAND, UBC3D-PLM, HYPOPLASTICITY, HYPERBOLIC and 

BOUNDING SURFACE models. Most of these models have been defined base on complicated  
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mathematic formulations. Although, these complex model could not satisfy the liquefaction process 

(Daftari & Kudla, 2014). 

 

A constitutive model of a soil describes its stress-strain behavior. The stress-strain behavior of a soil 

depends on many factors such as the type of soil, stress-strain history, mode of deposition, 

anisotropy, and stress level dependency of stiffness (Brinkgreve, 2005; Schweiger, 2008).  

 

Bounding surface plasticity was first developed for metals by Dafalias and Popov (1975). It was 

later applied to clays by Dafalias and Herrmann (1985),  to pavement base materials by McVay and 

Taesiri (1985), to concrete by Yang  et al. (1985), and to sands by Aboim and Roth (1982) and 

Bardet (1983, 1986a,  1986b, 1987). 

 

 
Figure 1.17 Expanded Burland triangle roles 
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Hashigushi (1980), independently, introduced the concept of bounding surface plasticity to obtain a 

continuous transition between elastic and elastoplastic responses. Dafalias (1986) coined the name 

of hypoplasticity to designate a particular type of bounding surface plasticity with a vanishing 

elastic domain (Bardet, 1990).  

 

After that Kolymbas (1991) in University of Karlsruhe presented the outline of hypoplasticity 

model for sand. Then some researcher tried to develop and used this model for sand behavior (Wu 

& Bauer, 1994-1995; Kolymbas et al., 1996; Bauer, 1996; Gudehus, 1996; von Wolffersdorff, 

1996). In next chapter FINN, UBCSAND and UBC3D-PLM models were complete explained.  

 

3.5. GIS mapping methods 

 

In liquefaction the failures took place due to liquefaction induced soil movement spread over few 

square km area continuously. Hence this is a problem where spatial variation involves and to 

represent this spatial variation Geographic Information System (GIS) is very useful in decision 

making about the area subjected to liquefaction. 

 

Geographic Information System (GIS) is a computer based information system capable of 

capturing, storing, analyzing, and displaying geographically referenced information; data identified 

according to the location. The basic of this technique is classification and analysis of field 

geometries data, soil properties and other useful data in some maps and layers with using GIS 

software. For this reason this method is useful for special and individual case study. 

 

For example some of these researches were listed: 

 

- The Earthquake Hazard in Christchurch: A Detailed Evaluation (Elder et al., 1991), 

- Geology of the Christchurch urban area (Brown & Weeber, 1992), 

- Risks and Realities (Christchurch Engineering Lifelines Group, 1997), 

- Liquefaction assessment of Waimakariri District (Beca, 2000), 
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- Liquefaction assessment of Christchurch City (Beca, 2002–2005), 

- Earthquake hazard assessment for Selwyn District (Yetton & McCahon, 2006), 

- Earthquake hazard assessment for Waimakariri District (Yetton & McCahon, 2009), 

- Christchurch liquefaction studies update (Beca, 2012). 

 

3.6. Intelligent mathematical methods 

 

These methods present a powerful individual or hybrid intelligent system based on fuzzy logic, 

neural networks, genetic algorithms and other intelligent techniques. The correlation developed 

using straight methods are based on limited investigational data and do not provide stable and 

accurate predictions. The main disadvantage of these calculations is that they do not reproduce the 

complex structure of the soils and liquefaction. Whereas the soils have fairly complex structures, 

indefinite physical properties and spatial variability associated with the formation of them.  

 

Therefore, their mechanical and dynamic characteristics exhibit the uncertain and spatial behavior 

in contrasts to most of the other engineering materials (Jaksa, 1995). The soft computing 

approaches such as GEP, Neural-network groups which allows developing spatially a model for the 

complex systems have recently emerged as promising approaches (Baykasoglu et al.,2008; 

Kayadelen, 2008; Kayadelen et al., 2009; Shahin et al., 2003; Tutmez & Tercan, 2007). 

 

The probability of the liquefaction triggering was studied by Christian and Swiger (1975) using 

discriminant analysis with SPT data. Similar studies based on logistic regression, artificial neural 

networks (ANN) and Bayesian analysis were conducted by Youd and Gilstrap (1999), Juang et al. 

(2000) and Moss et al. (2003). Goh (1995) used back propagation neural network to develop the 

model for the liquefaction. Although the number of the data used in his study was limited. 

 

The other basic of ‘soft computing’ is ‘fuzzy logic’, which is an estimated reasoning method to 

decrease with the uncertainties. This provides a systematic way of distributing with the inaccurate 

and ambiguous information on input data, their effects on the system, and the response of the  
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system (output). Fuzzy logic-based liquefaction models have been developed by various authors 

(Chen, 1997; Zahaby & Rahman, 1996). In chapter 3 basics and modeling of Neural-networks, 

Fuzzy logic and Hybrid of them were complete presented.  

 

4. Organization of the Thesis 
 

The thesis is organized into four chapters, as follows: 

 

Chapter 1: Introduction of liquefaction and its types, consideration of previous liquefaction 

modelling and organization of the thesis. 

 

Chapter 2: Explanation of 3 constitution models (FINN, UBCSAND and UBC3D-PLM), 

Information of case study (Wildlife site, California) and results of liquefaction modelling for case 

study. 

 

Chapter 3: introduction of Neural-networks and Fuzzy logic, constructing and testing the 

liquefaction prediction engine base of Neural-networks and Fuzzy logic. 

 

Chapter 4: Comparison of results, discussion and conclusion. 
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1. Overview 
 

The significance of an accurate planned and executed experimental modelling has not been doubted. 

Nevertheless, experimental working can be expensive and time-consuming and normally used only 

for high-cost and high-risk projects. For regular projects, site investigation is doing in combination 

with laboratory testing to obtain soil parameters as accurate as possible. Then these parameters are 

used as input to either limit equilibrium based programs (slope stability, bearing capacity, etc.) to 

predict failure loads (ultimate limit state) or a numerical analysis program (finite element method, 

finite difference method, etc.) to predict the deformation under loading conditions (serviceability 

limit state).  

 

This chapter will focus on two of the most popular numerical analysis technique used in 

geotechnical engineering, finite element method or FEM & Finite difference method or FDM). The 

emphasis of this chapter is on the application and not on the formulation of the FEM and FDM.  

 

2. Introduction of numerical modelling 
 

There are several different techniques of finding solutions to a geotechnical engineering problem. 

This section will focus on the numerical methods. One of the specific features of the numerical 

methods is that they usually involve solving a set of simultaneous partial differential equations 

(PDEs). Since soil is essentially a non-linear elasto-viscoplastic, three-phase material, direct 

solution of the set of PDEs is regularly impossible. Therefore, an iterative numerical approach is 

used. There are five major types of numerical methods used in geotechnical engineering; the finite 

element, the finite difference, the boundary element, the discrete element and the combined 

boundary/finite element. The way the PDEs are formulated and solved differs for each of these 

methods. 

 

FLAC (Fast Lagrangian Analysis of Continua) and PLAXIS are the most commonly used by 

advanced geotechnical researchers. The other well-known software that work in this category are: 
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- ABAQUS (FEM) (General FEM with some geotechnical relations), 

- ANSYS (FEM) (Mechanical/Structural), 

- SIGMA/W (FEM) (Geotechnical), 

- SEEP/W (FEM) (Seepage Analysis), 

- MODFLOW (FEM) (Groundwater Modeling). 

  

Modeling of real structures takes a fundamental understanding of how the system will function or 

perform. There is a need to simplify the real situation so that one can reasonable arrangement with 

the geometries and properties in the numerical scheme. The original steps of numerical modelling 

are: 

 

- Selection of representative cross-section: 

        Idealize the field conditions into a design X-section, 

                   Plane strain or axisymmetric models. 

 

- Choice of numerical scheme and constitutive relationship: 

                          FEM or FDM or other formulations, 

                           Elastic or Mohr-Coulomb or Elastoplastic or other models. 

 

- Characterization of material properties for use in models: 

        Strength, 

                          Stiffness, 

        Stress - Strain Relationships. 

 

- Grid generation: 

                          Discretize the Design X-section into nodes or elements. 

 

- Assign of materials properties to grid. 

- Assigning boundary conditions. 

- Calculate initial conditions. 

- Determine loading or modeling sequence. 
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- Run the model. 

- Obtain results. 

- Interpret of results.  

 

Before introducing the concept of the FEM and DEM, the difference between a discrete and a 

continuous system will be explored. 

 

3. Discrete and a continuous system 
 

In discrete system, a sufficient solution can be obtained using a finite number of well-defined 

components. Such problems can be readily solved even with rather large number of components, for 

example the analysis of a building frame consisting of beams, columns and slabs (Figure 2.1). For a 

continuous system, such as a soil layer, the sub-division is continued infinitely so that the problem 

can only be defined using the mathematical fiction of infinitesimal. Depending on the level of 

complexity involved, there are two ways of solving such a problem. Simple, linear problems can be 

solved easily by mathematical manipulation. Solution of complex, non-linear problems involves 

discretization of the problem into components of finite dimensions (Figure 2.1) and then using a 

numerical method such as the FEM and FDM. 

 

4. Finite difference method 
 

This method is the oldest and simplest technique. Normally this method requires the knowledge of 

initial values and boundary conditions. The other principal characteristic properties of finite 

difference method were listed below: 

 

- Derivatives in the governing equation replaced by algebraic expression in terms of 

field variables: 

   Stress or pressure, 

   Displacement, 

   Velocity. 
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- Field variables described at discrete points in space (i.e., nodes). 

- Field variables are not defined between the nodes (are not defined by elements). 

- No matrix operations are required. 

- Explicit method generally used: 

   Solution is done by time stepping using small intervals of time, 

   Grid values generated at each time step, 

   Good method for dynamics and large deformations. 

 

 
Figure 2.1 Discrete and continuous problem (www.demlateralearthpressure.weebly.com) 

 

Calculation base on finite difference method obtain six principal steps. These steps are: 

 

I. Generate a grid for the domain where we want an approximate solution. 

II. Assign material properties 

III. Assign boundary/loading conditions, 

IV. Use the finite difference equations as a substitute for the ODE/PDE system of equations. 

The ODE/PDE, thus substituted, becomes a linear or non-linear system of algebraic 

equations, 
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V. Solve for the system of algebraic equations using the initial conditions and the boundary 

conditions. This usually done by time stepping in an explicit formulation, 

VI. Implement the solution in computer code to perform the calculations. 

 

5. Finite element method 
 

The idea of representing a given domain as a collection of discrete parts is not unique to the FEM. It 

was recorded that ancient Greek mathematicians estimated the value of π by noting that the 

perimeter of a polygon inscribed in a circle approximates the circumference of the circle. They 

predicted the value of π to accuracies of almost 40 significant digits be representing the circle as a 

polygon of finitely large number of sides. Searching for approximate solution or comprehension of 

the whole, by studying the constituent parts of the whole is vital to almost all investigations in 

science, humanities, and engineering. The FEM is an outgrowth of the familiar procedures such as 

the frame analysis and the lattice analogy for 2- and 3-dimensional bodies. Its application is not 

exclusive to engineering. It has been used in other fields such as mathematics & physics. One of the 

earliest examples of its use was in mathematics by R. Courant who used it for the solution of 

equilibrium and vibration problems (Courant, 1943). However, Courant did not call his method the 

FEM. It was R.W. Clough who first coined the term finite element in 1960 when he applied the 

FEM to plane stress analysis (Clough, 1960).  

 

The finite element method specifications in brief are: 

 

- Evolved from mechanical and structural analysis of beams, columns, frames, etc. and has 

been generalized to continuous media such as soils. 

 

- General method to solve boundary value problems in an approximate and discretized 

manner. 

 
- Division of domain geometry into finite element mesh. 

- Field variables are defined by elements. 
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- FEM requires that field variables vary in prescribed fashion using specified functions 

(interpolation functions) throughout the domain. Pre-assumed interpolation functions are 

used for the field variables over elements based on values in points (nodes). 

- Implicit FEM more common: 

  Matrix operations required for solution, 

Stiffness matrix formed. Formulation of stiffness matrix, K, and force vector, r. 

- Adjustments of field variables are made until error term is minimized in terms of energy. 

 

6. Constitutive model for soil 
 

Soil is a complicated material that behaves non-linearly and often shows anisotropic and time 

dependent behavior when subjected to stresses. Generally, soil behaves differently in primary 

loading, unloading and reloading. It exhibits non-linear behavior well below failure condition with 

stress dependent stiffness. Soil undergoes plastic deformation and is inconsistent in dilatancy. Soil 

also experiences small strain stiffness at very low strains and upon stress reversal.  

 

This general behavior was not possibly being accounted for in simple elastic-perfectly plastic Mohr-

Coulomb model, although the model does offer advantages which make it a favorable option as soil 

model. 

