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Abstract 

In geotechnical engineering, the uncertainties such as the variability and uncertainty inherent 

in the geotechnical properties have caught more and more attentions from researchers and 

engineers. They have found that a single “Factor of Safety” calculated by traditional 

deterministic analyses methods can not represent the slope stability exactly. Recently in order 

to provide a more rational mathematical framework to incorporate different types of 

uncertainties in the slope stability estimation, reliability analyses and non-deterministic 

methods, which include probabilistic and non probabilistic (imprecise methods) methods, 

have been applied widely. In short, the slope non-deterministic analysis is to combine the 

probabilistic analysis or non probabilistic analysis with the deterministic slope stability 

analysis. It cannot be regarded as a completely new slope stability analysis method, but just 

an extension of the slope deterministic analysis. The slope failure probability calculated by 

slope non-deterministic analysis is a kind of complement of safety factor. Therefore, the 

accuracy of non deterministic analysis is not only depended on a suitable probabilistic or 

non probabilistic analysis method selected, but also on a more rigorous deterministic 

analysis method or geological model adopted. 

In this thesis, reliability concepts have been reviewed first, and some typical 

non-deterministic methods, including Monte Carlo Simulation (MCS), First Order 

Reliability Method (FORM), Point Estimate Method (PEM) and Random Set Theory 

(RSM), have been described and successfully applied to the slope stability analysis based on 

a numerical simulation method-Strength Reduction Method (SRM). All of the processes 

have been performed in a commercial finite difference code FLAC and a distinct element 

code UDEC. 

First of all, as the fundamental of slope reliability analysis, the deterministic numerical 

simulation method has been improved. This method has a higher accuracy than the 

conventional limit equilibrium methods, because of the reason that the constitutive 

relationship of soil is considered, and fewer assumptions on boundary conditions of slope 

model are necessary. However, the construction of slope numerical models, particularly for 

the large and complicated models has always been very difficult and it has become an 

obstacle for application of numerical simulation method. In this study, the excellent spatial 

analysis function of Geographic Information System (GIS) technique has been introduced to 

help numerical modeling of the slope. In the process of modeling, the topographic map of 
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slope has been gridded using GIS software, and then the GIS data was transformed into 

FLAC smoothly through the program built-in language FISH. At last, the feasibility and high 

efficiency of this technique has been illustrated through a case study-Xuecheng slope, and 

both 2D and 3D models have been investigated.  

Subsequently, three most widely used probabilistic analyses methods, Monte Carlo 

Simulation, First Order Reliability Method and Point Estimate Method applied with Strength 

Reduction Method have been studied. Monte Carlo Simulation which needs to repeat 

thousands of deterministic analysis is the most accurate probabilistic method. However it is 

too time consuming for practical applications, especially when it is combined with numerical 

simulation method. For reducing the computation effort, a simplified Monte Carlo 

Simulation-Strength Reduction Method (MCS-SRM) has been developed in this study. This 

method has estimated the probable failure of slope and calculated the mean value of safety 

factor by means of soil parameters first, and then calculated the variance of safety factor and 

reliability of slope according to the assumed probability density function of safety factor. 

Case studies have confirmed that this method can reduce about 4/5 of time compared with 

traditional MCS-SRM, and maintain almost the same accuracy.  

First Order Reliability Method is an approximate method which is based on the Taylor's 

series expansion of performance function. The closed form solution of the partial derivatives 

of the performance function is necessary to calculate the mean and standard deviation of 

safety factor. However, there is no explicit performance function in numerical simulation 

method, so the derivative expressions have been replaced with equivalent difference 

quotients to solve the differential quotients approximately in this study. Point Estimate 

Method is also an approximate method involved even fewer calculations than FORM. In the 

present study, it has been integrated with Strength Reduction Method directly.  

Another important observation referred to the correlation between the soil parameters 

cohesion and friction angle. Some authors have found a negative correlation between 

cohesion and friction angle of soil on the basis of experimental data. However, few slope 

probabilistic studies are found to consider this negative correlation between soil parameters 

in literatures. In this thesis, the influence of this correlation on slope probability of failure has 

been investigated based on numerical simulation method. It was found that a negative 

correlation considered in the cohesion and friction angle of soil can reduce the variability of 

safety factor and failure probability of slope, thus increasing the reliability of results. 
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Besides inter-correlation of soil parameters, these are always auto-correlated in space, which 

is described as spatial variability. For the reason that knowledge on this character is rather 

limited in literature, it is ignored in geotechnical engineering by most researchers and 

engineers. In this thesis, the random field method has been introduced in slope numerical 

simulation to simulate the spatial variability structure, and a numerical procedure for a 

probabilistic slope stability analysis based on Monte Carlo simulation was presented. The 

soil properties such as cohesion and friction angle were discretized to continuous random 

fields based on local averaging method. In the case study, both stationary and non-stationary 

random fields have been investigated, and the influence of spatial variability and averaging 

domain on the convergence of numerical simulation and probability of failure was studied. 

In rock medium, the structure faces have very important influence on the slope stability, 

and the rock material can be modeled as the combination of rigid or deformable blocks with 

joints in distinct element method. Therefore, much more input parameters like strength of 

joints are required to input the rock slope model, which increase the uncertainty of the 

results of numerical model. Furthermore, because of the limitations of the current 

laboratory and in-site testes, there is always lack of exact values of geotechnical parameters 

from rock material, even the probability distribution of these variables. Most of time, 

engineers can only estimate the interval of these variables from the limit testes or the 

expertise’s experience. In this study, to assess the reliability of the rock slope, a Random 

Set Distinct Element Method (RS-DEM) has been developed through coupling of Random 

Set Theory and Distinct Element Method, and applied in a rock slope in Sichuan province 

China. 

Keywords: slope stability; Strength Reduction Method; reliability analyses; random field 

model; random set theory; distinct element method 
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1. Introduction 

1.1 Background 

A “slope failure” is the movement of a mass of rock, debris, or earth down a slope, under the 

influence of gravity (Nemcok et al., 1972; Varnes, 1978
 
; Hutchinson, 1988; WP/WLI, 1990; 

Cruden, 1991; Cruden and Varnes, 1996) with many different forms, for example, landslide, 

debris flow, rock fall and so on. Many different phenomena can cause slope failures, 

including intense or prolonged rainfall, earthquakes, rapid snow melting, and a variety of 

human activities.  

Slope failure is the second most destructive natural hazard after earthquake (Li et al., 1999; 

U.S. geological survey, 2000), but it is the most frequent geohazard. With climate change and 

urbanization, the frequency of slope failures increased sharply in last century. Most of the 

slope failures resulted from global climate change such as El Niño and unscientific human 

activities (Au, 1998; Yin et al., 2000; Schuster and Highland, 2001). Most slope failures 

concentrated in young tectonic mountains such as Rocky and Andes mountain chain of 

American continent (Radbruch-Hall et al., 1983; Parise and Wasowski, 1999; Collison et al., 

2000; Mauritsch et al., 2000), hills of Japan and Taiwan, and the Himalayas of South Asia 

(Yamagishi et al., 2000; Lin et al., 2002; Bhasin et al., 2002). 

Slope failures are always catastrophic due to their large affected areas and great energy, 

generated by the collapsed soil or rocks with rapid and long runout movement. Until now, a 

lot of studies have been performed on the large landslides (Schuster, 1996; Voight and Faust, 

1992; Wu and Wang, 1989; Zhong, 1999; Sun, 2000; Yin, 2000; Huang et al., 2005), and 

some catastrophic landslides have been widely known. For example, the loess landslides 

triggered by the 1920 Haiyuan earthquake resulted in more than 100,000 fatalities (Close and 

McCormick, 1922). In 1963, a catastrophic landslide (called Vaiont Landslide) suddenly 

occurred on the southern slope of the Vajont reservoir dam in Italy, and more than 2,500 

people lost their lives due to the overtopped flood caused by the landsliding (Voight and 

Faust, 1992). This is the most deadly landslide ever recorded in Europe. Further, on 18 May 

1980, a giant landslide occurred on the slope of Mount St. Helens (a volcano located in 

Washington State of United States) triggered by melting snow and ice, causing a major lahar 

which traveled rapidly down the valley of the north Fork of the Toutle River, and 57 people 

were killed. More recently, triggered by earthquake, the 1999 Chiufengershan in Taiwan 

(Fig. 1.1) (Shou et al., 2003) and 2001 Las Colinas landslide in El Salvador (Fig. 1.2) (Baum 
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et al., 2001) also resulted in a huge number of fatalities (Catane et al., 2007).  