 

Brinkgreve (2005) discussed in more detail the five basic aspects of soil behavior. Briefly, the first 

aspect discussed on the influence of water on the behavior of the soil from the effective stresses and 

pore pressures. Second aspect is the factor which influences the soil stiffness such as the stress 

level, stress path (loading and unloading), strain level, soil density, soil permeability, consolidation 

ratio and the directional-dependent stiffness (stiffness anisotropy) of the soil. The third aspect 

highlighted the irreversible deformation as a result of loading. Fourth aspect discussed on soil 

strength with its influencing factor includes loading speed of the tested specimen, age and soil 

density, undrained behavior, consolidation ratio and directional dependent shear strength (strength  

anisotropy). Other aspects of soil behavior that should be considered also include factors such as 

compaction, dilatancy and memory of pre-consolidation stress.  
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Constitutive modelling of soils is a mathematical form of describing the stress-strain behavior of 

soils in response to applied loads. It introduces or describes the physical properties of a given 

material and distinguishes between elastic and plastic deformations. In this chapter two special 

constitutive soil models that are useful to predict soil liquefaction will be presented. 

 

7. Finn Constitutive model 
 

In this study, FLAC software (Fast Lagrangian Analysis of Continua) which is a Finite Difference 

Method-based program (FDM) was used. According to FLAC guidance manual, there are several 

constitutive models that facilitate soil behavior under static and dynamic loadings (Itasca FLAC 

manual, 2008). Calculation of excess pore water pressure in the soil mass due to dynamic loading is 

the main factor in the modeling process of liquefaction phenomenon. FLAC has a constitutive 

model named Finn model which equations represented by Martin et al. (1975) and Byrne (1991) 

into the standard Mohr-Coulomb plasticity model. Using this model, it is possible to calculate pore 

water pressure generation by calculating irrecoverable volumetric strains during dynamic analysis. 

The void ratio in this model is supposed to be constant, also it can be calculated as a function of 

volumetric strain and other parameters can be defined by void ratio (B.R. Khatibi et al, 2012). 

 

Martin et al. (1975) described initially the effect of cyclic loading on increase of pore water 

pressure as a result of irrecoverable volume contraction in the soil mass. In these situations, because 

the matrix of grains and voids is filled by water, the pressure of pore water increases (Itasca FLAC 

manual, 2008). 

 

They supply the following empirical equation that relates the increment of volume decrease “Δεvd”, 

to the cyclic shear-strain amplitude “γ”, where “γ” is presumed to be the “engineering” shear strain 

(Itasca FLAC manual, 2008): 

 

Δεvd = C1(γ-C2 εvd) + (C3 εvd
2)/(γ+C4 εvd ) (2-1) 

 

Where C1, C2, C3 and C4 are constants. 
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Note that the equation involves the accumulated irrecoverable volume strain “εvd”, in such a way 

that the increment in volume strain decreases as volume strain is accumulated. Presumably “Δεvd” 

should be zero if “γ” is zero; this implies that the constants are related as follows: C1 C2 C4 = C3. 

 

Martin et al. (1975) then go on to compute the change in pore pressure by assuming certain module 

and boundary conditions ((Itasca FLAC manual, 2008)).  

  

Later, Byrne (1991) presented a simpler equation which correspond irrecoverable volume change 

and engineering shear strain with two constants. In this model, a soil mass with liquefaction 

potential was modeled using (N1)60 parameter as a main factor to the Finn model, so all of the soil 

properties needed for the model were defined for the program by (N1)60. 

 

(Δεvd/γ) = C1 exp(-C2(εvd/γ)) (2-2) 

 

Where C1 and C2 are constants with different interpretations from those of Eq. (2-1). In many cases, 

C2 = 0.4C1, so Eq. (2-2) involves only one independent constant; however, both C1 and C2 have 

been retained for generality (Itasca FLAC manual, 2008). 

 

As mentioned before, to the usual parameters (friction, module, etc.), the model needs the four 

constants for Eq. (2-1), or two constants for Eq. (2-2). For Eq. (2-1), Martin et al. (1975) describes 

how these may be determined from a drained cyclic test. For Eq. (2-2), Byrne (1991) notes that the 

constant, C1, can be derived from relative densities, “Dr”, as follows: 

 

C1 = 7600(Dr )−2.5  (2-3) 

 

Further, using an empirical relation between “Dr” and normalized standard penetration test values, 

“(N1)60”, 

 

Dr = 15(N1)60
1/2 (2-4) 

 

Then: 
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C1 = 8.7 (N1)60
-1.25 (2-5) 

 

C2 is then calculated from C2 = 0.4C1 in this case. Note that, as expected, the volumetric strain is 

larger for smaller values of the blow count (Byrne, 1991). 

 

8. UBC3D-PLM Constitutive model 
 

UBC2D is used for the UBCSAND model, has defined at first by Puebla et al. and then has used in 

FLAC software by Beaty and Byrne (Puebla et al., 1997,  Beaty & Byrne, 1998). 

 

The UBCSAND model is a simple 2D model developed specially for estimate of liquefaction 

behavior of sand. Also the model has been verified in various applications related to liquefaction. 

The original 2D model uses a Mohr-Coulomb yield function and a corresponding non associated 

plastic potential function. The flow rule is based on the well-known Rowe’s stress dilatancy 

formulation with a modification (Rowe, 1962). 

 

UBCPLM model is based on UBCSAND model which has presented by Anteneh Biru Tsegaye (A. 

B. Tesegay, 2010). UBCPLM model, primarily based on the elastoplastic functions mentioned 

accordingly far a generalized 3D formulation has been considered. The new model uses the Mohr - 

Coulomb yield condition in a generalized stress space (Figure 2.2). The use of non-associated 

plastic potential based on the same function as the yield function (with mobilized friction angle 

replaced by mobilized dilatancy angle) has been found to introduce non-coaxially between the 

stress and the strain in the deviatoric plane.  

 

In 2013, Alexanderos Petalas and Vahid Galavi have introduced UBC3D-PLM code for using in 

Plaxis (A, Petalas & V, Galavi, 2013). The UBC3D-PLM combination has three aspects: 

 

I. UBC model, 

II. 3- Dimension, 

III. Past Liquefaction Model. 
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In next steps, the principle parameters of UBC-PLM will be presented. 

 

8.1. Elastic Response 

 

The elastic strains for this model are a function of changes in either the shear or normal effective 

stress. The relationship between stresses and strain is controlled by the shear and bulk moduli. Both 

moduli are isotropic and non-linear, meaning they are a function of the current mean stress: 

 

  . PA. ( )n
e (2-6) 

  

B = α.  (2-7) 

  

  . PA. ( )m
e (2-8) 

  

Where: 

 

G: Shear modulus; 

B: Balk modulus; 

: Shear modulus respectively (depends on the relative density); 

: Balk modulus respectively (depends on the relative density); 

PA: Atmospheric pressure; 

σ:́ mean stress in the plane of loading; 

me, ne: rate of stress dependency of stiffness. 

 

8.2. Yield Surface 

 

The yield surface for a model controls the boundary between elastic and plastic behavior. For 

UBCSAND, the yield surface can be described as radial lines which extend outward from the origin 

at a constant stress ratio. At the onset of loading the current stress ratio is very small so each 

increment of loading produces an elastic-plastic response. The yield surface is illustrated  
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schematically in Figure 2.2.  

 

For first time shear loading, the yield surface is controlled by the current stress state, point A in 

Figure 2.2 As the shear stress increases, the stress ratio η ( = τ / σ́ ) increases and causes the stress 

point to move to point B. τ and σ ́ are the shear and normal effective stresses on the plane of 

maximum shear stress. The yield surface is dragged to the new location passing through point B and 

the origin. 

 

 
Figure 2.2 Yield surfaces for UBCSAND (Beaty, 2009) 

 

8.3. Plastic response 
 

As the stress ratio of the soil moves outside the yield surface plastic strains will develop. This 

model utilizes a non-associated flow rule, meaning that the direction of plastic strains is not 

dependent on the current slope of the yield surface. Plastic shear strains are computed from the 

current stress ratio through a hyperbolic relationship as shown in Figure 2.3. 
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Figure 2.3 Plastic strain increment and plastic modulus (Beaty, 2009) 

 

The plastic shear strain increment, dγ p can be expressed as:  

 

dγ p =  . dη (2-9) 

 

Where:  

 

dγ p: plastic shear strain increment; 

Gp: plastic shear modulus; 

σ:́  shear and normal effective stresses on the plane of maximum shear stress; 

dη: shear stress ratio increment. 

Gp  is assuming a hyperbolic relationship between shear stress ratio and plastic shear strain , is given 

by: 

 

Gp=  . (1-  . Rf)2 (2-10) 

 

Where: 
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= plastic modulus at a low level of stress ratio (η = 0), 

η peak = stress ratio at failure and equals sin φpeak, 

φpeak = peak friction angle, 

Rf = failure ratio (generally decreases with increasing relative density). 

 

The magnitude of the plastic volumetric strains is coupled to the shear strain through the angle of 

dilation. Volumetric strains can either be contractive or dilative and this is determined by the 

relation of the soil to the critical state line as defined by the constant volume friction angle. Soils at 

a stress ratio below the constant volume friction angle will undergo contractive behavior while soils 

above will tend to dilate. Soils at the critical state line will not experience volumetric strains. This is 

consistent with critical state theory and is illustrated in Figure 2.4. 

 

 
Figure 2.4 Directions of plastic strains associated with location of yield surface (Beaty, 2009). 

 

8.4. Hardening Laws 

 

The yield surface begins as a small radial line extending from the origin, but as the soil is plastically 

sheared the yield surface “opens”. The maximum and minimum stress ratios seen by the soil are 

tracked separately, so the hardening law is tracked independently for positive and negative stress  
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ratios. If the soil is unloaded it will behave elastically until the sign of the shear stress reverses. At 

this point the soil will be “reloading” until it reaches its previous maximum or minimum stress 

ratio. Reloading does generate plastic strains, but with a shear modulus that is significantly stiffer 

than for first time or virgin loading. 

 

8.5. UBCSAND model in 3D formulation 
 

The main difference between the UBCSAND model and the UBC3D model is the latter generalized 

3-D formulation. The UBC3D model uses the Mohr-Coulomb yield condition in a 3-D principal 

stress space. Moreover, a modified non-associated plastic potential function based on Drucker-

Prager's criterion is used, in order to maintain the assumption of stress-strain coaxially in the 

deviatoric plane for a stress path beginning from the isotropic line (Tsegaye, 2010). The full set of 

the Mohr-Coulomb yield functions are introduced (pressure is positive, tension is positive): 

 

f1a =  (σ’2 – σ’3) +  (σ’2 + σ’3) sin φ’ – c’ cos φ’ 

 

(2-11) 

f1b =  (σ’3 – σ’2) +  (σ’3 + σ’2) sin φ’ – c’ cos φ’ 

 

(2-12) 

f2a =  (σ’3 – σ’1) +  (σ’3 + σ’1) sin φ’ – c’ cos φ’ 

 

(2-13) 

f2b =  (σ’1 – σ’3) +  (σ’1 + σ’3) sin φ’ – c’ cos φ’ 

 

(2-14) 

f3a =  (σ’1 – σ’2) +  (σ’1 + σ’2) sin φ’ – c’ cos φ’ (2-15) 

 

f3b =  (σ’2 – σ’1) +  (σ’2 + σ’1) sin φ’ – c’ cos φ’ 

 

(2-16) 
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8.6. Post-liquefaction rule 

 

The important aspect during the modelling of cyclic liquefaction in sands is the volumetric locking. 

The evolution of the volumetric strains, after the stress path reaching the yield surface defined by 

the peak friction angle, becomes constant due to the formulation of the flow rule. Due to this issue 

the stiffness degradation of the soil due to the post- liquefaction behavior of loose non-cohesive 

soils or due to the cyclic mobility of dense non-cohesive sands, which is observed in the 

experimental studies, cannot be modelled. This limitation is solved in the formulation of the 

UBC3D-PLM with the implementation of an equation which gradually decreases the plastic shear 

modulus as a function of the generated plastic deviatoric strain during dilation of the soil element. 

The stiffness degradation is formulated based on the plastic deviatoric strain related with the 

dilation of the soil element; due to the deconstruction of the soil skeleton which occurs during 

dilative behavior. This leads to the decreased soil stiffness during contraction which follows after 

the unloading phase (Pwtalas & Galvi, 2013). 

 

8.7. UBC3D-PLM input parameters 

 

The input parameters of UBC3D-PLM are summarized in table 2.1. UBC3D-PLM model is a 

descriptive model and the model parameters are determined by curve fitting from cyclic undrained 

direct simple shear (DSS) test. Nevertheless in many field these tests are not available and data 

from insitu tests such as Standard Penetration Test (SPT) or Cone Penetration Test (CPT) exist. For 

this reason for the UBCSAND model, Beaty and Byrne have proposed some correlation for input 

parameters of model (Beaty & Byrne, 2011). This relation have become from clean sand equivalent 

SPT blow-count measurements. These correlations are the following: 

 

 = 21.7 * 20.0 * (N1)60
0.333 (2-17) 

  

 =  * 0.7 (2-18) 

  

 =  * (N1)60 
2* 0.003 + 100.0 (2-19) 
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φpi =  φcv + (N1)60 /10.0 

 

(2-20) 

φpi is is the peak friction angle for (N1)60 values lower than 15 while for larger an additional increase 

is suggested as described by relation: 

 

φp = φpi  + max (0.0 ,  ) (2-21) 

 

For the failure ratio the following correlation applies: 

Rf = 1.1 * (N1)60 
-0.15 

 

(2-22) 

As long as the occurring value is smaller than 0.99 otherwise a value of 0.99 is used. Concerning 

the densification factor (fachard), the suggested value for UBCSAND is 1.0 (Makra, 2013). 
Table 2.1 UBC3D-PLM parameters 

Name Symbol Method Default 

Constant volume friction angle φcv CD TxC or DSS - 

Peak friction angle  φp CD TxC or DSS - 

Cohesion c CD TxC or DSS 0 

Elastic Shear Modulus  Curve Fit - 

Plastic Shear Modulus  Curve Fit - 

Elastic Bulk Modulus  Curve Fit - 

Elastic Shear Modulus Index ne Curve Fit 0.5 

Elastic Bulk Modulus Index me Curve Fit 0.5 

Plastic Shear Modulus Index np Curve Fit 0.5 

Failure Ratio Rf Curve Fit 0.9 

Atmospheric pressure PA Standard Value 100 

Tension Cut-off σt - 0 

Densification Factor fachard Curve Fit 1 

SPT value (N1)60 In-Situ Testing - 

Post Liquefaction Factor Facpost Curve Fit 0.2-1 

 

 

 



A. Daftari  Chapter 2. Numerical modelling 

48 
 

 

From equation (2-18) a direct relation between elastic shear and bulk modulus is derived which 

corresponds to a Poisson’s ratio of 0.02 from the theory of elasticity. This ratio is very low for static 

calculations and would lead to unrealistic results. However, is has been shown (Hardin 1978 & 

Negussey, 1984) that Poisson’s ratio varies with strain and that for small strains its value can range 

between 0.0-0.2. For this reason, for dynamic calculations a much lower Poisson’s ratio can be 

used, the same way the small strain shear modulus is used. Still the assumption is on the low side, 

since the usual assumption for sands is around 0.1 (Byrne et al, 1987 & Makra, 2013). 

 

9. Case study, Wildlife site 
 

The wildlife site is located in the Imperial Valley. This site became of seismic interest after 1981 

Westmorland earthquake (Ms = 5.9), which seemed to have caused liquefaction in the area. The site 

was then instrumented in 1982 by the U.S Geological Service (USGS), with the main objective of 

recording ground and pore-pressure response data during earthquakes (Holtzer et al., 1989). 

 

Between November 23 and 24, 1987, two earthquakes occurred in the Imperial Valley within a 

period of 12 hours. The first had its epicenter in Elmore Ranch, 23 km west from the Wildlife Site, 

with a moment magnitude of Ms = 6.2. At the ground surface, the peak ground acceleration 

measured was 0.13 g. The second event, which is thought to have caused liquefaction, was the 

Superstition Hills earthquake, with epicenter 31 km south-west from the Wildlife Site, a moment 

magnitude of Ms = 6.6, and measured peak ground acceleration of 0.20 g. Figure 2.5 shows the map 

locating the epicenters of the three earthquakes in the Wildlife Site area. 

 

9.1. Site location 

 

The Wildlife site is located 3.2  km south of Calipatria, California, in the floodplain of the Alamo 

River, in the Imperial valley Wildlife management area. This is a desert area heavy irrigated for 

crop cultivation. 
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Figure 2.5 Earthquake epicenters in the Wildlife Site area (Holtzer et al., 1989) 

 

According to the description reported by Holzer et al. in 1989, shallower deposits consist of 

saturated floodplain sediments that fill an old incised channel of the Alamo River. The deposits 

probably date from catastrophic flooding of the river between 1905 and 1907. The Alamo River 

runs in a 3.7 m-deep channel located 23 m east from the Wildlife Site and controls the ground water 

table depth at about 1.2 m. The stream is normally used for drainage and irrigation. The uppermost 

layer consists of a 2.5 m-thick flat-lying silt bed that overlies a 3.3 m-thick silty sand layer. A 5 m-

thick clayey silt layer is found beneath these two layers of floodplain deposits, being the uppermost 

unit of a dense, extensive, sedimentary deposit. For the silty sand layer, the one believed to have 

liquefied, fines content (<75 m) range between 16 and 60%, with an average of 33%, and its 

porosity is about 41%.  

 

Another description, from Gu et al. in 1994, indicates that the sediments susceptible to liquefaction 

during the Superstition Hills earthquake were identified as the uppermost 2.5 m-thick silt and the 

3.3m-thick silty sand. The first is typical floodplain sediment that exhibits low penetration 

resistance and liquidity index greater than 1, indicating susceptibility to liquefaction. According to 

Seed et al., and based on a liquidity index greater than 0.9, a liquid limit less than 35 and a sediment  
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fraction (<0.005 mm) less than 15%, approximately 20% of this sediment is liquefiable (Seed et al., 

1983). The second, the 3.3m-thick silty sand, was identified to be the layer that liquefied and 

formed sand boils, based on the looseness of sediment, the high water table and the similarity to 

sand boil ejected. The uppermost layer may have not liquefied because it was mainly above the 

water table. In Figure 2.6 is shown the soil profile at the Wildlife Site according to Bennett et al. in 

1984, including grain size percentage, unified soil classification and position of the water table. 

 

A corresponding elastic shear-wave velocity of 125 m/s was found for the Wildlife Site, using the 

lag time of the E-W record (Davis & Berrill, 2001). The same value of shear-wave velocity is cited 

in a different investigation by Holzer et al. (1989).In table 2.2 is shown asset of soil properties for 

the wildlife site was established and presented by Gu et al. (Gu et al., 1994). 

 

 
Figure 2.6 Soil profile at the Wildlife site (Bennett et al., 1984) 
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9.2. Instrumentation of Wildlife 

 

A description of the instrumentation installed at the Wildlife Site is presented by several 

researchers. Six pore-water pressure transducers, or piezometers, were installed in the site. Five of 

them are in the liquefiable layer, that is, within the silty sand unit. As can be seen in Figure 2.7, and 

according to Table 2.3, these piezometers range between 2.9 and 6.6 m in depth. Piezometer P4 

failed to function during the 1987 events (Holzer et al, 1989). 

 
Table 2.2 Soil parameters at the Wildlife Site (Gu et al., 1994) 

Layer I II III IV V 

Depth (m) 0.0-1.2 1.2-2.5 2.5-3.5 3.5-6.8 6.8-10 

Total Density (kg/m3) 1600 1940 1970 1970 2000 

Bulk Modulus (N/m2) 2.61*107 2.44*107 4.50*107 4.50*107 5.83*107 

Shear Modulus (N/m2) 1.57*107 1.47*107 2.08*107 2.08*107 2.70*107 

Cohesion (Pa) 2*103 2*103 - - - 

Friction angle 21.3 20.0 22.0 22.0 35.0 

Dilation 21.3 20.0 19.0 18.0 5.0 

SPT average 6 6.25 7.65 10.65 10 

Permeability (m3.sec/kg) 5*10-11 5*10-11 5*10-11 2.1*10-10 1*10-13 

Porosity 0.4047 0.4431 0.4253 0.4253 0.4075 

 

 
Table 2.3 Piezometer identification and depths. The Wildlife Site 

Identification Depth (m) Layer 

P1 5.0 Silty Sand 

P2 3.0 Silty Sand 

P3 6.6 Silty Sand 

P4 3.5 Silty Sand 

P5 2.9 Silty Sand 

P6 12.0 Silt 

 

The sixth piezometer, identified as P6, is located at 12 m depth within a 1 m-thick silt layer beneath 

the liquefiable silty sand unit. Two three-component accelerometers, one at the surface and other at  
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7.5m depth, linked with all the instruments to the same triggering mechanism, were also installed at 

the site. The down-hole accelerometer was positioned near the upper surface of the stiff clay.  

 

 
 Figure 2.7 instrumentation at the Wildlife Site (Bennett et al., 1984) 

 

Also installed were inclinometer casings to detect permanent lateral subsurface deformation and a 

series of driven stakes around the instrument array as survey points in order to monitor possible 

permanent lateral displacements.  

 

9.3. Effects of the Earthquake and Evidence of Liquefaction 
 

Based on recorded pore-pressures and surface evidence, suggested that the silty sand layer liquefied 

during the 1987-Superstition Hills earthquake (Holzer et al., 1989). Extensive ground cracking, 

indicative of lateral spreading, accompanied liquefaction at the array. Although most of the 

cracking seems to be caused by local slumping along the west bank of the Alamo River, ejection of 

sand from these cracks confirms that they were associated with liquefaction. In Figure 2.8 is 

presented a photograph showing sand boils at the Wildlife Site (Wills, 1996). 
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In terms of pore-pressure, questions arose concerning the unexpectedly long times for pore-pressure 

increase to peak recorded by the transducers in comparison with the duration of the earthquake. A 

series of recalibrations was made by Hushmand et al., who suggested that the pore-pressure 

response rise times might be too slow (Hushmand et al., 1992). Finally, Youd and Holzer concluded 

that interbedding of silt and sand at the site could affect the response of two piezometers separated 

by a small but significant distance (Youd & Holzer, 1994). In Figure 2.9, pore-pressures for the 

Superstition Hills earthquake at the Wildlife Site are presented. 

 

 
Figure 2.8 Sand boils section at the Wildlife Site (Wills, 1996) 
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10. Liquefaction modelling of Wildlife site with Finn-Byrne Model 
 

In this thesis, the liquefaction of wildlife site has been modeled with Finn-Byrne formulation firstly. 

This numerical modelling has been performed with FLAC 6.0 software. FLAC (Fast Lagrangian 

Analysis of Continua) is a two-dimensional explicit finite difference program.  

 

 
Figure 2.9 Recorded pore-pressures at the Wildlife Site (Davis & Berrill, 2001) 
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10.1. The overall process of modeling 

 

For modelling of this special liquefaction, Finn constitutive model and equivalent linear method 

have been used. Also, data of the Superstition Hill earthquake have been analyzed with 

Seismosignal software. The diagram of modeling has been presented in figure 2.10. 

 
 

Figure 2.10 the diagram of modeling of Liquefaction at Wildlife Site 

 

10.2. Acceleration Records 
  

The acceleration records from the Superstition Hill earthquake at the Wildlife Site were 

downloaded directly from the PEER Strong Motion Database. After that, acceleration data have 

been imported in Sigmosignal Software. After data analyze the data for velocity and displacement 

with their diagrams were been produced (Figure 2.11). 

 

The diagrams of acceleration data of Superstition Hill earthquake at the Wildlife Site were 

presented in Figure 2.12 and 2.13. 

 

According to the characteristic of the motion, the ground shaking at the Wildlife Site can be divided 

to different steps. These three steps are: 
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0 – 14 s: Ground acceleration of low amplitude, with maximum of 0.13 g at the surface and 0.10 g 

at the down-hole instruments respectively. 

 

14 s – 21 s: This step corresponds to the strongest shaking, with peak acceleration of 0.20 g at the 

surface and 0.17 g at the down-hole instruments respectively. 

 

21 s – 50 s: The recorded acceleration did not arise 0.06 g, for both surface and down-hole 

instruments. 

 

 
Figure 2.11 Acceleration data from the Superstition Hill earthquake at the Wildlife Site 
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Figure 2.12 Superstition Hills earthquake. N-S acceleration records at the Wildlife Site 

 

 
Figure 2.13 Superstition Hills earthquake. E-W acceleration records at the Wildlife Site 
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10.3. Finn-Byrne Model parameters 

 

As mentioned before, Finn-Byrne model have 2 category data. First, needed for mechanical 

calculation and second, pore-water pressure generation. The first input parameters are same with 

Plastic Mohr-Coulomb model. These parameters have been presented in Table 2.4. The result of 

calculation for second input data have been illustrated in table 2.5. 

 
Table 2.4 Input soil parameters at the Wildlife Site (Gu et al., 1994) 

Layer I II III IV V 

Depth (m) 0.0-1.2 1.2-2.5 2.5-3.5 3.5-6.8 6.8-10 

Total Density (kg/m3) 1600 1940 1970 1970 2000 

Bulk Modulus (N/m2) 2.61*107 2.44*107 4.50*107 4.50*107 5.83*107 

Shear Modulus (N/m2) 1.57*107 1.47*107 2.08*107 2.08*107 2.70*107 

Cohesion (Pa) 2*103 2*103 - - - 

Friction angle (°) 21.3 20.0 22.0 22.0 35.0 

Dilation (°) 21.3 20.0 19.0 18.0 5.0 

Porosity 0.4047 0.4431 0.4253 0.4253 0.4075 

 
Table 2.5 The result of calculation for Finn-Byrne model 

No Depth (m) SPT Dr C1 C2 

I 0-1.2 6 36.74 0.93 0.43 

II 1.2-2.5 6.25 37.5 0.88 0.45 

III 2.5-3.5 7.65 41.48 0.68 0.58 

IV 3.5-6.8 10.65 48.95 0.45 0.88 

V <6.8 10 47.43 0.49 0.81 

 

 

10.4. Results of modelling 

 

After calculation of input parameters, the GII comments for liquefaction modeling on base Finn-

Byrne model has been written. Some part of these comments were shown in figure 2.14. 
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The mechanical modeling of Imperial Valley site and the result of calculation after 100 second 

earthquake have been presented in figure 2.15 to 2.20. 