 

Fig. 1.1 Overview of the Chuifengershan Landslide (after Shou, 2003) 

 

Fig. 1.2 Las Colinas Landslide triggered by M 7.6 earthquake in Central America in 2001 

China is one of the countries which suffer slope failure disasters the most seriously in the 

world. Since 1980, due to increase in construction activities and change in climatic 

conditions, the number of slope failure hazards boosted in China. At present, serious slope 

failures occur in almost all areas of China, and the most severe areas are the provinces 

situated in west of China, which is a mountainous area. In temporal, most of the landslide 
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hazards, which are about 90% of the whole year, concentrate in the rain season, from June to 

September every year. 

In China, the slope failures resulted in about 1,000 fatalities and great damage to 

infrastructures per year in the last 20 years (Li, 1992; Wang, 1999; Duan, 1999; Yin, 2000, 

2001; Jiang, 2000). According to China Ministry of Land and Resources, in the first half of 

2010, the number of geo-hazards was 14,614 in China, where the slope failures made up 

more than 98%, including landslides, slope collapses and debris flows (Fig. 1.3). The slope 

failure hazards in those six months induced 464 deaths as well as about 18 billion RMB loss. 

 

Fig. 1.3 Geo-hazards Statistics in China 1~6, 2010 (from China Ministry of Land and Resources) 

Obviously, how to prevent and to mitigate the disaster of slope failure is an urgent mission 

for researchers and engineers in the world. 

1.2 Thesis purpose significance and outline 

Slope engineering is one of the three kinds of geotechnical engineering, besides earth 

pressure and bearing capacity of foundation. Many researchers and scholars have studied 

different aspects of slope stability, including slope deterministic analysis, slope probabilistic 

analysis, landslide risk analysis, the prediction, prevention and protection against risk of 

slope failure, and lots of significant achievements have been obtained (Morgenstern and 

Price, 1965; Spencer, 1967; Janbu, 1973; Brown and King, 1966; Griffiths and Lane, 1999; 

Matsui and San, 1992; Madsen and Larsen, 1987; Jiang, 1990; Tamaskovics, 2001; Azzam, 

2011). However slope failure is still one of the most frequent and dangerous geological 

hazards in the world, and there are many difficulties in relative reasonable slope stability 

analyses and the timely forecast of slope failure hazard. In the future, with progressive 
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urbanization and global climate change, large scale single slope failure or slope failure 

hazard in a region will be more and more severe. Therefore many aspects of slope stability 

analysis require further studies, for instance: the geological background, failure mechanism, 

geotechnical mechanics, stability analyses methods, reinforcement methods of slope, 

landslide hazard mapping, risk prediction, triggers of landslides etc. The content of this thesis 

focuses on the study of slope reliability analyses based on numerical simulation. 

1.2.1 Thesis objective 

The slope stability analyses method have been studied for hundreds of years. However, with 

the development of modern computation techniques and new demands of engineering 

construction, the slope stability analysis methods need to be further improved. The purpose 

of this thesis is to study slope stability analysis considering the uncertainty of soil properties, 

and develop an efficient user-friendly framework combing the non-deterministic analyses 

methods with numerical simulations.  

For estimating stability of slope more rigorously, slope non-deterministic analysis methods 

should consider all of the nonlinear properties of geological material, the large deformation 

of slope and the uncertainty of geomechanical parameters. The output of these methods 

should obtain the probability of failure and location of the corresponding slide of slope. It can 

provide the scientific foundation for the subsequent risk analyses, risk management, hazard 

forecast and reinforcement design of slopes.  

1.2.2 Significance of study 

This study has very important scientific significance and practical worth. The scientific 

significance: the slope reliability analysis is a front topic in slope engineering. It is an 

interdisciplinary topic which synthesizes engineering geology, geotechnical mechanics, 

elastic-plastic mechanics, nonlinear numerical simulation method, reliability theory and 

mathematic statistics, and computer. The achievement of this study can promote the 

development of these disciplines.  

The practical worth: the slope probabilistic analysis methods combined with numerical 

simulation reflect the property of slope engineering more realistically, overcome the 

restrictions of many unreasonable postulates in existing slope stability analyses methods, and 

evaluate the failure probability or reliability of the slope more correctly and efficiently. 

Applying this study will enable people to consider the effects of soil or rock property 
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uncertainties and complex boundary condition of slope stability better. And based on the 

results of these non-deterministic analysis methods, engineers can carry out risk analyses, 

risk management, hazard forecast and reinforcement design of landslide more scientifically 

in subsequent work.  

1.2.3 Thesis outline 

The present thesis focuses on the non-deterministic method study of slope stability analysis 

based on numerical simulation. The main contents are:   

Chapter 2: this chapter reviews the development of slope stability analysis. First, two kinds 

of most popular slope deterministic methods: Limit Equilibrium Methods (LEM) and 

Numerical Simulations are reviewed. The methodologies are extensively illustrated and their 

corresponding advantages and limitations are discussed. Next, the development of reliability 

theory and its application in slope stability analysis is reviewed, and the shortness of the 

present slope probabilistic methods is presented.  

Chapter 3: this chapter starts by considering the primary sources and types of uncertainties 

in slope engineering, and underlying the importance of using probabilistic methods as 

alternative to the deterministic analysis to quantify uncertainties. And then a description of 

the most important statistical and probabilistic concepts of continuous random variables is 

provided based on some useful continuous probability distributions and their main 

characteristics. The chapter introduces the basic theory of reliability analysis, it is shown how 

the traditional safety factor relates to the probability of failure, which represents a more 

realistic measure of a system reliability. At last, the determination of geotechnical 

parameters based on real time monitoring data is discussed. 

Chapter 4: With the development of computer, the numerical simulations, such as finite 

element or finite difference method are applied more and more frequently in slope stability 

analyses. However, the numerical modeling, especially for 3D, developed very slowly. This 

chapter investigates the integration of Geographic Information System (GIS) and the 

numerical simulation method-Strength Reduction Method in slope stability analysis. The 

functions such as profile automatic generation and gridding of Digital Elevation Map (DEM) 

features of GIS are used in the preliminary treatment of numerical modeling, and a program 

for transforming GIS data to commercial finite difference code FLAC is developed using 

FISH programming language. At last, the stability analysis of Xuecheng slope in 2D and 3D 

are studied to demonstrate the reliability of this technique. 
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Chapter 5: the mechanical properties of sediments, especially the soil shear strength, play an 

important role in slope stability. However, the mechanical properties of natural sediments are 

variable and depend on the way the sediments formed. Probability theory and reliability 

analysis can provide a rational framework for dealing with these uncertainties. In this chapter, 

three most widely used probabilistic methods Monte Carlo Simulation (MCS), First Order 

Reliability Method (FORM) and Point Estimation Method (PEM) for slope reliability 

analysis are discussed and applied based on Strength Reduction Method. The accuracy and 

feasibility of these methods are illustrated using two examples; a homogenous slope and a 

non-homogenous slope. The cohesion c and friction angle φ of soil which have the strongest 

influence on slope stability are considered as random variables with three kinds of 

distribution: independent normal random variables, independent log-normal random 

variables and negative correlated normal random variables.  

Chapter 6: the spatial variability of soil properties is a critical factor that affects the 

probabilistic slope stability analysis. In this chapter, a practical method for probabilistic slope 

stability analysis based on the Monte Carlo simulation is presented. The proposed method 

considers the spatial variability of soil properties, adopts local average subdivision to build 

the random field model of soil properties, and applies Strength Reduction Method to estimate 

the safety factor of a slope. In the case study, the probability analysis of a two-layer slope 

with random field soil properties is carried out, and both the stationary and non-stationary 

random fields are considered. At last, the influence of local averaging on the convergence of 

analysis and probability of failure is investigated.  

Chapter 7: the Random Set Distinct Element Method (RS-DEM) has been developed and 

applied in the stability analysis of a rock slope from China in this study. The influence of the 

discontinuity joints of rock material on the slope stability is considered, and the sensitivity 

analyses of different input parameters have been conducted. At last the uncertainties of the 

strength parameters of both, rock blocks and discontinuity joints are included in the 

reliability analysis model. In this study, the distinct element code UDEC has been used to 

model the rock material, and the Strength Reduction Method is used to calculate the safety 

factor of slope. 

Chapter 8: a summary of the most relevant findings of this research is presented in the final 

chapter, along with the conclusions and recommendations for further research. 
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2. Literatures Review of Slope Stability Analysis 

2.1 Deterministic slope stability analyses methods 

Tons of research articles about slope stability analysis methods have been published since the 

first method developed by Fellenius in 1936. Nowadays among the available deterministic 

analysis methods, the most widely used are the Limit Equilibrium Slice Methods (LEM) and 

numerical simulation methods.  

2.1.1 Limit equilibrium slice methods 

For slope stability analysis, the Limit Equilibrium Slice Methods are the most popular 

among engineers and researchers, because these are traditional and well established. After 

the first slice technique (Fellenius, 1936) which based more on engineering intuition than 

on a rigorous mechanics principle appeared, there was a rapid development of the slice 

methods in the 1950s and 1960s by Bishop (1955); Janbu et al. (1956); Lowe and Karafiath 

(1960); Morgenstern and Price (1965); and Spencer (1967). The various slice methods of 

limit equilibrium analysis have been well surveyed and summarized in 1980s and 1990s 

(Fredlund and Krahn, 1984; Nash, 1987; Morgenstern, 1992; Duncan, 1996). 

Most of the limit equilibrium methods are based on the technique of slices. The general 

formulation of these methods is shown in Figure 2.1. 

 

Fig. 2.1 Slices of slope and forces acting on them 

These slice methods have some common features, and Zhu et al. (2003) have summarized 

them as follows: 

1). The sliding body over the failure surface is divided into a finite number of slices. The 

slices are usually cut vertically, but horizontal as well as inclined cuts have also been 

used by various researchers. In general, the differences between different methods of 
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cutting are not common, and the vertical cut is preferred by most engineers at 

present. 

2). The strength of the slip surface is mobilized to the same degree to bring the sliding 

body into a limit state. It means there is only a single factor of safety which is applied 

throughout the whole failure mass. 

3). Assumptions regarding inter-slice forces are employed to render the problem 

determined. 

4). The factor of safety is computed from force and/or moment equilibrium equations. 

There is much common ground for the limit equilibrium methods, and there are also many 

differences among them about the slip surface or assumptions in force. For example, based 

on the shapes of slip surface assumed, the LEMs can be grouped as: 

1). Methods of analysis which employ circular slip surfaces include: Fellenius (1936); 

Taylor (1949); and Bishop (1955).  

2). Methods of analysis which employ non-circular slip surfaces include: Morgenstern 

and Price (1965); Spencer (1967); and Sarma (1973); Janbu (1973). 

In the conventional limit equilibrium methods, no matter circular or non-circular slip 

surface, the shear strength τm which can be mobilized along the failure surface is given by: 

                                        (2.1) 

where FS is the factor of safety (based on force or moment equilibrium in the final form) 

with respect to the ultimate shear strength τf which is given by the Mohr-Coulomb relation 

as 

                                                   (2.2) 

where c′ is the effective cohesion, σ′ is the effective normal stress, φ′ is the effective angle 

of internal friction and cu is the undrained shear strength. 

According to Eq. 2.2, except the soil properties i.e. cohesion and friction angle, the ultimate 

shear strength along a slip surface also depends on the effective normal stress σ′ acting on 

the failure surface. However, the effective normal stress is not constant, but varies based on 

the topography of slope, density and saturation of soil and so on. Fröhlich (1953) analyzed 

the influence of σ′ distribution on the slip surface on the calculated FS. He suggested an 
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upper and lower bound for the possible FS values. The lower bound theorem in plasticity 

adopts the following criteria: equilibrium equations, failure criterion and boundary 

conditions in terms of stresses. On the other hand, the upper bound theorem in plasticity 

adopts the following alternative criteria: compatibility equations and displacement 

boundary conditions, in which the external work equals the internal energy dissipations. 

Hoek and Bray (1977) suggested that the lower bound assumption gives relative accurate 

values of the factor of safety. Based on the friction method, Taylor (1948) also concluded 

that a solution using the lower bound assumptions leads to a relative accurate safety factor 

for a homogeneous slope with circular failures. However the use of the lower bound 

method is difficult in most cases. Cheng et al. (2007c, d) have developed a numerical 

procedure, which is effectively the lower bound method but applicable to a general type of 

slope problem.  

In the classical stability analysis, an average value of FS is obtained along the slip surface 

instead of the actual factor of safety which varies along the failure surface. However 

constant FS can not reflect the progressive failure of slope. There are some formulations 

where the factors of safety can vary along the failure surface. Chugh (1986) presented a 

procedure for determining a variable factor of safety along the failure surface within the 

framework of the LEM. He predefined a characteristic shape for the variation of the factor 

of safety along a failure surface, and this idea actually follows the variable inter-slice shear 

force function in the Morgenstern-Price method. The suitability of this variable factor of 

safety distribution is however questionable, as the actual local factor of safety should be 

mainly controlled by the local soil properties. Law and Lumb (1978) and Sarma and Tan 

(2006) have also proposed different methods with varying factors of safety along the failure 

surface. These methods however also suffer from the use of assumptions with no strong 

theoretical background. Cheng et al. (2007c) has developed another stability method based 

on the extremum principle which can allow for different factors of safety at different 

locations. All of these formulations attempt to model the progressive failure in a simplified 

way, but the introduction of additional assumptions is not favored by many engineers. In 

view of these limitations, most engineers still prefer the concept of a single factor of safety 

for a slope. 

In the process of the LEMs in the slope stability analyses, there are basically two steps. The 

first is to calculate the safety factor based on a certain slip surface; the second is to repeat the 
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first step based on different potential slip surfaces, and search the critical slide face 

corresponding to the minimum safety factor. In recent years, many optimization methods are 

applied in searching vulnerable failure face, including the enumeration method, numerical 

analyses method and non numerical analyses methods (e.g. Simulated Annealing, Genetic 

Algorithm, Neural Network Method, Ants Algorithm and Bionic Algorithm) (Baker, 1980; 

Cellestino and Duncan, 1981; Li and White, 1987; Chen, 1988; Greco, 1997). 

Duncan (1996) and Chen (2003) analyzed and observed the accuracy and feasibility of every 

LEM. They indicated that: 

1). the safety factor of slope calculated by the Fellenius Method is the smallest, the result 

of Simplified Bishop Method is greater than the Fellenius Method by 6%~7%, and the 

result of Spencer Method is greater than the Simplified Bishop Method by 2%~3%;  

2). the rigorous methods which satisfied both equilibrium conditions of force and moment, 

such as Morgenstern Price method, are more accurate (except for the numerical 

analyses problem);  

3). for the circular slide face, the results of the Simplified Bishop and Morgensten-Price 

Methods are very close, which means that the Simplified Bishop Method has relatively 

high accuracy, so it is applied most extensively in practical engineering.     

2.1.2 Numerical simulation methods 

The classical limit equilibrium analysis only considers the ultimate limit state of the system, 

and provides no information on the development of strain which actually occurs. The 

design of a slope using a limit equilibrium analysis alone may be completely inadequate if 

the slope fails by complex mechanisms (e.g. progressive creep, internal deformation and 

brittle fracture, liquefaction of weaker soil layer, etc.) (Stead, 2001). For a natural slope, it 

is possible that part of the failure mass is heavily stressed so that the residual strength will 

be mobilized at some locations, while the ultimate shear strength may be applied to another 

part of the failure mass. This type of progressive failure may occur in over consolidated or 

fissured clays or materials with a brittle behavior. The use of the numerical simulation 

methods can provide an estimation of this progressive failure. 

The numerical simulation methods are currently adopted in several well-known 

geotechnical finite element (Matsui and San, 1992, Griffiths and Lane, 1999), finite 

difference, distinct element or boundary element (Jiang, 1990) programs. Compared with 
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conventional slope stability analysis methods, the numerical simulation methods consider the 

relationship of stress and strain of slope material (i.e., constitutive relationship), and they 

aren’t restricted by the geometry shape and material inhomogeneity. There are basically two 

kinds of numerical simulation technique: one is the Slip Surface Stress Analysis (SSA) (Zou, 

1995; Duncan, 1996); and the other is the Strength Reduction Method (SRM), which 

developed in 1990s (Matsui, 1992; Swan, 1999; Dawson, 1999; Griffiths, 1999).  