 

 
Figure 2.14 Some part of GII comments in Flac for Liquefaction modeling 
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Figure 2.15 Flac model of Soil profile and instrumentation at wildlife 

 

 
Figure 2.16 Model of Soil profile after superstition hills earthquake 
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Figure 2.17 Model of displacement vectors after superstition hills earthquake 

 

 

 

 

 
Figure 2.18 Model of velocity vectors after superstition hills earthquake 
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Figure 2.19 Model of pore pressure contours before superstition hills earthquake 

 

 

 
Figure 2.20 Calculated excess pore-pressures at the wildlife site 
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11. Liquefaction modelling of Wildlife site with UBC3D-PLM Model 
 

In second part of this thesis, the liquefaction of wildlife site has been modeled with UBC3D-Post 

Liquefaction Model. These calculations have been done with PLAXIS 2012 software. PLAXIS is 

based on the finite element method and intended for 2-Dimensional and 3-Dimensional 

geotechnical analysis of deformation and stability of soil structures. 

 

11.1. Planning of modelling 

 

In this research, such as the other numerical modelling, the Geo-mechanical model has been built 

(Figure 2.21). After the mesh generation and construction Phase, dynamic loading has been used to 

shaking the model. This input data for shaking, have been extracted from the PEER Strong Motion 

Database.  

 

Plaxis has three methods for import of dynamic input data. These methods are: 

 

- Mathematical formulation of Wave (Harmonic load multiplier) 

- Load multiplier with time series (non- Harmonic load multiplier) 

- SMS file (non- Harmonic load multiplier) 

 

In this study by using the Notepad software the load multiplier with time series has been made from 

the data of PEER Strong Motion Database. Figure 2.21 shows the procedure of numerical modelling 

briefly.  

 

11.2. UBC3D-PLM parameters for Wildlife site 

 

The UBC3D-PLM model, in addition of Plastic Mohr-Coulomb model has some special parameters. 

These parameters have been calculated based on valid data and purposed mathematical formula. All 

parameters of UBC3D-PLM model have presented in table 2.6. 
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Figure 2.21 the procedure of numerical modeling with PLAXIS 

 

11.3. Results of UBC3D-PLM modeling 
 

The UBC3D-PLM model for Wildlife Site in PLAXIS has been modeled. The model has been 

calculated for 60 second under dynamic loading. The photos of results have been shown in figure 

2.22 to 2.26. 
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Figure 2.22 Geometry‘s model of wildlife site in Plaxis 

 

 

 

 
Figure 2.23 Generated mesh of Wildlife site in Plaxis 
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 Figure 2.24 pattern of pore-water pressure of Wildlife site in PLAXIS 

 

 

 

 
Figure 2.25 Determination of instruments in Wildlife site 
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Figure 2.26 Excess pore-water pressure of Piezometer 1 in Wildlife Site 

 

 
Figure 2.27Excess pore-water pressure of Piezometer 2 in Wildlife Site 
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Figure 2.28 Excess pore-water pressure of Piezometer 3 in Wildlife Site 

 

 
Figure 2.29 Excess pore-water pressure of Piezometer 5 in Wildlife Site 
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Figure 2.30 Excess pore-water pressures of Piezometers in Wildlife Site 
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1. Overview 
 

Over the past 30 years, several researches have been presented the studies to develop the correlation 

between liquefaction, dynamic loading and seismic parameters. Nevertheless this correlation 

developed using conventional methods are based on limited experimental data and do not provide 

stable and accurate predictions. The main drawback of these equations is that they do not reflect the 

complex structure and spatial variability of the soils and liquefaction. Because the soils have fairly 

complex structures, imprecise physical properties and spatial variability associated with the 

formation of them. Therefore, their mechanical and dynamic characteristics exhibit the uncertain 

behavior in contrasts to most of the other engineering materials (Jaksa, 1995). The soft computing 

approaches such as Fuzzy logic, neural network, Genetic algorithm and hybrid of them which 

allows developing a model for the complex systems have recently emerged (Goh, 1995, Ural & 

Saka, 1998, Youd & Gilstrap, 1999, Moss et al., 2003, Shahinet al., 2003, Tutmez & Tercan, 2007, 

Baykasoglu et al., 2008, Kayadelen et al., 2009, Daftari et al, 2011). 

 

The main purpose of this chapter is to present new approaches based on hybrid of neural network 

and fuzzy logic for the prediction of the liquefaction phenomena. For this reason, this method was 

named NFLP (Neural network & Fuzzy logic & Liquefaction & Prediction). 

 

Firstly the fuzzy logic theory and its structure will be presented. In second part the neural network 

method has been introduced. In third step, NFLP model base on literature data gathering from a lot 

of research has been made; and in final, the NFLP model has been used for prediction of Wildlife 

liquefaction. In continue the results of this application will be presented. 

 

2. Fuzzy sets and uncertainties 
 

Uncertainty is the privation of necessary knowledge to make a decision. In geotechnical problems, 

the results of analyses are greatly influenced by the uncertainties of mechanical characteristics. In 

contrast, fuzzy set theory enables to present a soft approach for quantifying these ambiguities by 

efficient participation of engineer’s view. As the fuzzy models can cope with the complicated and  
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ill-defined systems in a flexible and consistent manner, their applications in solving various 

problems in the field of Geotechnics / Geomechanics have been observed during the past three 

decades. 

 

3. Classical and Fuzzy sets theory 
 

The fuzzy set was firstly introduced in 1965 by Lotfi Zadeh as a mathematical method to represent 

linguistic Vagueness (Zadeh, 1965). It can be considered as a generalization of classical set theory. 

In a classical set, an element belongs to or does not belong to a set. That is, the membership of an 

element is crisp (0, 1), and an ‘‘A’’ crisp set of real objects are described by a unique membership 

function such as XA in Figure 1a. Contrary, a fuzzy set is a generalization of an ordinary set which 

assign the degree of membership for each element to range over the unit interval between 0 and 1 

(Figure 1b). Values close to 0 indicate a low grade of membership, whereas values close to 1 

indicate a high grade of membership. That is, the transition from ‘‘belong to a set’’ to ‘‘not belong 

to a set’’ is gradual, and this smooth transition is characterized by the membership function that 

give fuzzy sets flexibility in modeling commonly used linguistic expressions such as ‘‘the cohesion 

of soil  is high’’. 

 

That is so clear; the mathematical operation of Fuzzy sets is completely different with classic one. 

Nevertheless in this thesis only the application of Fuzzy logic is important. Despite this difference, 

this chapter does not consist of mathematical operation education. 

 

4. Fuzzy inference system 
 

Fuzzy inference is the process of formulating the mapping from a given input to an output using 

fuzzy logic. The mapping then provides a basis from which decisions can be made, or patterns 
discerned. The process of fuzzy inference involves all of the pieces that are described 

in Membership Functions, Logical Operations, and If-Then Rules. 

 

The Fuzzy inference system has three main parts: 
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- Fuzzification stage, 

- Inference engine, 

- Defuzzfication. 

 

The main components of the fuzzy inference system are shown in figure 3.2. 

 

 
Figure 3.1 (a) Crisp set and (b) fuzzy set (Daftari et al., 2010). 

 

4.1. Fuzzification 
 

In the process of fuzzification, membership functions defined on input variables are applied to their 

actual values so that the degree of truth for each rule premise can be determined. Fuzzy statements 

in the antecedent are resolved to a degree of membership between 0 and 1: 

 

 
Figure 3.2 Main components of the fuzzy inference system (Daftari et al., 2011) 

 

 



A. Daftari  Chapter 3. Neuro – Fuzzy modelling 

74 
 

 

- If there is only one part to the antecedent, then this is the degree of support for the rule.  

- If there are multiple parts to the antecedent, apply fuzzy logic operators and resolve the 

antecedent to a single number between 0 and 1.  

 

Antecedent may be joined by OR; AND operators.  

 

- For OR    --   max 

- For AND --   min 

 

4.2. Inference engine base in If – Then rules 

 

The fuzzy inference system (FIS) is a popular computing framework based on the concepts of fuzzy 

set theory, fuzzy “if–then” rules, and fuzzy reasoning. FISs have been successfully applied in 

various fields such as automatic control, data classification, decision analyses, expert systems, and 

computer vision. Because of their multidisciplinary nature, FISs are associated with a number of 

names such as fuzzy rule-based systems, fuzzy expert systems, fuzzy modeling, fuzzy associative 

memory, fuzzy logic controllers or simply fuzzy models (Jang et al., 1997). 

 

In the inference stage, the fuzzy propositions are represented by an implication function. The 

implication function is called fuzzy “if–then” rule. A fuzzy “if–then” rule assumes the form “if x is 

A then y is B” where A and B are linguistic values defined by fuzzy sets on universes of discourse 

X and Y, respectively. Often “x is A” is called the antecedent or premise, while “y is B” is called 

the consequence or conclusion. Thus each fuzzy rule consists of two parts. One part is the premise 

and other part is conclusion and their writing’s form is “IF premise THEN consequent” (Jang et al. 

1997). 

 

The basic structure of a FIS consists of three conceptual components: 

 

- Rule base, 

- Database, 

- Reasoning mechanism. 
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A rule base, which covers the selection of rules; a database, which expresses the membership 

functions used in the fuzzy rules; and a reasoning mechanism, which performs the inference 

procedure upon the rules and given facts to derive a reasonable output or conclusion. Basic FIS can 

take either fuzzy inputs or crisp inputs, but the outputs which it produces are only fuzzy sets. In 

cases where a crisp value is needed, defuzzification method should be done (Daftari et al., 2011). 

 

There are several FISs that have been employed in various applications. The most commonly used 

are: Mamdani model, Takagi–Sugeno–Kang (TSK) model and Tsukamoto model. The differences 

between these FISs lie in the consequents of their fuzzy rules, thus their aggregation and 

defuzzification procedures differ accordingly. 

 

4.2.1. Mamdani fuzzy Inference System 

 

The Mamdani is widely used since this model is easier to interpret and analyze when compared with 

the others. The Mamdani algorithm is perhaps the most appealing fuzzy method to employ in 

engineering geological problems (Grima, 2000). The general “if-then” rule structure of the 

Mamdani algorithm is given in the following equation: 

 

Ri : If "x1" is "Ai1" and "x2" is "Ai2" and... 

"xr" is "Air" then "y" is "Bi" (for i = 1,2,..,k)                                                           (3.1) 

 

Where: 

 

k is the number of rules,  

xi is the input variable and , 

y is the output variable. 

 

Although many methods of composition of fuzzy relation (e.g. min–max, max–max, min–min, 

max–mean, etc.) exist in the literature, max-min and max-product method are the two most 

commonly used techniques (Ross, 1995). Figure 2 is an illustration of a two-rule Mamadani FIS 

which derives the overall output z when subjected to two crisp inputs x and y (Janget al., 1997). 
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4.2.2. Takagi–Sugeno–Kang fuzzy Inference System (TSK) 

 

One of the basic differences between the Mamdani and TSK fuzzy structures is the fact that the 

consequents are, respectively, fuzzy and crisp sets. Hence, the procedures involved in the 

computation of the output signals are distinct. While in the case of TSK fuzzy structure the  output 

is computed with a very simple formula (weighted  average, weighted sum), Mamdani fuzzy 

structure require  higher computational effort because one is required to  compute a whole 

membership function which is then  defuzzyfied. This advantage to the TSK approach makes it 

highly useful in spite of the more intuitive nature of Mamdani fuzzy reasoning in terms of dealing 

with uncertainty.  

 

A typical rule-based TSK fuzzy structure with two inputs and one output expressed as:  

 

If a is Ai and b is Bi then y is yi (3.2) 

 

Where: 

 

Ai  {A1,...,ANA}  

Bi  {B1,...,BNB} 

 

They represent the antecedent MF of the ith rule that corresponds to the input variables a, b 

respectively. The sets {A1,...,ANA} and  Bi  {B1 ,...,BNB} are predefined antecedent MFs. The ith  

rule produces a partial output of form:  

 

yi = fi (a,b) 

 

(3.3) 

Where: 

 

fi are predefined functions. In the present work,  

 

fi (a,b) = ri  a,b (3.4) 
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With ri = constant. 

 

 
Figure 3.3 The Mamdani FIS (Jang et al., 1997) 

 

Therefore characterizing a crisp consequent MF for the ith rule. The adoption of a particular fi is 

required for comparison purposes with respect to Mamadani fuzzy structures. Aggregating the 

partial outputs of each rule, the output is given by: 

 

y =  (3.5) 

 

Where: 

 

wi = AND(μAi(a), μBi(b)) is the weight of the ith rule (Schnitman, 2000). 
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The inference procedure is graphically represented in Figure 3.4. 

 

 
Figure 3.4 TSK rules weight (Schnitman, 2000) 

 

 

4.2.3. Tsukamoto fuzzy Inference System  

 

In the Tsukamoto fuzzy models, the consequent of each fuzzy if-then rule is represented by a fuzzy 

set with a monotonical membership function, as shown in Figure 3.5. As a result, the inferred output 

of each rule is defined as a crisp value induced by the rule’s firing strength. The overall output is 

taken as the weighted average of each rule’s output. Figure 3.5 illustrates the reasoning procedure 

for a two-input two-rule system. 

 

Since each rule infers a crisp output, the Tsukamoto fuzzy model aggregate each rule’s output by 

the method of weighted average and thus avoids the time-consuming process of defuzzification. 

However, the Tsukamoto fuzzy model is not used often since it is not as transparent as either 

the Mamdani or Sugeno fuzzy models.  
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Figure 3.5 The Tsukamoto fuzzy model (www.bindichen.co.uk) 

 

4.3. Defuzzification methods 
 

Defuzzification refers to the way in which a crisp value can be extracted from a fuzzy set as a 

representative value. The purpose of defuzzification is to convert each conclusion obtained by the 

inference, expressed in terms of a fuzzy set, to a single real number. Although there are a number of 

defuzzification methods in the literature such as centroid of area (COA) or center of gravity, mean 

of maximum, smallest of maximum, etc. The most widely adopted defuzzification method is COA 

method (Lee, 1990). In continues some famous methods of defuzzification have been present 

briefly. Figure 3.6 shows the results of using different defuzzification methods (common) for a 

particular function. 

 

4.3.1. Center of Area (COA) 

 

The centroid defuzzification method selects the output crispy value corresponding to the center of 

gravity of the output membership function. 
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Figure 3.6 Results using different defuzzification methods for a particular function (Naaz et al., 2011) 

 

4.3.2. Center of Sums (COS) 

 

A similar to COA but faster defuzzification method is the center of sums. This method avoids the 

computation of the union of the fuzzy sets, and considers the contribution of the area of each fuzzy 

set individually. 

 

4.3.3. Height Method (HM) 

 

In the height method, the centroid of each output membership function for each rule is first 

evaluated. The final output is then calculated as the average of the individual centroids, weighted by 

their heights (degree of membership). 

 

4.3.4. Middle of Maxima (MOM) 

 

The MOM strategy generates a control action which represents the mean value of all local control 

actions whose membership functions reach the maximum. 
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4.3.5. Center of Largest Area (COLA) 

 

The COLA method is used in the case when universe of discourse is non-convex. It consists of at 

least two convex fuzzy subsets. Then the method determines the convex fuzzy subset with the 

largest area and defines the crisp output value, to be the Center of Area of this particular fuzzy 

subset. It is difficult to represent this defuzzification method formally. 

 

4.3.6. First of Maxima 

 

The FM method uses the union of the fuzzy sets and takes the smallest value of the domain with 

maximum membership degree. 

 

4.3.7. Height Weighted Second Maxima (HWSM) 

 

In this method, the second maximum of each output membership function for each rule is first 

evaluated. The final output is calculated as the average of the individual maxima, weighted by their 

heights (degree of membership). 

 

5. Artificial Neural network model 
 

Artificial neural networks (ANN) try to mirror the brain functions in a computerized way by 

restoring the learning mechanism as the basis of human behavior. ANN can operate like a black box 

model, which requires no detailed information about the system or equipment. ANN can learn the 

relationship between input and output based on the training data. 

 

In the last decades, Artificial neural networks have been used in several applications in Geotechnics, 

Mining engineering and civil engineering, because of their heuristic problem-solving capabilities. 

These special applications come from its special ability. It has the ability to simulate the learning 

capabilities of the human brain by automating the process of knowledge acquisition and data 

mining. In figure 3.7 one example of Artificial neural networks were illustrated. 
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Figure 3.7 examples of Artificial neural networks (www.codeproject.com) 

 

6. Biological Neural Networks and Artificial Neural Networks 
 

Artificial Neural Networks were inspired by models of biological neural networks since much of the 

motivation came from the desire to produce artificial systems capable of sophisticated, perhaps 

"intelligent", computations similar to  those that the human brain routinely performs, and thereby 

possibly to enhance our understanding of the human brain (Figure 3.8). Nevertheless the Artificial 

Neural Networks is simpler than biological neural networks. 

 

The human brain has about 1011 neurons and 1014 synapses. A neuron consists of a soma (cell 

body), axons (sends signals), and dendrites (receives signals). A synapse connects an axon to a 

dendrite. Given a signal, a synapse might increase (excite) or de crease (inhibit) electrical potential. 

A neuron fires when its electrical potential reaches a threshold. Learning might occur by changes to 

synapses (Figure 3.9). 
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Figure 3.8 ANN inspirations from BNN (www.neuralnetworksanddeeplearning.com) 

 

An (artificial) neural network consists of units, connections, and weights. Inputs and outputs are 

numeric (Figure 3.10). In table 3.1 main different between biological neural networks and artificial 

neural networks was presented. 

 
Figure 3.9 Schematic of BNN (www.neuralnetworksanddeeplearning.com) 
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Figure 3.10 Schematic of ANN (www.neuralnetworksanddeeplearning.com) 

 

7. Artificial neural network structure 
 

The basic structure of neural networks has been explained with several researchers. A typical back-

propagation artificial neural network is shown in figure 3.11.  

 
Table 3.1 Main different between BNN and ANN 

biological neural networks  Artificial Neural Networks 

Soma Unit 

Axon & Dendrite Connection 

Synapse Weight 

Potential Weighted Sum 

Threshold Bias Weighted 

Signal Activation 

 

The various n (i) taken together form an S-element vector n. Finally, the neuron layer outputs form 

a column vector a. The layers of a multilayer network play different roles. The layer that produces 

the network output is called an output layer. The layer that gets the inputs is called input layer. All 

other layers are called hidden layers. It is common for the number of inputs to a layer be different 

from the number of neurons. 

 

A network can have several layers. The outputs of each intermediate layer are the inputs to the 

following layer. Each layer has a weight matrix W, a bias vector b, and an output vector a. Each  
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element of the input vector p is connected to each neuron input through the weight matrix W. The ith 

neuron has a summer that gathers its weighted inputs and bias to form its own scalar output n(i). 

The network shown in figure 3.11 has R inputs (R neurons in the input layer), S1 neurons in the 

hidden layer, and S2 neurons in the output layer. The number of hidden layers can be varied based 

on the application. A constant input value of 1 is fed to the biases for each neuron (Rahman & 

Wang, 2002, Rumelhart & McClelland, 1986, Lippmann, 1987, Flood & Kartam, 1994). 

 

Designation of artificial neural network has two main stages: 

 

- Learning rolls, 

- Training stage. 

 

These to phase have been explanted in continue. 

 
Figure 3.11 The architecture of artificial neural network (www.neuralnetworksanddeeplearning.com) 
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8. Learning rule 

 

The most interesting characteristic of neural networks is their capability to familiarize with 

problems by means of training and, after su cient training, to be able to solve unknown problems 

of the same class. 

 

Neural network could learn from many things but, of course, there will always be the question of 

how to implement it. In principle, a neural network changes when its components are changing, as 

we have learned above. Theoretically, a neural network could learn by: 

 

- Developing new connections, 

- Deleting existing connections, 

- Changing connecting weights, 

- Changing the threshold values of neurons, 

- Varying one or more of the three neuron functions (remember: activation function, 

propagation function and output function), 

- Developing new neurons, or 

- Deleting existing neurons (and so, of course, existing connections). 

 

The learning methods in neural networks are classified in to three basic types: 

 

- Supervised learning, 

- Unsupervised learning, 

- Reinforced learning. 

 

These three types of learning roles based on two differences: 

 

- Presence or absence of teacher,  

- The information provided for the system to learn. 

 

Base on the rules learning methods have four categories: 
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- Hebbian, 

- Gradient descent, 

- Competitive, 

- Stochastic. 

 

Figure 3.12 shows the classification of learning algorithms. Table 3.2 presents the main characters 

of three main categories of learning methods. 

 

9. Training Stage 
 

The preparation neural network consists of two stages: train and test. Firstly, neural networks learn 

the relationship between input-output from an educational group, then are tested against an 

educational group which is not given the network during the training to measure the generalization 

capability of the network, the power of trained network and understanding of input-output 

relationship. Education will be repeated by adjustment of parameters until logical and right outputs 

are produced by appropriate inputs. 

 

Selecting data for training the neural networks is one of the most important steps for developing the 

neural network. Neural networks are powerful in interpolation against of extrapolation. So, the 

selection of training data is important because it should cover all aspects of the problem. The other 

point in the input of information to network is ignorance of law or a specific sort because random 

delivery of information leads to better training power and thus, neural network do better function. If 

input data is sorted, it will be possible that neural network will not learn the data and just will store 

them. This state is not desirable and the network loses its learning power. 

 

10. Combination of Fuzzy logic and artificial neural network 
 

Adaptive Neuro Fuzzy Interface System or ANFIS is a multi-layer feed forward network. This 

model consists of nodes and directional links, which combines the learning capabilities of a neural 

network and reasoning capabilities of fuzzy logic (Jang, 1993). The structure of ANFIS is depicted 

in figure 3.13.  



A. Daftari  Chapter 3. Neuro – Fuzzy modelling 

88 
 

 

 
Figure 3.12 the classification of learning algorithms 

 

Table 3.2 main characters of main categories of learning methods. 

 

 

 

 

Supervised learning 

 

- A teacher is present during learning process and presents expected 

output. 

- Every input pattern is used to train the network. 

- Learning process is based on comparison, between network‘s 

computed    output and the correct expected output, generation 

error. 

- The error generation used to change network parameters that 

result improved performance. 

 

 

Unsupervised learning 

 

- No teacher is present. 

- The expected or desired output not presented to the network. 

- The system learns of its own by discovering and adapting to the 

structural features in the input patterns. 

 

 

 

Reinforced learning 

 

- A teacher is present but does not present the expected or desired 

output but only indicated output is correct or incorrect. 

- The information provided helps the network in its learning 

process. 

- A reward is given for correct answer computed and penalty for 

wrong answer. 
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This hybrid structure of the network (ANFIS) can extend the prediction capabilities beyond ANN 

and fuzzy logic techniques when they are used alone. ANFIS architecture consists of fiver layers. 

The first layer in the network is called fuzzy layer. The adjustable nodes in this layer are 

represented by square nodes and marked by A1, A2, B1 and B2 with x and y outputs.  

 

The second layer is called product layer and every node in this layer is a fixed node marked by a 

circle node and labeled by M. The outputs w1 and w2 are the weight functions of the next layer.  

 

The third layer is a normalized layer and every node in this layer is a fixed node, marked by a circle 

node and labeled by N. The nodes normalize the firing strength by calculating the ratio of firing 

strength for this node to the sum of all the firing strengths.  

 

The fourth layer is the de-fuzzy layer having adaptive nodes and marked by square nodes.  

 

The fifth layer computes the overall system output as the summation of all incoming signals 

(Mohanraj et al., 2012). 

 

 
Figure 3.13 Structures of ANFIS(Jang, 1993, Mohanraj et al., 2012) 
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11. Application of ANFIS to Prediction of Liquefaction 

 

The main purpose of this chapter is to present new approaches based on ANFIS for the prediction of 

the liquefaction happening of soils (Neural & Fuzzy & Liquefaction & Prediction: NFLP). The data 

set for training were obtained from the literatures. The Occurrence of liquefaction is used as output. 

Eight parameters were selected as input parameters. These parameters are: 

 

 

- Earthquake magnitude (M), 

- N-Value (N160), 

- Effective overburden pressure (σ)́, 

- Soil fines content (FC), 

- Peak ground acceleration (amax), 

- Depth of water (Dw), 

- Depth of soil layer (Ds), 

- Cyclic stress ratio (CSR). 

 

The procedure of parameters selection will be presented in next part. 

 

12. Selection of principal parameters and case history data for NLFP 
 

As already stated, this part of study intends to estimate the probability of liquefaction in soils. This 

consideration, is taking account physical and dynamical properties of soil. Researchers have 

presented several analytic and empirical prediction methods to reach this goal. They have used a lot 

of parameters to make better relation between input parameters and their goal. Some of these more 

useful parameters are:  

 

- CPT resistance test (qc) 

- N- value (N160) 

- Soil fines content (FC) 

- Depth of water (Dw) 
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- Soil mean grain size (D50) 

 

- Depth of soil (Ds) 

- Earthquake magnitude (M) 

- Peak ground acceleration (amax) 

- Shear wave velocity (vs) 

- Effective overburden pressure (σ ́) 

- Nearest horizontal distance to seismic source (R) 

 

- Free face ratio (w) 

- Thickness of saturated cohesionless soil (T15) 

- Depth of lowest SPT value (ZN) 

- Depth to lowest SPT (N1)60 (ZN160) 

- (N1)60 value corresponding to Js (N160s) 

- Average fines content in T15 (F15) 

- Ground slope (S) 

- Thickness of Saturated (T20) 

- Average fines content in T20 (F20) 

- Cyclic stress ratio (CSR) 

- Angle of shear resistance (φ́) 

- Total vertical stress (σvo) 

- Threshold acceleration (at) 

- Cyclic stress ratio (τav / σvo) 

- Peak horizontal acceleration ratio (amax / g) 

- Critical depth of liquefaction (Dcr) 

 

Table 3.3 consists of the models, which used these parameters. Eight useful parameters were chosen 

based on table 3.3. These parameters have been used as input parameters for NFLP model. As 

mentioned before these parameters are: 

 

- Earthquake magnitude (M), 
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- N-Value (N160), 

- Effective overburden pressure (σ)́, 

- Soil fines content (FC), 

- Peak ground acceleration (amax), 

- Depth of water (Dw), 

- Depth of soil layer (Ds), 

- Cyclic stress ratio (CSR). 

 

Moment magnitudes are used for all earthquakes in the updated liquefaction database (Tables 

3.4).  