Same as the process of limit equilibrium methods, the Slip Surface Stress Analysis Method 

(Wright, 1973; Yamagami, 1988) defines the potential slip surface in advance, and then 

analyzes the stress distribution on this surface after numerical simulation converged, 

ultimately calculates the safety factor based on the principle of weighted average. Many 

researchers further studied the method of searching the critical slip surface in plenty of 

potential slip surfaces. Zou (1995) determined the initial and potential range of slide face 

through the stress distribution, and then searched the most vulnerable slide face and its 

corresponding safety factor. Kim and Li (1997) calculated the Gauss points stress through the 

finite element stress field, and then carried out the advanced search of noncircular slide face. 

Giam and Donald (1988) proposed the pattern search method to get the critical slide face and 

the minimum safety factor based on stress field.   

The second numerical simulation slope stability approach is the Strength Reduction Method. 

This method is studied more actively (Woodward, 1999; Hamdy Faheem, 2004) than SSA, 

because it is very simple and can be conducted in the existing commercial numerical analyses 

programs, such as FLAC, Ansys, UDEC etc. In the strength reduction technique, the original 

shear strength parameters are reduced in order to bring the slope to fail. The domain under 

consideration is discretized and the equivalent body forces are applied to the system. The 

yield criterion adopted is usually the Mohr-Coulomb criterion, but the use of other yield 

criteria is also possible, such as Drucker-Prager criterion (Zheng et al., 2005). The 

numerical simulation methods can analysis the slope stability under different conditions. 

For example, Wu (2008) analyzed the slope stability in central Asia under severe seismic 

event using finite difference program FLAC3D and Finite Element program QUAKE/W. 

In numerical simulation methods, there are mainly three kinds of slope failure criterion:  

1). the non-linear equation solver cannot achieve convergence after a pre-set maximum 

number of iteration, and this is the most commonly used criterion (e.g. Dawson and Roth, 

1999; Griffith and Lane, 1999; Lechman, 2000; Zhao and Zhen, 2002);  
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2). there is a sudden increase in the rate of change of displacement in the system (Song, 1997; 

Ge, 2003);  

3). a failure mechanism has developed (Matsui, 1990; Zhen, 2002). 

To define the critical failure surface from the SRM, both the maximum shear strain and the 

maximum shear strain increment definition can be used. Cheng et al. (2007e) have found 

that these two definitions give similar results in most cases. 

Compared with the conventional limit equilibrium method, the main advantages of the 

SRM are as follows:  

1). the critical failure surface is found automatically from the localized shear strain 

arising from the application of gravity loads and the reduction of shear strength;  

2). it requires no assumption on the inter-slice shear force distribution;  

3). it is applicable to many complex conditions and can give information such as stresses, 

movements and pore water pressures; 

4). it can simulate the interaction of the soil and the structure inside, like piles, walls, and 

geotextile.  

Griffiths and Lane (1999) pointed out that the widespread use of the SRM should be 

seriously considered by geotechnical practitioners as a powerful alternative to the 

traditional limit equilibrium methods.  

2.2 Slope probabilistic analysis review 

2.2.1 Probabilistic analyses methods review 

In every deterministic slope stability analyses, the uncertainties in slope engineering are not 

considered. This common shortcoming sometimes causes collapse of slope even though the 

safety factor is greater than 1.0.  

The probabilistic analysis, also called reliability analysis was first studied in airplane failure 

in 1930s. Since 1946 Freudenthal published “Degree of Safety in Structure” and lead the 

probability analyses in practical engineering design, people began to recognize the 

importance of uncertainties in structure engineering. In 1974 Hasofer and Lind defined that 

the reliability index is the minimum distance between the original point and the limit state 

surface in the Gauss space.  
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As the development of reliability theory and increased concentration on the uncertainties of 

the slope engineering, the slope probabilistic analysis got more and more attention by 

engineers and researchers. It was first used in slope engineering during 1970s (Matsuo et al., 

1974, 1976; Ang et al., 1975; Alonso, 1976; Tang et al., 1976; Harr, 1977; Vanmarcke, 1977; 

Chowdhury, 1978). Thereafter many people conducted further studies and developed many 

probabilistic analysis methods (Ang et al., 1984; Chowdhury et al., 1984, 1987, 1933; Wolff, 

1985; Nguyen, 1985; Li, Lumb, 1987; Oka, Wu, 1990; Christian, 1994, 1996, 1998; Low, 

1997, 1998, 2005; Hassan, 1999; Liang, 1999; Malkawi, 2000; Auvinet, 2000; Bhattacharya, 

2003). 

The primitive probabilistic analysis method was “Second Moment Pattern” (Cornell, 1969, 

1971). These methods produce a linearization of performance function about the mean value 

of the input random variables. These concern the first or second order of the performance 

function based on first and second moments of random variables, so is called the First Order 

Second Moment (FOSM) method or the Second Order Second Moment (SOSM) method 

(Griffiths, Fenton and Tveten, 2002; Christian and Bächer, 1992, 1994; Mostyn and Li 1993; 

Wolff, 1994; Duncan, 2000).  

The drawback of the FOSM and SOSM methods is that the results depend on the mean value 

of the input variables at which the partial derivatives of the safety margin are evaluated 

(invariance problem). Therefore these methods are accurate only for linear functions, and the 

error will be quite large when the degree of non-linearity of performance function is higher. 

Hence the scholars proposed the First Order Reliability Method (FORM) and Second Order 

Reliability Method (SORM) where the performance function is linearized about the critical 

points, also called design point (Fiessler, 1979; Breitung, 1984; Tvedt, 1990; Koyluoglu and 

Nielsen, 1994; Yang-gang Zhao, 1999; Der Kiureghian, 1987; 1991). After Rackwitz and 

Fiessler (1978) proposed a method to transform the non normal variables to equivalent 

normal variables, the moment’s methods can be applied for non normal random variables. 

Since recommended by International Joint Committee on Structural Safety (JCSS), this 

method is also called JC method. 

The above mentioned moment’s methods need to calculate the gradient of performance 

function. Therefore, the performance function is very important for these methods. For 

building the explicit performance function for complicate geotechnical problem, the 

Response Surface Method (RSM) was developed. The RSM was first proposed by Box and 



 

24 

Wilson (1954), and an explicit expression close to the implicit performance function is 

obtained by a statistic method in this technique. It can be considered as an uncertainty 

analysis methodology in which the impact of the input parameters and their interactions on 

the system response are evaluated, ending up with a relationship between the significant 

factors and the desirable system response in order to reduce the analysis complexity of the 

mechanical system (Cornel, 1990). The function obtained by this method can be used as an 

approximate model in an uncertainty analysis. Then one of the probabilistic analysis 

methods is employed. The RSM was applied in engineering reliability analyses since 1980s 

(Wong, 1984; 1985; Faravelli, 1989; 1992), subsequently, Bächer and Bourgund (1990), 

Rajashekhar and Ellingwood (1993), Liu and Moses (1994), Kim and Na (1997), Zheng and 

Das (2000) and Adhikari (2004) have improved this method for practical applications. 

Zangeneh et al. (2002) have employed this method to analyze the displacement of slopes in 

the earthquake environment. From practical point of view, this method has some 

shortcomings because first, it is necessary to estimate the response function using 

regression methods for each individual response, and the influence input parameters should 

be determined in advance. Second the slope probabilistic analysis is always based on safety 

factor function, but in practice, only the system responses like displacement, deformation 

can be monitored. Therefore, the performance function obtained from response surface 

method cannot be compatible with probabilistic analysis very well.   

No matter the FORM, SORM or RSM, essentially they calculate the reliability index based 

on the moments of performance function, so all of them are approximate methods. It is 

necessary to look for a more effective and accurate reliability calculation method. Therefore, 

Monte Carlo Simulation (MCS) is appreciated by people. 

The MCS method calculates the probability failure of slope based on the assumption of the 

probability density function of input random variables (Ang and Tang, 1984; Ross, 1995). 

The advantages of this method are: (1) the convergence velocity of simulation is 

unconcerned with the dimension of random variables; (2) the complexity of the performance 

function is not related to the simulation procedure; (3) the error of the results is very easy to 

be determined. So it is usually applied as a reference to check the accuracy of other methods. 

The disadvantage of MCS is that the number of simulations increases substantially with the 

reduction of failure probability, and the calculation time will be prolonged immensely.  

Another alternative method to evaluate statistical moments of a performance function is the 
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Point Estimate Method, or shortly PEM. The Point Estimate Method was first developed by 

Rosenblueth (1975, 1981) and then further developed by other authors such as Lind (1983), 

Zhou and Nowak (1988), Harr (1989), Li (1992), Evans et al. (1993), Hong (1998), Christian 

and Baecher (1999). The basic idea of this method is to replace the probability distributions 

of continuous random variables by discrete equivalent distributions having the same first 

three central moments, to calculate the mean value, standard deviation and skewness of a 

performance function, which depends on the input variables. 

While the PEM does not provide a full distribution of the output variable, as Monte Carlo 

does, it requires little knowledge of probability concepts and could be applied for any 

probability distribution. In future it might be widely used for reliability analysis and for the 

evaluation of failure probability of engineering systems. 

The common ground of above studies is that, the reliability index or failure probability of 

slope is solved by the combination of the limit equilibrium slice method and some 

probabilistic methods (mainly FORM and MCS) (Ramly et al., 2002; Malkawi et al., 2000; 

Low 2007).  

2.2.2 Finite element reliability analysis methods review 

Because of the high accuracy of numerical simulation deterministic methods and increase of 

the calculation capability of computers, people began to combine numerical simulation with 

reliability theory to analyze the failure probability of slopes. In the beginning, the idea was to 

combine the Monte Carlo Simulation with finite element method directly (Shinozuka, 1976). 

However, the calculation work of this method is very huge, because MCS is based on a large 

number of repeating deterministic FEM. Precisely speaking, this is not a real random finite 

element method.  

Currently years, research is focused on the establishment and solution of the performance 

function of the Stochastic Finite Element Method (SFEM). In 1970s, Cambou (1971) first 

applied the FORM to study the linear elastic problem, and then, Dendrou and Houstis (1987), 

Bächer and Ingra (1981) applied this method to solve the uncertainty problem in geotechnical 

engineering. Because this method is based on the Taylor's series expansion about the input 

random variables, it is called Taylor Stochastic Finite Element Method (TSFEM). After that, 

Hisada (1981, 1985) and Handa (1981) adopted first order and second order perturbation 

technique considering random variables fluctuation, and proposed Perturbation Stochastic 

Finite Element Method (PSFEM). In 1980’s, Shinozuka and Yamazaki (1988) combined the 
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Neumann expansion with Monte Carlo finite element method, and developed Neumann 

Monte-Carlo Stochastic Finite Element Method (NSFEM) which is more accurate and 

effective. Liu et al (1988) applied partial difference method in stochastic finite element 

analysis, and introduced the 2D non linear stochastic finite element function. Kiureghian 

(1988) combined the reliability index calculation method FORM with Random Finite 

Element Method (RFEM) to calculate the reliability of frame structure. Wu et al. (1989, 1990 

and 1992) extended this method to 2D and 3D, and calculated the reliability of gravity dam 

and arch dam. 

The calculation work of aforementioned stochastic finite element methods is small, but it is 

difficult to develop the programs. Furthermore, a common point of these methods is to study 

the slope stability analysis based on the reliability of every Gauss point or element. However, 

in practical engineering, the reliability index of whole slope and the location of slide face are 

expected. Combined with the existing deterministic numerical simulation programs, there 

appeared many other methods as well. For instance, Marinilli et al. (1999) and Nour et al. 

(2002) combined the deterministic numerical simulation program with MCS to conduct the 

reliability analyses of foundation sedimentation. Fenton and Griffiths also combined the 

finite element program with MCS to carry out the reliability analyses of slope engineering 

considering the autocorrelation of random variables.  

In slope stability analysis, there are many input parameters which increase the calculation 

work significantly. Therefore, the parameters sensibility analysis should be carried out first 

for specific slope. The parameters which have the strongest influence on the slope reliability 

should be considered, and the others may be ignored. Low (1998) and Madsen (1986) 

developed the sensibility calculation function about random variables distribution parameters 

when the basic random variables are independent. Imai (2000) and Liu (2003) analyzed the 

sensibility calculation method of reliability index to the random variables distribution 

parameters and critical state function parameters in Gauss space when the basic variables are 

correlated. Sudret (2002) discussed the sensibility calculation of displacement and stress to 

basic variables in finite element reliability analysis.  

2.3 Slope non probabilistic analysis methods review 

There are some limitations of probabilistic analysis methods, for example tail problem in 

which the failure of probability may vary by orders of magnitude when fitting different 

distributions to the same input data obtained from laboratory tests (Oberguggenberger and 
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Fellin, 2002). In many cases, the input data are insufficient, for example the probability 

distributions of variables are difficult to determine. Therefore, people proposed many 

imprecise methods during recent years to deal with these problems, such as Interval 

Approach (Moore, 1966; Goodman and Nguyen, 1985), Evidence Theory (Dempster, 1967; 

Shafer, 1976), Fuzzy Set Theory (Zadeh, 1965), Possibility Theory (Zadeh, 1978), 

Imprecise Probabilities (walley, 1991), Random Set Theory (Kendall, 1974), and Convex 

Model (Ben-Haim and Elishakoff, 1990).  

Interval analysis introduced by Moore in 1966 is used to describe the parameter 

uncertainties either in geometry and loadings or in soil model parameters as interval 

quantities (Nasekhian, 2011). An interval number is interpretation as a random variable 

whose probability density function is unknown but non-zero in the range of the interval. It 

also can be interpreted as the intervals of confidence for α-cuts of fuzzy sets. In general, the 

interval concept serves as a basis of other non-probabilistic uncertainty models (Muhanna 

et al., 2007). For example, in the fuzzy set approach a continuous membership function of 

input parameters can be split into several α levels with corresponding intervals and the 

fuzzy set approach turns into several analyses on different α-cuts (Kaufmann and Gupta, 

1991; Peschl and Schweiger, 2003). In the procedure of random set approach, the worst and 

the best cases of the system are obtained through a series of interval analyses based on the 

Cartesian product of focal elements of the input parameters (Nasekhian, 2011). 

In 1965, Zadeh proposed the fuzzy set approach. The model parameters of geotechnical 

engineering, like geometrical, loading and soil model parameters are considered as fuzzy 

quantities in this method. Recent years the fuzzy set approach is applied in reliability 

analysis with different terminology and interpretations concerning the resulting reliability. 

For instance, Shrestha and Duckstein (1998) calculated the probability of a fuzzy failure 

based on the fuzzy reliability measure which satisfies the necessary properties of the 

probabilistic reliability measures, and they developed a kind of fuzzy reliability index. 

Dodagoudae and Venkatachalam (2000) computed the reliability of slopes using the term 

“fuzzy probability of failure”. Peschl and Schweiger (2003) assessed the safety level of a 

geotechnical structure using the probability of failure in the framework of fuzzy set theory.  

The random set theory was first proposed by Kendall in 1974, and then developed by 

several authors (e.g. Matheron, 1975; Goodman, 1995; and Dubois, 1991). It is a 

mathematical model which can cope with uncertainty of the system, while the exact values 
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of input parameters are not available and only the interval of these values can be obtained. 

In the beginning of the 21
th
 century, random set field has been applied extensively in 

geotechnical engineering, but most of these are focused on the tunnelling. In 2000, Tonon et 

al. used random set theory to deal with the uncertainty in geomechanical classification of 

jointed rock masses and reliability analysis of tunnel lining. Peschl (2004) and Schweiger et 

al. (2007) have developed random set finite element method (RS-FEM) and have 

investigated the feasibility of this method in tunneling design.  

In summary, the research about slope non-deterministic analyses methods have made much 

progress, but there are still many problems which need to be solved for practical application, 

especially the combination of existing numerical simulation programs with non deterministic 

methods. 
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3. Uncertainty Concepts for Slope Stability and Determination of 

Geotechnical Parameters 

Introduction 

The purpose of this chapter is to provide the most important uncertainty concepts of slope 

stability, which are fundamental for this study, such as the types of uncertainties, the 

reliability theory in slope engineering and the characteristic parameters of soil properties. At 

last, the determination of geotechnical parameters based on real time monitoring data is 

discussed. 

3.1 Uncertainty in slope engineering 

In the estimation and design of slope engineering, there are many kinds of uncertainties 

involved, like soil property uncertainty and models uncertainty. Generally they can be 

divided into the following three aspects: 

1). Physic uncertainty 

This type of uncertainty is an innate property of nature. In slope stability it is attributed to 

the natural variability or randomness of some property, such as the spatial variation of the 

soil properties, the randomness of boundary conditions, and the irregularity of topography. 