 

Table 3.3 Common models for liquefaction prediction I 
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Table 3.3 Common models for liquefaction prediction II 

 
 

The liquefaction databases compiled by Seed et al. (1984) and Cetin et al. (2004) often referenced 

the earthquake magnitudes that had been refer to in the original case history reference. These 

original references, nevertheless, often used other scales for the earthquake magnitude. For the  

 

updated database, in this study moment magnitudes obtained from the Next Generation Attenuation 

(NGA) project flat file (Chiou et al. 2008) and the USGS Centennial Earthquake Catalog (Engdahl 

& Villasenor, 2002, Idriss & Bounlager, 2010).  

 

Data sets used to develop NFLP models in this thesis were obtained from 24 earthquakes. The data 

for Superstition Hills earthquakes were applied for test and validation. Finally, the NFLP model was 

designed with 25 earthquakes data and 2070 parameters. These data were presented in table 3.5. 

(Liq? 1= happened, 0= not happened). Table 3.6 shows the name of earthquakes and site of 

measurement. 
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Table 3.4 Earthquake magnitudes in the liquefaction (Idriss & Boulanger, 2010) 

 

 

 

Erthquake 

 

 

Seed et al. 

(1984) 

 

 

Cetin et al. 

(2004) 

 

 

Idriss & Boulanger 

(2004) 

Idriss & Boulanger 

(2010) 

and 

this study 

1944 Tohnankai 8.0 8.0 8.0 8.1 

1948 Fukui 7.3 7.3 7.3 7.3 

1964 Niigata 7.5 7.5 7.5 7.6 

1968 Tokachi-Oki 7.9 7.9 & 7.8 7.9 8.3 

1971 San Fernando 6.6 6.6 6.6 6.6 

1975 Haicheng 7.3 7.3 7.3 7.0 

1976 Guatemala 7.5 7.5 7.5 7.5 

1976 Tangshan 7.6 8 8.0 7.6 

1977 Argentina 7.4 7.4 7.4 7.5 

1978 Miyagiken-Oki – Feb. 20 6.7 6.7 6.7 6.5 

1978 Miyagiken-Oki – June 12 7.4 7.4 7.4 7.7 

1979 Imperial Valley 6.6 6.5 6.5 6.5 

1981 Westmoreland 5.6 5.9 5.9 5.9 

1982 Urakawa-Oki - - - 6.9 

1983 Nihonkai-Chubu – June 21 - 7.1 7.1 6.8 

1983 Nihonkai-Chubu – May 26 - 7.7 7.7 7.7 

1987 Superstition Hills - 6.7 & 6.6 6.5 6.5 

1989 Loma Prieta - 7.0 6.9 6.9 

1990 Luzon - 7.6 7.6 7.7 

1993 Kushiro-Oki - 8.0 8.0 7.6 

1994 Northridge - 6.7 6.7 6.7 

1995 Hyogoken-Nambu (Kobe) - 6.9 6.9 6.9 
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Table 3.5 Data sets of Earthquake (Idriss & Boulanger, 2010) 

  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

1                   

A 8.1 0.2 5.2 2.1 68 8.2 10 0.182 1 

B 8.1 0.2 4.3 2.4 61 3.4 30 0.144 1 

C 8.1 0.2 3.7 2.1 39 1.7 27 0.225 1 

                    

2                   

A 7 0.4 4 1.2 48 11.8 0 0.39 1 

B 7 0.35 7,5 3.7 104 21.1 4 0.283 1 

                    

3                   

A 7.6 0.09 3.3 1 41 4.7 5 0.089 1 

B 7.6 0.16 7 0.9 72 9.9 2 0.179 1 

C 7.6 0.16 5.3 0.9 43 12.7 8 0.199 1 

D 7.6 0.162 3.8 2 53 6.8 5 0.136 1 

E 7.6 0.18 7 1.8 81 22.7 2 0.179 0 

F 7.6 0.18 10.1 1.8 109 23.5 2 0.184 0 

G 7.6 0.16 10.1 0.9 100 11 2 0.178 1 

H 7.6 0.16 10.1 0.9 100 17.5 2 0.178 0 

I 7.6 0.16 4.6 0.6 47 9.4 0 0.183 1 

J 7.6 0.18 6.1 2.4 79 14.1 0 0.162 0 

K 7.6 0.16 4.3 0 39 7 10 0.21 1 

L 7.6 0.18 6.1 1.2 67 35.5 0 0.191 0 

4                   

A 7.5 0.242 2.895 2 45 12.1 36 0.185 0 

                    

5                   

A 8.3 0.213 5.7 0 38 16.5 3 0.335   

B 8.3 0.23 6.1 2.1 76 35.3 5 0.221 0 

C 8.3 0.23 4 0.9 45 23 5 0.246 0 

D 8.3 0.23 4 0.6 42 9.1 5 0.265 1 

E 8.3 0.2 4 0.9 45 7.6 20 0.213 1 

                    

6                   
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  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

A 6.61 0.45 6.1 4.6 96 3.9 55 0.312 1 

B 6.61 0.45 6.1 4.6 96 8.1 50 0.312 1 

                    

7                   

A 7 0.2 8.2 1.5 89 7.6 67 0.203 1 

B 7 0.2 8.2 1.5 92 8.9 50 0.199 0 

C 7 0.3 7.8 1.5 85 13.3 48 0.304 1 

D 7 0.3 8.2 1.5 92 11 5 0.298 1 

                    

8                   

A 7.5 0.135 10.4 1.5 86 5 3 0.126 1 

B 7.5 0.135 4.6 2.4 34 9.7 3 0.138 *** 

C 7.5 0.135 10.7 3.4 71 14.3 3 0.149 0 

                    

9                 

A 7.6 0.13 4.5 1.1 54 11.7 12 0.13 1 

B 7.6 0.2 4.4 1.5 53 11.5 12 0.194 1 

C 7.6 0.22 3.5 1.1 38 24.4 5 0.226 0 

D 7.6 0.22 3.5 1.1 32 8.5 3 0.241 1 

E 7.6 0.35 5.3 0.9 59 20.1 20 0.378 1 

F 7.6 0.5 5.3 3.1 75 31.6 10 0.405 0 

G 7.6 0.2 6.1 0.9 67 10.5 20 0.218 1 

                    

10                   

A 7.5 0.2 8.2 4.6 106 6.3 20 0.16 1 

B 7.5 0.2 11.1 6.7 156 7.6 5 0.169 1 

C 7.5 0.2 3.7 1.2 39 14.3 4 0.204 0 

D 7.5 0.2 3.1 2.1 44 13.6 3 0.154 0 

E 7.5 0.2 5.2 1.8 56 5.8 50 0.198 1 

                    

11                   

A 6.5 0.1 6.4 0.9 67 12.8 0 0.105 0 

B 6.5 0.14 5.2 2.4 71 11.1 20 0.116 0 

C 6.5 0.12 3.5 1.4 45 5.5 10 0.109 0 
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  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

D 6.5 0.14 3.4 3.1 59 12.3 5 0.092 0 

E 6.5 0.14 6.1 2.4 79 14.1 3 0.12 0 

F 6.5 0.12 2.8 0.5 30 6.9 5 0.128 1 

G 6.5 0.12 3.4 1.3 42 9.6 4 0.112 0 

H 6.5 0.14 6.4 4.3 85 9.4 5 0.102 0 

I 6.5 0.14 4 2.4 60 7.5 10 0.108 0 

J 6.5 0.12 4.3 1.8 56 5.4 10 0.105 0 

K 6.5 0.12 2.5 1.2 34 16.2 7 0.112 0 

L 6.5 0.12 4.3 0.3 42 11.8 12 0.142 0 

M 6.5 0.12 5.5 1.8 63 2.5 60 0.113 0 

N 6.5 0.12 4.3 0.9 47 15.1 0 0.125 0 

                    

12                   

A 7.7 0.2 6.4 0.9 67 12.8 0 0.223 1 

B 7.7 0.24 5.2 2.4 71 11.1 20 0.207 1 

C 7.7 0.2 3.5 1.4 45 5.5 10 0.186 1 

D 7.7 0.2 4.5 1.4 57 2.9 10 0.188 0 

E 7.7 0.28 3.4 3.1 59 12.3 5 0.187 1 

F 7.7 0.28 4.8 3.1 73 17.6 0 0.216 0 

G 7.7 0.24 4.6 2.4 65 12.7 26 0.2 0 

H 7.7 0.24 6.1 2.4 79 14.1 3 0.217 1 

I 7.7 0.32 3.4 0.9 39 26.2 4 0.329 0 

J 7.7 0.32 2.8 0.5 30 6.9 5 0.346 1 

K 7.7 0.32 3.4 1.3 42 9.6 4 0.306 1 

L 7.7 0.24 6.4 4.3 85 9.4 5 0.185 1 

M 7.7 0.24 4 2.4 60 7.5 10 0.19 1 

N 7.7 0.24 4.3 1.8 56 5.4 10 0.216 1 

O 7.7 0.24 2.5 1.2 34 16.2 7 0.212 1 

P 7.7 0.24 4.3 0.3 42 11.8 12 0.293 1 

Q 7.7 0.24 7.3 1.2 78 20.1 17 0.26 0 

R 7.7 0.24 5.5 1.8 63 2.5 60 0.236 1 

S 7.7 0.24 4.3 0.9 47 15.1 0 0.258 1 

T 7.7 0.24 5.5 2.1 70 24.6 0 0.22 0 
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  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

13                   

A 6.53 0.78 2.9 1.8 42 37.8 12 0.62 0 

B 6.53 0.78 3.7 1.8 50 2.9 18 0.661 1 

C 6.53 0.78 4 1.8 56 16.2 25 0.69 0 

D 6.53 0.13 4.3 2.7 62 6.2 92 0.099 0 

E 6.53 0.51 2.1 1.5 32 4.6 31 0.385 1 

F 6.53 0.2 3.4 2.1 50 2.9 64 0.154 1 

G 6.53 0.2 2.3 2.1 38 15.2 30 0.132 0 

H 6.53 0.24 1.8 0.3 20 4.6 80 0.266 1 

J 6.53 0.17 4.6 1.2 54 10.3 30 0.178 0 

J 6.53 0.17 4,6 1.2 54 10.3 30 0.178 0 

                    

14                   

A 6 0.095 6.1 0.9 57 7.1 13 0.104 0 

B 6 0.095 14.3 0.9 123 3.9 27 0.089 0 

                    

15                   

A 5.9 0.32 4.3 2.7 62 6.2 92 0.24 1 

B 5.9 0.09 2.1 1.5 32 4.6 31 0.068 0 

C 5.9 0.2 3.4 2.1 50 2.9 64 0.152 1 

D 5.9 0.2 2.3 2.1 38 15.2 30 0.131 0 

E 5.9 0.21 1.8 0.3 20 4.6 80 0.231 0 

F 5.9 0.21 4.3 0.3 45 15.2 18 0.237 0 

G 5.9 0.26 4.6 1.2 54 10.3 30 0.267 1 

                    

16                   

A 6.9 0.168 2.4 1.6 35 17 5 0.129 0 

                    

17                   

A 6.8 0.15 4.3 1 37 5.1 5 0.172 0 

B 6.8 0.15 9.2 1 77 18.1 0 0.172 0 

C 6.8 0.111 4.3 0.35 42 13.3 0 0.132 1 

                    

18                   
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  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

A 7.7 0.116 5.7 0 38 16.5 3 0.178 1 

B 7.7 0.2 4.3 1 37 5.1 5 0.234 1 

C 7.7 0.227 7.5 0.4 53 12.4 1 0.32 1 

D 7.7 0.25 3.5 1.7 38 16.2 1 0.232 1 

E 7.7 0.283 4.3 4 42 13.3 0 0.397 1 

F 7.7 0.205 2.865 1.75 41 18.7 3 0.166 0 

G 7.7 0.205 2.895 1.75 41 13.8 3 0.167 0 

H 7.7 0.116 0.338 1.14 41 13.1 5 0.113 0 

I 7.7 0.205 6.9125 1.5 79 8.7 3 0.211 1 

J 7.7 0.205 9.7986 1.47 107 6.9 4 0.214 1 

K 7.7 0.052 4.295 1.6 54 4.2 66 0.049 0 

L 7.7 0.205 6.47 1.46 74 9.9 8 0.21 1 

M 7.7 0.205 7.1314 1.45 81 13.5 3 0.213 1 

N 7.7 0.205 3.7825 1.5 48 9.3 7 0.191 1 

O 7.7 0.205 6.0356 1.58 71 10.2 2 0.205 1 

P 7.7 0.205 5.7443 1.51 68 11.5 2 0.206 1 

Q 7.7 0.205 3.905 1.2 47 18.9 3 0.203 0 

R 7.7 0.205 3.42 1.2 42 23.5 2 0.198 0 

S 7.7 0.205 2.5833 1.2 34 23 1 0.184 0 

T 7.7 0.205 5.1767 1.2 60 34.6 3 0.213 0 

U 7.7 0.205 2.2167 1.2 31 37.3 1 0.175 0 

V 7.7 0.205 4.48 1.2 53 20.3 2 0.208 0 

W 7.7 0.205 5.21 0.72 56 5.4 2 0.229 1 

X 7.7 0.205 5.41 1.37 63 7.4 2 0.209 1 

Y 7.7 0.205 5.48 1.35 64 5.6 2 0.21 1 

Z 7.7 0.205 3.91 1.46 49 8.1 2 0.194 1 

AA 7.7 0.205 4.5425 1.45 55 23.5 2 0.2 0 

BB 7.7 0.205 6.67 1.6 77 22.5 4 0.208 0 

CC 7.7 0.205 3.5667 1.45 46 25.9 0 0.19 0 

                    

19                   

A 6.9 0.268 2.895 2 45 12.1 36 0.203 0 

                    

20                   
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  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

A 6.22 0.09 3.4 2.1 50 2.9 64 0.069 0 

B 6.22 0.133 4.6 1.2 54 10.3 30 0.138 0 

C 6.54 0.156 2.9 1.8 42 37.8 12 0.124 0 

D 6.54 0.15 3.7 1.8 50 2.9 18 0.127 0 

E 6.54 0.13 4 1.8 56 16.2 25 0.115 0 

F 6.54 0.174 4.3 2.7 62 6.2 92 0.132 0 

G 6.54 0.16 2.1 1.5 32 4.6 31 0.121 0 

H 6.54 0.2 3.4 2.1 50 2.9 64 0.154 0 

I 6.54 0.18 2.3 2.1 38 15.2 30 0.119 0 

J 6.54 0.19 1.8 0.3 20 4.6 80 0.21 0 

K 6.54 0.19 4.3 0.3 45 15.2 18 0.218 0 

L 6.54 0.206 4.6 1.2 54 10.3 30 0.216 1 

                    

21                   

A 6.93 0.24 6.5 3 91 43.3 7 0.198 0 

B 6.93 0.37 6 4.5 92 10.2 8 0.259 1 

C 6.93 0.28 2.5 1.4 35 21.4 5 0.232 0 

D 6.93 0.14 4.6 3.5 64 5.7 30 0.102 0 

E 6.93 0.28 4.6 2.4 65 13.1 3 0.23 1 

F 6.93 0.28 3.5 2.5 55 14.9 3 0.207 1 

G 6.93 0.28 5.3 1.5 64 17.6 3 0.27 1 

H 6.93 0.28 2 2 35 22.6 1 0.179 0 

I 6.93 0.28 3.4 1.8 47 14.9 1 0.235 0 

J 6.93 0.28 3.4 1.9 48 21.2 5 0.231 0 

K 6.93 0.28 3.4 2 48 14.7 4 0.226 0 

L 6.93 0.39 6.2 4.9 101 9.9 32 0.252 1 

M 6.93 0.39 7 4.7 108 20.9 13 0.28 1 

N 6.93 0.39 6 4.4 95 9.8 25 0.274 1 

O 6.93 0.39 8.4 3 105 20.2 20 0.338 0 

P 6.93 0.28 6.3 3 89 15.4 3 0.229 1 

Q 6.93 0.28 6.3 3 89 17 3 0.229 *** 

R 6.93 0.18 5.9 3.5 73 5.1 50 0.142 1 

S 6.93 0.28 3 1.8 43 15.3 2 0.226 1 

T 6.93 0.28 6.1 1.8 73 34.4 5 0.266 0 
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  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

U 6.93 0.27 6.3 3 86 8.6 8 0.222 1 

V 6.93 0.28 3.4 1.8 46 10.3 1 0.234 1 

W 6.93 0.28 4.9 2.6 67 18.4 1 0.229 1 

X 6.93 0.16 6.5 1.5 67 6.4 20 0.165 1 

Y 6.93 0.28 1.8 1 25 9.1 35 0.233 1 

                    

22                   

A 7.7 0.25 5 2.3 68 24.9 19 0.218 0 

B 7.7 0.25 7.2 2.3 90 13 19 0.236 1 

                    

23                   

A 7.6 0.4 5.2 2 68 16.4 2 0.366 1 

B 7.6 0.4 10.8 1.6 118 30.9 0 0.408 0 

C 7.6 0.47 3.8 2 47 25.9 5 0.41 1 

                    

24                   

A 6.69 0.84 8.5 7.2 143 13.1 50 0.428 1 

B 6.69 0.51 9.3 3.9 101 27.2 25 0.431 0 

C 6.69 0.43 7.1 2 88 8.5 64 0.32 1 

D 6.69 0.51 6.7 4.3 105 11.6 33 0.39 1 

                    

25                   

A 6.9 0.4 5.8 2.4 80 52 3 0.345 0 

B 6.9 0.4 8 2.9 103 39.5 15 0.345 0 

C 6.9 0.4 5.8 2.5 77 49.8 3 0.344 0 

D 6.9 0.4 4.3 2.1 54 36.6 1 0.35 0 

E 6.9 0.35 8.9 3 116 6.1 1 0.298 1 

F 6.9 0.4 5.9 2.3 72 17.8 21 0.36 0 

G 6.9 0.4 3.3 3.2 60 10.9 0 0.314 1 

H 6.9 0.5 5 3 65 24.1 0 0.402 1 

I 6.9 0.5 4.3 2.8 64 12.2 2 0.383 1 

J 6.9 0.6 7.5 4.5 107 27.4 9 0.45 0 

K 6.9 0.5 6.8 1.5 62 8.5 5 0.546 1 

L 6.9 0.5 5.3 3.2 72 24.7 14 0.393 0 
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  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

M 6.9 0.5 6.5 2.3 74 12.7 15 0.464 1 

N 6.9 0.5 4.8 3.1 69 20.3 19 0.382 0 

O 6.9 0.5 5.7 3.7 82 19.2 5 0.375 1 

P 6.9 0.6 4.5 2.5 60 25 5 0.495 0 

Q 6.9 0.5 4.5 0.8 43 21.1 5 0.574 1 

R 6.9 0.7 10.5 7.7 171 42.6 0 0.448 0 

S 6.9 0.6 7.5 6.1 124 21.3 10 0.391 0 

T 6.9 0.55 6 2 75 63.7 0 0.505 0 

U 6.9 0.6 3.5 1.7 44 33.5 0 0.531 0 

V 6.9 0.6 6 2.4 79 38.6 6 0.524 0 

W 6.9 0.6 5 3 72 24 10 0.468 0 

X 6.9 0.5 3.5 2.4 51 24.6 0 0.383 1 

Y 6.9 0.7 3.5 2.2 50 35.8 3 0.555 0 

Z 6.9 0.6 3.5 0.9 37 37 0 0.633 0 

AA 6.9 0.6 2.5 1.1 29 40.8 10 0.568 0 

BB 6.9 0.4 3.5 1.8 44 21.1 8 0.348 1 

CC 6.9 0.4 3.8 2 49 17.9 0 0.337 1 

DD 6.9 0.6 8.5 1.5 78 40.1 10 0.649 0 

EE 6.9 0.6 4 1.2 46 49.7 0 0.599 0 

FF 6.9 0.5 3.5 1.4 41 29.1 6 0.472 0 

GG 6.9 0.5 8 2 83 27.9 50 0.496 0 

HH 6.9 0.4 7 1.8 73 24.2 9 0.403 1 

II 6.9 0.5 4.5 2.1 55 18.9 6 0.445 1 

JJ 6.9 0.6 3.5 0.9 36 31.6 3 0.639 0 

KK 6.9 0.35 5 4 79 19.3 0 0.241 1 

LL 6.9 0.5 8 3 94 19.1 5 0.441 1 

MM 6.9 0.6 4.5 2.6 66 61 0 0.476 0 

NN 6.9 0.6 3.5 2.8 59 39.7 0 0.421 0 

OO 6.9 0.4 4.1 2 50 15 0 0.352 1 

PP 6.9 0.4 5 1.2 46 12.1 10 0.445 1 

QQ 6.9 0.35 4.7 2.2 55 15.2 20 0.311 1 

RR 6.9 0.4 4 1.6 43 8.3 5 0.388 1 

SS 6.9 0.4 5.2 3.5 80 21.1 18 0.295 0 

TT 6.9 0.4 8.8 3.5 115 12.5 2 0.331 1 
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  M amax(g) Ds(m) Dw(m) σ́(KPa) N160 FC (%) CSR Liq? 

UU 6.9 0.34 7.8 2.4 96 6.8 20 0.307 1 

VV 6.9 0.4 8.5 5 125 22.7 20 0.293 0 

WW 6.9 0.4 10 5 140 19.5 20 0.301 0 

XX 6.9 0.4 9.5 5 135 34.6 20 0.299 0 

YY 6.9 0.34 10 3 123 10.8 20 0.295 1 

ZZ 6.9 0.4 7.5 4 107 16.8 25 0.31 1 

AAA 6.9 0.34 11.5 4 146 12.3 20 0.275 1 

BBB 6.9 0.25 4.7 0 46 14 20 0.308 1 
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Table 3.6 Name of Earthquake and there sites (Idriss & Boulanger, 2010) 
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Table 3.6 Name of Earthquake and there sites (Idriss & Boulanger, 2010) 
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Table 3.6 Name of Earthquake and there sites (Idriss & Boulanger, 2010) 

 
  

13. Design of NFLP based on data sets 
 

In this part, the system of Neuro-Fuzzy Liquefaction Prediction will be presented. The MATLAB or 

Matrix Laboratory software was used to design NFLP structure. As mentioned before, every ANFIS 

system has three parts such as Fuzzy system. Input and output parameters, inference system engine. 

The figure 3.14 shows the Fuzzy Inference System (FIS) of NFLP.  

 

The input parameters which were selected for NFLP are 8 parameters: 

 

- In 1: Earthquake magnitude (M), 

- In 2: N-Value (N160), 

- In 3: Effective overburden pressure (σ)́, 

- In 4: Soil fines content (FC), 
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- In 5: Peak ground acceleration (amax), 

- In 6: Depth of water (Dw), 

- In 7: Depth of soil layer (Ds), 

- In 8: Cyclic stress ratio (CSR). 

 

 
Figure 3.14 Fuzzy Inference System of NFLP 

 

The method for member function classify was selected as Sub-Clustering/Gaussian. Every 

parameter has 7 clusters. This classification was made based on Frequency of available data. 

Figures 3.15 to 3.22 present these membership functions. Figure 3.23 and 3.24 show the importing 

of input data in area of MATLAB software. 
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The outputs of NFLP consist of 7 clusters to predict liquefaction happening in wide rang. These 

clusters define the probability of soil liquefaction. These classifications are: 

 

0.0 – 0.09: Impossible 

0.10 – 0.24: Very weak 

0.25 – 0.39: Weak 

0.40 – 0.59: Moderate 

0.60 – 0.74: Strength 

0.75 – 0.89: Very strength 

0.90 – 1.0: Imperative 

  

Figure 3.25 presents membership function of these 7 clusters. The inference engine by training of 

inputs and outputs data was made. This part of modelling, using neural network training method. 

The algorithm of training is based on minimizing of error. The final error of training has reached to 

0.264. Figures 3.26 and 3.27 present the middle and final step of this training. 

 

 
Figure 3.15 Membership function of Input 1: Earthquake magnitude. 
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Figure 3.16 Membership function of Input 2: N-Value. 

 

 

 

 

 

 
Figure 3.17 Membership function of Input 3: Effective overburden pressure. 
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Figure 3.18 Membership function of Input 4: Soil fines content. 

 

 

 

 

 

 

 
Figure 3.19 Membership function of Input 5: Peak ground acceleration. 
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Figure 3.20 Membership function of Input 6: Depth of water. 

 

 

 

 

 

 

 
Figure 3.21 Membership function of Input 7: Depth of soil layer. 
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Figure 3.22 Membership function of Input 8: Cyclic stress ratio. 

 

 
Figure 3.23 Training data of NFPL in Matlab area 
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Figure 3.24 Test data of NFPL in Matlab area (5 piezometers of Wildlife site) 

 
Figure 3.25 Membership function of output. 
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Figure 3.26 NFLP training system after 20 epochs. 

 
Figure 3.27 NFLP training system at end of steps. 
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The structure of NFLP after 40 epochs has stabilized. After this time, the quantity of error will be 

constant. This structure was illustrated in figure 3.28. The ANFIS‘s rule of NFLP was presented in 

figure 3.29. This rules network has 7 rules. Minimization of rules number is one of the sub-

clustering advantages than Grid partition method. Figure 3.30 to 3.37 have presented the surface of 

calculation. These surfaces have built with 2 input parameters and output. 

 

 
Figure 3.28 The structure of NFLP System 
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Figure 3.29 The rules network of NFLP 

 

 
Figure 3.30 Surface between Earthquake magnitudes and N1-Value.  
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Figure 3.31 Surface between N1-Value and Effective overburden pressure 

 

 
Figure 3.32 Surface between Effective overburden pressures Depth of water 
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Figure 3.33 Surface between Soil fines content and cyclic stress ratio 

 

 
Figure 3.34 Surface between Peak ground acceleration and Depth of water 
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Figure 3.35 Surface between Depth of water and Standard penetration test 

 

 
Figure 3.36 Surface between Depth of soil layer and Standard penetration test 
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Figure 3.37 Surface between Cyclic stress ratio and Effective overburden pressure 

 

Finally, the probability of soil liquefaction in Wildlife site for 4 piezometers was predicted with 

NFLP. These piezometers were determined based on their depths. The results of prediction were 

shown in figure 3.38. 