This kind of uncertainty can be quantified by measurements and statistical estimations, but 

it is unpredictable and therefore irreducible via collection of more experimental data or 

using more refined models.  

2). Statistical uncertainty 

Statistical uncertainty is attributed to lack of data and information about slope situations. In 

slope probabilistic analysis, the establishment of the probability distribution of every 

random variable is a fitting process based on the limited data from measurements or tests. 

Therefore there are three major sub-categories introduced: site characterization uncertainty, 

model uncertainty, and parameter uncertainty.  

Site characterization uncertainty has to do with the adequacy of interpretations we make 

about the subsurface geology. It results from data and exploration uncertainties, including (i) 

measurement errors, (ii) inconsistency or inhomogeneity of data, (iii) data handling and 

transcription errors, and (iv) inadequate representativeness of data samples due to time and 

space limitations. 

dict://key.0895DFE8DB67F9409DB285590D870EDD/irregularity
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Model uncertainty reflects the error between the probability distribution determined by 

people and the real distribution of soil properties. The soil properties are stochastic in every 

space and every time. Every probability density function, no matter normal distribution or 

log normal distribution can not exactly describe them, but can just approximately describe. 

Parameter uncertainty means that the parameters of probability distribution of random 

variables will be different when the samples and sample size are different. We can only 

deduce the true values through the statistic. Therefore, for a set of data, the parameters of 

their distribution also are considered as random variables, and their uncertainties depend on 

two things: the sample data and the knowledge we have.  

3). Simulation uncertainty  

Simulation uncertainty is attributed to lack of the understanding of physical laws that limits 

our ability to model the real world. Slope stability analysis and design is a process which 

simulates the relationship of a set of input random variables (e.g. slope geometric 

parameters, strength parameters etc.) and the output data (e.g. safety factor, reliability index, 

failure probability and etc.) through some mathematical models (e.g. equations, functions, 

algorithms, calculation simulation programs etc.), and these models are constructed based 

on mathematical mechanical abstract about the real process. The simulation uncertainty 

results to simplification postulates and unknown boundary conditions, also by other 

variables which are not contained in the models for their unknown effects. In reliability 

analysis, people always pay attention to the improvement of probabilistic methods, but 

ignore the hypothetical conditions of these simulation models. Consequently the idealized 

theoretic equations with many postulates and the input data produced by sampling are 

considered as the models and values.  

In slope probabilistic analyses, these uncertainties need to be quantified, and brought into 

the reliability analyses to estimate the probability of slope failure. For getting the types and 

the numerical characteristics of the random variables distribution, the relative data must be 

collected through plenty of tests and measurements, and determined as standard probability 

distribution, discrete distribution or empirical distribution through statistical analysis. The 

engineering discrimination and geological deduction must lead in the uncertainty estimation 

in the whole analysis process, so that the probability models of uncertainties have more 

practical significance. 
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3.2 Random variables 

In a probabilistic analysis, the parameters which affect the results of analysis significantly 

and have some uncertainties are considered as random variables. In slope probabilistic 

analysis, the soil parameters, which represent the major sources of uncertainties, are treated 

as random variables. Instead of a single value, random variables are considered as a range of 

values in accordance with a probability density function or probability distribution. The 

probability distribution quantifies the frequency of values in any given interval. Two 

commonly used distributions, the normal and the lognormal, are described later in this 

section.  

3.2.1 Characteristics of random variables 

The most important statistical parameters related to the soil parameters are the mean value, 

the standard deviation, the skewness, the autocorrelation length and the correlation 

coefficients between the soil properties. These are explained as follows. 

1). Mean value: The mean value μx of a set of n measured values for random variable X is 

obtained by: 

      
 
                                               (3.1) 

2). Expected value: The expected value E(x) of a random variable is the mean value one with 

obtain if all possible values of the random variable were multiplied by their likelihood of 

occurrence and then summed. The expected value is defined as: 

                                              (3.2) 

where  

f(x) = Probability density function of x (for continuous random variables) 

p(xi) = Probability of the value xi (for discrete random variables) 

The mean value can be calculated from representative data, it provides an unbiased estimate 

of the expected value of a parameter; hence, the mean and expected value are numerically the 

same. 

3). Variance: The variance Var(x) of a random variable X is the expected value of the squared 

difference between the random variable and its mean value. Where actual data are available, 

the variance of the data can be calculated by: 
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                                                      (3.3) 

The summation form above involving the xi term provides the variance of a population 

containing exactly n elements. Usually, a sample of size n is used to obtain an estimate of the 

variance of the associated random variable which represents an entire population of items or 

continuum of material. To obtain an unbiased estimate of the population working from finite 

samples, the n is replaced by n - 1: 

                                                  (3.4) 

4). Standard deviation: To express the scatter or dispersion of a random variable about its 

expected value in the same units as the random variable itself, the standard deviation σx is 

taken as the square root of the variance; thus: 

                                                 (3.5) 

5). Coefficient of variation: To provide a convenient dimensionless expression of the 

uncertainty inherent in a random variable, the standard deviation is divided by the expected 

value to obtain the coefficient of variation COV which is usually expressed as a percent: 

       
  

    
                                    (3.6) 

Summarized from literatures, the values of COV for various soil properties and in situ tests 

are shown in Table 3.1. 

6). Skewness: In probability theory and statistics, skewness is a measure of the asymmetry of 

probability distribution of a real-valued random variable. The skewness value can be positive 

or negative, or even undefined. Qualitatively, a negative skew indicates that the tail on the left 

side of the probability density function is longer than the right side and the bulk of the values 

(possibly including the median) lie to the right of the mean. A positive skew indicates that the 

tail on the right side is longer than the left side and the bulk of the values lie to the left of the 

mean. A zero value indicates that the values are relatively evenly distributed on both sides of 

the mean, typically but not necessarily implying a symmetric distribution.  

 

 

 

http://en.wikipedia.org/wiki/Probability_theory
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Table 3.1 Coefficients of Variation for geotechnical properties and in situ tests 

Property or situ test COV 

(%) 

References  

Unit weight (γ) 3~7 Harr (1987), Kulhawy (1992) 

Buoyant unit weight (γb) 0~10 Lacasse and Nadim (1997), Duncan (2000) 

Effective stress friction angle (φ′) 2~13 Harr (1987), Kulhawy (1992), Duncan (2000) 

Undrained shear strength (Su) 13~40 Kulhawy (1992), Harr (1987), Lacasse and Nadim 

(1997) 

Undrained strength ratio (Su/σv′) 5~15 Lacasse and Nadim (1997), Duncan (2000) 

Standard penetration test blow count 

(N) 

15~45 Harr (1987), Kulhawy (1992) 

Electric cone penetration test (qc) 5~15 Kulhawy (1992) 

Mechanical cone penetration test (qc) 15~37 Harr (1987), Kulhawy (1992) 

Dilatometer test tip resistance (qDMT) 5~15 Kulhawy (1992) 

Vane shear test undrained strength 

(Sv) 

10~20 Kulhawy (1992) 

Fig. 3.1 Example of positively (a) and negatively (b) skewed distributions 

The skewness of a random variable X is the third standardized moment, denoted by v and is 

defined as 

    
       

  
       

  

  
                             (3.27) 

where fx(x) is the probability density function of a random variable x. 

Considering the data as reported by El Ramly et al. (2005), the skewness coefficient of the 

effective friction angle could be zero, and the skewness coefficient of the effective cohesion 

is about 1.7~4.0. It means that, in most cases the probability density function of effective 

http://en.wikipedia.org/wiki/Standardized_moment
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angle can be considered as symmetric distributed (like normal distributed), and the 

probability density function of cohesion can be considered as non symmetric distributed (like 

log normal distributed). 

The mean value, standard deviation, and coefficient of variation are interdependent: knowing 

any two of them, the third can be known. In practice, a convenient way to estimate the 

moments of the parameters with little available data is to assume that the coefficient of 

variation is similar to the previously measured values from other data sets about the same 

parameter. 

7). Autocorrelation length: Autocorrelation length θ is also called spatial correlation length. 

It is scale of fluctuation, which describes the spatial variability of a soil property in both 

horizontal and vertical directions. A large value of autocorrelation length will imply a 

smoothly varying field, while a small value will imply a ragged field. This is a very important 

parameter for random field modeling. 

Leng (2000) summarized some values of autocorrelation length in both horizontal and 

vertical directions from different areas, shown in Table 3.2. 

Table 3.2 Some values of autocorrelation length 

Area and soil type Soil property Horizontal θ Vertical θ 

Indian sand Standard penetration resistance 30.5m 7.8m 

Bear paw shale Liquid limit 2m  

Hongkong marine clay  
Water content 

Cohesion 
 

1m 

<1m 

San Francisco bay mud Water content  2.7m 

North sea moraine soil  

 
cone penetration resistance 40m  

Chicago moraine soil  Water content <91.4m <0.6m 

Chicago clay Undrain shear strength  0.79 

Japanese saturate clay Undrain strength  1.25~2.86m 

8). Correlation coefficient. Pairs of random variables X and Y may be correlated or 

independent; if correlated, the likelihood of a certain value of the random variable Y depends 

on the value of the random variable X. For example, the strength of sand may be correlated 

with density, and the top blanket permeability may be correlated with the grain size. The 
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covariance Cov[X, Y] is analogous to the variance but measures the combined effect of how 

two variables vary together. The definition of the covariance is: 

                                                    (3.7) 

which is equivalent to: 

                                               (3.8) 

In the above equation, f(X, Y) is the joint probability density function of the random variables 

X and Y. To calculate the covariance from data, the following equation can be used: 

         
            

 
                                     (3.9) 

To provide a non-dimensional measure of the degree of correlation between X and Y, the 

correlation coefficient ρX, Y is obtained by dividing the covariance by the product of the 

standard deviations: 

     
        

    
                                              (3.10) 

The correlation coefficient may vary in the range from -1.0 to +1.0. A value of 1.0 or -1.0 

indicates that there is perfect linear correlation between X and Y, given a value of X, the value 

of Y can be determined. The correlation coefficient zero indicates that there is no correlation 

between variables X and Y, which means that the variables are independent. A positive value 

indicates the variables X and Y increase or decrease at the same time; a negative value 

indicates that one variable decreases as the other increases.  

According to theory and practice, for the same layer soil, there is always negative 

correlation between c and φ (Lumb, 1969). This is because of the difference of clay content: 

higher values of c are associated with lower values of φ when clay content is higher, and 

vice versa.  

However, in some cases the correlation was found to be insignificant. Lumb (1969) 

concluded that the assumption of independence of strength parameters simplifies the 

strength interpretation considerably, and leads to conservative results if the correlation is 

negative in fact. Instead, the results of Cherubini (1998) indicate a significant negative 

correlation of       = -0.6 between effective cohesion and friction angle for drained 

triaxial tests on Blue Matera clays. The same strong value of the correlation coefficient was 
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reported by Schad (1985) for marl in Urbach and was confirmed by Speedie (1956). Hence 

it seems that a value of about -0.6 is realistic for the soil parameters cohesion and friction 

angle. 

3.2.2 Probability distributions  

The terms probability distribution and probability density function (PDF) or the notation fX(X) 

refer to a function that defines a continuous random variable. The Taylor's series and point 

estimate methods described herein to determine the moments of performance functions 

require only the mean and standard deviation of random variables and their correlation 

coefficients, and knowledge of the form of the probability density function is not necessary. 

However, in order to ensure that estimates made for these moments are reasonable, it is 

recommended that the engineers plot the shape of the normal or lognormal distribution after 

assuming the expected value and standard deviation. This can easily be done easily with 

spreadsheet software or Matlab. 

A probability density function has the property that for any X, the value of f(x) is proportional 

to the likelihood of x. The area under a probability density function is unity. The probability 

that the random variable x lies between two values x1 and x2 is the integral of the probability 

density function taken between the two values. Hence: 

                
  

  
                           (3.11) 

The cumulative distribution function CDF or Fx(x) measures the integral of the probability 

density function from minus infinity to x: 

             
 

  
                                  (3.12) 

Thus for any value x, Fx(x) is the probability that the random variable x is less than the given 

x. It must be a continuous non-decreasing function with values in the interval [0, 1]. 
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Fig. 3.2 CDF and PDF of a continuous random variable  

In slope probabilistic analysis, the first step is to determine the probability characteristics of 

every random variable. The soil shear strength parameters cohesion c and friction angle φ 

are a pair of random variables, which have the strongest influence on the slope stability 

analysis. There are two kinds of statistical method for building the probability distributions 

of c and φ. The first is the least square method, which can calculate the means and standard 

deviations of c and φ from some groups test results directly; the second is to calculate the c 

and φ of every group test, and then calculate their means and standard deviations. 

The soil shear strength is always expressed by Mohr-Coulomb criterion as 

                                          (3.13) 

where: τ is the soil shear strength, σ is the normal stress applied in slide mass. 

The main characteristics of a random variable can be completely described if the 

probability density function and its associated parameters are known. In many cases, 

unfortunately, the form of the distribution function is unknown and often an approximated 

description is necessary. Several continuous distributions, which play an important role in 

civil engineering as well as in numerous other engineering fields, can be used as a good 

approximation for a random variable. These continuous distributions are applied when the 

random variables can take any value within some range, such as the normal and the shifted 

lognormal distributions.  

The normal distribution or Gauss distribution is a symmetric probabilistic distribution most 

frequently used in engineering. It is commonly assumed to characterize many random 

variables where the coefficient of variation is less than about 30 percent. Its probability 

density function fx(x) is defined in terms of mean μx and standard deviation σx as: 
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                   (3.14) 

A random variable X is log normally distributed, when its natural logarithm, ln(X), is 

normally distributed. The lognormal distribution for the random variable X may be defined in 

terms of its mean value μx, standard deviation σx and skewness coefficient vx. The formula 

for the probability density function of the lognormal distribution is given by: 

      
 

      
      

 

 
  

      

  
 

 

                   (3.15) 

The lognormal distribution is generally accepted to reasonably model many soil properties, 

because it is strictly non-negative. It often provides a reasonable shape in cases where the 

coefficient of variation is larger than 30% (Consolata Russelli, 2008). 

Moreover, soil properties such as cohesion and friction angle are often measured as a 

geometric mean over a certain volume, whose distribution tends to be lognormal 

distribution by the central limit theorem. 

3.3 Basic theory of reliability analysis 

3.3.1 Failure probability of slope 

Generally speaking, the safety analysis of any engineering project contains the relationship 

study of “Supply” and “Demand”. When these two factors are represented by symbols “X” 

and “Y” respectively, the structure will be safe if X > Y, and unsafe if X < Y. When X-Y = 

0, it is called the limit state. This relationship can be given as Eq. 3.16.  

                                    (3.16) 

For a slope, the resistance force R and load L on failure mass can be expressed as “Supply” 

and “Demand”. Once the resistance force R is less than the load L, the slope will fail. 

Because of the uncertainties of the geological parameters and application forces, R and L 

are considered as random variables. The relationship of the safety factor FS, probability 

failure Pf and the probability density functions of resistance force and load are shown in Fig. 

3.3. Mean value of FS is defined as the distance of the means of resistance force and load, 

and the possibility (or probability) of the slope failure Pf is indicated by the overlap of the 

probability density functions of resistance force and load. 
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Fig. 3.3 Safety factor versus failure probability 

In Fig. 3.3, the means of safety factor from two different situations are the same, but the 

failure probabilities are different which depend on following two aspects: 

1). the relative position of the probability density functions of R and L: If the distance 

between fx(R) and fx(L) is longer, the overlap will be less, and the failure probability 

Pf will be smaller. Conversely, the Pf will be bigger. The relative position of fx(R) and 

fx(L) is always measured as the safety margin (     ) or the ratio of the means of R 

and L (     ). 

2). the dispersions of the probability density functions of R and L. When the relative 

position of the probability density functions of R and L is constant, the distributions 

of fx(R) and fx(L) are more dispersive, the overlap will be larger and the failure 

probability Pf will be bigger. The dispersions of fx(R) and fx(L) are always described 

by the standard deviations of R and L (σR and σL). 

In short, the failure probability of slope is relative to the first two moments of resistance 

force and driving force,  

                                          (3.17) 

3.3.2 Definition of reliability index 

Harr (1987) defines the engineering definition of reliability as follows: “Reliability is the 

probability of an object (item or system) performing its required function adequately for a 

specified period of time under stated conditions.” As it applies in the present context, the 

reliability of a slope can be defined as follows: The reliability of a slope is the probability 

that the slope will remain stable under specified design conditions. The design conditions 

include: for example, the end-of-construction condition, the long-term steady seepage 
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condition, rapid drawdown, and earthquake with a specified magnitude. 