 

The happenings of liquefaction have signed with blue stars (*), and the probability of liquefaction 

based on NFLP have signed with red stars (*). The NFLP has predicted probability of liquefaction 

accruing for P1, P2, P3 and P5 equals to 0.97, 0.80, 1.0 and 0.92 respectively. 
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Figure 3.38 Prediction of NFLP for P1, P2, P3 and P5 in Wildlife site 
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1. Overview 
 

Based on literatures, the liquefaction occurrence of soil deposits can be defined as the decline of 

shear strength due to pore pressure build-up in the soil skeleton. When saturated loose sands are 

subjected to earthquake or cyclic loading, primarily induced by upward extension of shear waves 

from bedrock, they tend to settle and densify. However, the duration of the cyclic stress application 

is so short compared to the time required for water to drain, that the soil volume contraction cannot 

occur immediately and excess pore pressure will progressively build up.   

 

When the pore pressure equals the total stress, thereby reducing the effective stress to zero, sands 

will, at least provisionally, completely lose their stiffness and shear strength. Such a state is referred 

to as "initial liquefaction". At the onset of initial liquefaction, loose sands will undergo unlimited 

deformations or flow without mobilizing significant resistance to deformation. As a result, 

structures supported above or within the liquefied deposit undergo significant settlements and 

tilting; water flows upward to the surface creating sand boils. This phenomenon is referred to as 

"liquefaction" and is obviously a condition to be avoided in any type of major construction.  

 

This phenomenon has caused lots of damages and financial losses. For example, in 1995 Hykogen 

Nambu Earthquake in Japan caused 100 billion dollars damage, mostly by liquefaction and lateral 

spreading (Soroush & Koohi, 2004). 

 

Various procedures for evaluating the liquefaction potential of saturated soil deposits have been 

proposed in the past years. One of the most important methods is numeral modelling. FLAC and 

PLAXIS are useful software which uses this technique. 

 

Nowadays, pattern of calculation in Computers were changed. This change caused to create new 

methods in data mining. Mixture of new data mining rules and intelligent mathematical methods 

had good and more acceptable results in scientific research. Neural network and Fuzzy logic are the 

two of these intelligent methods. 
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In this research by using the data of Superstation Hills Earthquake in 1987, ability and capability of 

Finn-Byrne formulation in FLAC and UBC3D-PLM formulation in PLAXIS were considerate. This 

compression will be presented in next parts. 

 

Moreover, in this thesis, in order to achieve a better prediction algorithm with lowest errors, 

methods of Fuzzy logic and neural network have mixed in MATLAB software. The result of this 

Combination was NFLP (Neuro Fuzzy Liquefaction Prediction). In continue, the results of these 

methods will be analysed. 

 

2. Trend diagram review of excess pore-water pressure from numerical models 
 

In FLAC software, the wildlife liquefaction array based on Finn-Byrne formulation was modelled. 

The excess pore water pressure in 4 piezometers (P1, P2, P3 and P5), were calculated under 

superstition hills earthquake effect. 

 

UBC3D-PLM pattern was used for modelling of this area in PLAXIS. Same to FLAC‘s model, 4 

piezometers (P1, P2, P3 and P5) for calculation excess pore water pressure were simulated. The 

diagram of these two models will be compared with the real measured diagram in Wildlife site. 

 

2.1. Diagrams of Piezometer P1 

 

The combination of these three diagrams was presented in figure 4.1. In this figure green line shows 

the results of Finn-Byrne model in FLAC, and red line presents the results of UBC-PLM model in 

PLAXIS. The blue line is measured excess pore pressure in site. It should be noted that E.O.S is the 

Effective Overburden Stress. 

 

The Superstition earthquake on P1 in Wildlife site has caused the rising of E.P.P (Excess pre 

pressure) until 56 kPa. The trend shows the stable EPP in 10 first second of earthquake. After that  

 

the EPP in P1 rising gradually until around 56 kPa. This EPP is the equivalent to EOS. So the 

measured trend shows the liquefaction in P1. 
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Figure 4.1 results of Excess pore pressure in P1. 

 

FLAC result shows the same reaction in 10 first second. In this period the EPP was stable 

approximately. But after this period, EPP raised until 40 kPa in second 20 sharply. After this time 

the trend increased but so slower than before until 55 kPa. This EPP is so near to EOS, so the Finn-

Byrne can predict liquefaction in P1. 

 

The trend of EPP from PLAXIS started the rising in 10 first second. This period lifted the EPP to 20 

kPa. But after that the trend shows slow increasing until 40 kPa. Base on this trend UBC3D-PLM 

could not show any liquefaction effect. 

 

2.2. Diagrams of Piezometer P2 

 

Figure 4.2 consist of the results of FLAC, PLAXIS and measured trends. Same as last diagram 

green points show the results of Finn-Byrne prediction, and red points present the results of UBC- 
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PLM prediction. The blue points are measured excess pore pressure in site; and E.O.S is the 

Effective Overburden Stress. 

 

 

 
Figure 4.2 results of Excess pore pressure in P2. 

 

In piezometer 2, the superstition earthquake has made any special effect until 15 first seconds. After 

that EPP has raised until 43 kPa uniformly. By attention to EOS line, the EPP in P2 exceed EOS in 

40 second. 

 

The results of Finn model in P2 show the stable EPP only until 10 first second, after that grew up 

until 30 kPa in 15 second. This trend went up to 45 kPa in 35 second. In these last seconds, EPP 

decreased a little until 43 kPa. Confluence of EPP and EOS in 22 seconds shows the ability of Finn 

model to predict liquefaction in P2.  
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Based on figure 4.2, UBC3D-PLM shows fast increase in P2. The EPP reach the 40 kPa in 15 

seconds. In fact, trend before 15 seconds reach to EOS line. After 15 second, trend has remained 

relatively constant. 

 

2.3. Diagrams of Piezometer P3 

 

EPP in Piezometer 3, unlike before, start rising at first of earthquake. This raising was not so high, 

only to 8 kPa in Second 10. After this time, the trend increased until 63 kPa. Based on literatures, 

the EPP had reached to 71.2 kPa after 90 second (Figure 4.3). 

 

 
Figure 4.3 results of Excess pre pressure in P3. 

 

Finn formulation had same reaction in 10 seconds after earthquake. After this period, EPP raise 

very fast to 68 kPa on 25 second. EPP had slow rising until 73 kPa in 50 second. Finn formulation 

could build EPP in P3 until EOS quantity. 
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Plaxis has same reaction with measured trend results until 54 kPa in 45 second. But after that the 

trend stable and remain constant. So UBC3D-PLM could not build EPP until EOS in P3. 

 

2.4. Diagrams of Piezometer P5 

 

In 10 seconds of Superstition earthquake, EPP in P5 has remain constant same as P1 and P2. After 

this moment, EPP raised uniformly until 50 kPa. The line crossed with EOS line in 27 second. 

 

 
Figure 4.4 results of Excess pre pressure in P5. 

 

 

 

Based on figure 4.4 the result of Finn-Byrne is not interesting. The level of EPP was too low. After 

50 seconds, the EPP reached to 20 KPa. So there should not be any conflict between EPP from 

FLAC and EOS in P5. 
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PLAXIS had good result for this piezometer. After 22 second, EPP crossed with EOS line, and after 

25 second in 47 KPa remained approximately constant. 

 

3. Comparison between the prediction of Finn-Byrne, UBC3d-PLM and NFLP 
 

The modelling of every phenomenon has special conditions. This condition and its usage depend to 

user and tools. Every user can use different methods. But the main goal of them is the same: Better 

simulation of reality. Based on this goal, in this research it was tried to make better liquefaction 

simulating with 2 available patterns and one new algorithm. 

 

In Piezometer 1: 

 

- Flac software by using Finn-Byrne formulation was almost able to predict liquefaction. 

- Plaxis software by using UBC3d-PLM model could not predict liquefaction. 

- NFLP model has predicted the liquefaction in this piezometer with 92% probability. 

 

In Piezometer 2: 

 

- Both of Finn-Byrne and UBC3D-PLM models could predict liquefaction happening in this 

piezometer. 

- 80% was the probability of liquefaction occurrence, which NFLP has predicted for P2. 

 

In Piezometer P3: 

 

 The Flac software, by using the Finn-Byrne formulation, has clearly predicted the 

liquefaction in this part.  

 

 

- The Plaxis software, by using the UBC3D-PLM model, has good overlapping with 

measured EPP.  
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- The “Neuro-Fuzzy-Liquefaction-Prediction” model has estimated the occurrence of 

liquefaction in this piezometer equivalent 100%. 

 

In piezometer P5: 

 

- Only in this piezometer FLAC software with Finn-Byrne model was not able to estimate 

liquefaction. 

- The Plaxis has reasonable overlapping with measured EPP in this piezometer, and it has 

predicted liquefaction happening in this piezometer. 

- The NFLP model could predict, the liquefaction happening for this piezometer with 92% 

probability. Table 4.1 shows the summary of this ability. 

 
Table 4.1 ability of liquefaction occurrence prediction 

 Finn-Byrne UBC3D-PLM NLFP 

P1 Yes No 97% 

P2 Yes Yes 80% 

P3 Yes Yes 100% 

P5 No Yes 92% 
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4. Conclusion 
 

In this research the abilities of Finn-Byrne model and UBC3D-PLM model were considered. In 

order to this goal advantages and disadvantages of FLAC and PLAXIS software were compared 

too. After introduction of NFLP model in this thesis, its level of confidence for liquefaction 

prediction was examined. 

 

This thesis shows some hidden aspects of soil liquefaction in Wildlife area after Superstition 

earthquake (1987). Comparing the results of numerical modelling of pore water pressure and 

observation of pore water pressure in Wildlife area lead to some differences which can depend on 

consolidation processes and special soil behaviour in this area. 

 

In this research the generation of excess pore water pressure on wildlife site was considered by 

using Finn-Byrne- and UBC3D-PLM model. The calculation of excess pore water pressure shows 

that these constitutive models can reproduce the main mechanism of liquefaction. In spite of the 

first relax period in Finn-Byrne model the pore water pressure generation is not smooth, but in 

UBC3D-PLM modelling pore water-pressure generation is gradual rising. The sharp generation 

problem in Finn-Byrne model was improved in UBC3D-PLM model by using two yields surface in 

hardening process. 

 

The generation of excess pore water pressure in Finn-Byrne model depends on cyclic irrecoverable 

volume increment. So this model cannot work in static or monotonic loading. However the 

UBC3D-PLM model has modeling ability of excess pore water pressure in monotonic and cyclic 

conditions. 

 

The Finn-Byrne has a simple formulation. The model was introduced based on irrecoverable 

volume increment. The software connects this increment and pore water pressure based on Biot - 

Skempton theory. On the other hand the UBC3D-PLM has a lot of parameters, which need more 

field and laboratory testing. The definition of controlling parameters in UBC3D-PLM is based on 

curve fitting of cyclic direct shear test. This kind of data does not exist in a lot of cases. The  
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correlation and calibration of UBC3D-PLM parameters are useful, but not comprehensive. 

Therefore the result trends of this model are extremely dependent on model parameters. 

 

The generated results of pore-water pressure in Wildlife area with Finn-Byrne- and UBC3D-PLM 

model are resembled each other. Nevertheless, some calculation results with UBC3D-PLM model 

have better overlapping with measured data. Furthermore UBC3D-PLM model by using flow rules 

can predict post liquefaction condition, while Finn-Byrne model is disabled to predict this situation 

after shaking. That means generation of pore water pressure will stop exactly after shaking. 

 

The new pattern for prediction of soil liquefaction is designed based on a mixture of Fuzzy logic 

and neural network. “Neuro- Fuzzy- Liquefaction- prediction” (NFLP) pattern has reliable results in 

this area. This new pattern could predict liquefaction happening in four Piezometers at wildlife site. 

“NFLP” is designed based on eight input parameters. The results of this pattern by using these input 

parameters show a reasonable effect on liquefaction accuracy. The ability of this pattern to predict 

liquefaction occurrence makes this pattern as a proper tool for pre-feasibility or feasibility studies. 

In addition the fast and simple application of NFLP introduces this pattern very helpful for mapping 

and next study planning. 

 

5. Recommendations for Future 
 

The following future studies are recommended: 

 

In this research, by apply the FLAC and PLAXIS software the liquefaction of Wildlife area were 

considerate. By attention to reaction of soils and layers, study on microscopic behavior of soil is 

inevitable. So modelling of this area by using the Particle Flow Code (PFC) is recommended. 

 

In this research, the new version of UBC3D-PLM calibration was applied. Consideration of the 

results, show the procedure of pre-water pressure working truly, but the results is not approved. For 

this reason, more study and testing to prepare better calibration for UBC3D-PLM parameters is 

recommended. 
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In Finn-Byrne the pore-water pressure update occurs when a half-cycle is completed. The result of 

this persuader is rapid changing in pore water quantity and steep curves. To solve this defect, 

modification of the code for this model in FLAC is suggested. 

 

Data mining and learning algorithms have direct relation by amount and accuracy of data. NFLP 

model was based on specified number of data. Validation of this pattern such as other scientific 

research is essential. 

 

NFLP has specific methods for fuzzification, learning algorithm and defuzzification. It is possible, 

changing of this methods lead to better estimates and results. 
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