For representing conveniently, the resistance force R and load L are assumed as 

independent normal distributed variables N (μR, σL) and N (μR, σL). Therefore, the limit 

state equation M=R-L is also normal distributed, N (μM, σM), where 

                                               (3.18) 

     
    

    
                                      (3.19) 

Therefore, the purpose of the probabilistic analysis of slope is to determine the probability 

of M < 0.  

                     
 

  
                 (3.20) 

Based on the probabilistic and statistical theory, it is not difficult to prove that above 

integral can be expressed as the function of      , i.e. 

                                              (3.21) 

In reliability theory, it can be represented as reliability index β, i.e. 

                                                (3.22) 

For further expatiate on the geometric meaning of reliability index, we lead in standard 

variables: 

 ′                                              (3.23) 

 ′                                               (3.24) 

Substitute Eq. 3.23 and 3.24 into the function 3.16, we get 

                                            (3.25) 

In the standard variables space (Fig. 3.4), the safe state and unsafe state are separated by the 

failure face M = 0.  
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Fig. 3.4 Limit state surface in standard variables space  

From the geometric relationship in Fig. 3.4, the parameters a, b and c can be determined as 

follows: 

                                              (3.26) 

                                            (3.27) 

  
     

    
    

    
                               (3.28) 

Thus, the safety degree or the reliability of slope can be measured by d, the minimum 

distance between the original point and limit state line, according to the geometric 

knowledge, 

   
  

 
  

       

   
    

  

 
   

  
                         (3.29) 

In above discussion, the state function is assumed as a linear function about two 

independent normal distributed variables. When the number of variables increased from 2 

to 3, the calculation of reliability index β can be extended from 2 dimensions to 3 

dimensions using Eq. 3.29. If the random variables are not normal distributed or 

independent, they should be transformed into independent normal distributed variables 

through some means (Ang and Tang, 1984). 

If the probability density function of safety factor is normally distributed, the corresponding 

reliability index β is defined as (Chowdhurg, 1984; Tabba, 1984; Fell et al., 1988):  

                                              (3.30) 
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where μFS is the mean of safety factor and σFS is the standard deviation of safety factor. If 

the probability density function of safety factor is log normally distributed, the reliability 

index of slope can be given as Eq. 3.31 (Wolff and Wang, 1992). 

     
  

           
                                  (3.31) 

The relationship of the reliability index   and failure probability Pf is shown in Fig. 3.5. 

 

Fig. 3.5 Failure probability Pf versus reliability index β for a normal distribution 

3.3.3 Definition of the performance function  

The reliability is a kind of measurement that the structure can obtain intended function or 

the system can run normally in one period under some load condition. According to US 

Army Corps of Engineers (1997) “The term ‘failure’ is used to refer to any occurrence of an 

adverse event under consideration, including simple events such as maintenance items. To 

distinguish adverse but non-catastrophic events (which may require repairs and associated 

expenditures) from events of catastrophic failure (as used e.g. in the dam safety factor 

context), the item probability of unsatisfactory performance is sometimes used.” 

Slope stability calculations need to be performed to ensure that the resisting forces are 

greater than the forces tending to cause a slope to fail. In slope reliability analysis, the 

performance function of slope stability is always defined as  
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                                              (3.32) 

where, xi (i=1, 2, …, n) are n input variables which impact the slope reliability, like shear 

strength properties, pore water pressures, slope geometry and other soil and slope properties. 

The function g(X) reflects the performance or state of the slope. The slope will be safe 

when g(X) > 0; unsafe or failure when g(X) < 0; limit state when g(X) = 0, which is also 

called the limit state function of slopes. 

If the joint probability density function of the variables xi in performance function 

is            
            , the probability of safety is  

               
                            

               (3.33) 

In the same way, the probability of failure is  

               
                            

               (3.34) 

In slope probabilistic analysis, Li and Lumb (1987) and Lowe, et al. (1998) defined the 

limit state of performance function as following two expressions: 

                                                    (3.35) 

                                                     (3.36) 

where               is the safety factor function about xi (i=1, 2, …, n), it is the ratio of 

the maximum shear strength and the mobilized shear stress. When F(X) > 0, the slope is safe; 

when F(X) < 0, the slope is unsafe. Therefore, the performance function of slope stability 

analysis can be defined by different form if different safety factor calculation method is 

chosen (e.g. Simplified Bishop Method, Spencer method, Morgenstern-Price Method and 

etc.). Otherwise, there may be no explicit performance function if numerical simulation 

method is used in slope stability analysis. 

3.4 Determination of geotechnical parameters based on real time monitoring data  

The usual means of determination of geotechnical parameters are laboratory and in situ 

experiments, or the use of empirical classification systems in rock. The results of all methods 

are fraught with uncertainties due to uncertainty factors such as heterogeneity, representative 

experimental conditions, etc. Therefore, sometimes the simulation results, like 

displacements, based on these parameters are much different with the results from field 
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tests. To reduce these uncertainties, the inverse analysis based on the comparison of real 

time monitoring data and numerical simulation results can be used to determine the 

geotechnical parameters. 

Recent research in the area of real-time monitoring of landslides development focus on the 

application of micro sensors (MEMS) in ad hoc wireless sensor networks operated in an 

interoperable spatial data infrastructure (SDI) according to the sensor web enablement (SWE) 

guidelines of the OGC (Open Geospatial Consortium), like the SLEWS-Sensor based 

Landslide Early Warning System (Fernandez-Steeger et al., 2009; Azzam, et al., 2011). 

Apart from motion detection, the SLEWS sensor nodes also provide a 3D acceleration data to 

evaluate direction and value of the peak acceleration (Klapperich et al., 2011).  

 

Fig. 3.6 Structure of an ad hoc wireless sensor network (Fernandez-Steeger et al., 2009) 

Real-time monitoring systems can help people to understand the failure mechanisms of 

slopes induced by heavy rainfall or earthquake, and invert the input parameters of the slope 

stability analysis model. Through comparison of numerical solutions and real-time data, the 

mechanical parameters can be inferred by inversion method, which are in turn to determine 

the safety factor or the degree exploitation needed to DIN 1054.  

Inverse methods are divided into analytical approaches, numerical simulation-such as FEM, 

FDM and BEM, etc. Here, the equations describing the system behavior can be inverted in 

the manner that the material parameters as a result and the measured quantities occur as input. 

Figure 3.7 shows a schematic of the inversion method, which takes advantage of the 

back-analysis. 
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Fig. 3.7 Scheme of the observational method using back analysis in the process 

The measured data to validate or update the input values (such as the geomechanical 

parameters) using models based on the numerical simulation. An example of a homogeneous 

embankment under earthquake loading will be shown in follows, and the application of 

real-time measurements to improve the modeling by means of inversion. The numerical 

simulation is performed with the software FLAC. 

Figure 3.8 shows the selected example with 25° slope angle, length of 200 m, left height of 35 

m, and right height of 80 m. The initial input soil parameters are listed in Table 3.3 (dilation is 

disregarded). 

Table 3.3 The soil parameters 

Density  

(kg/m
3
) 

Bulk  

(Pa) 

Shear  

(Pa) 

Cohesion  

(Pa) 

Friction angle 

  

Dilation  

  

Tension  

(Pa) 

2000 5.1e8 2.3e8 2.5e4 25 0.0 0.0 
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Fig. 3.8 Finite difference mesh of the slope 

Fig. 3.9 shows a relative displacement of one point of the sliding mass by numerical 

simulation. The solution is converged to a certain displacement, and it means this is a stable 

slope. 

 

Fig. 3.9 Relative displacement at one point by numerical simulation 

In the following step, the geotechnical slope parameters are modified by inversion based on 

the comparison of displacement history of the numerical simulation and real-time monitoring, 

until the results from monitoring and numerical simulation are very close. At last, the 

developed numerical model can used to analyze a deformation development in a long time or 

due to a higher-magnitude earthquake, helping to improve the warning system. 

The inversion analysis based on real time monitoring data and numerical simulation is a 

practical way to reduce the uncertainty of slope modeling.  
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4. Slope Stability Analysis based on the Integration of GIS and FLAC 

Introduction 

The numerical simulation technique, such as the finite difference or finite element has 

developed incredibly fast and is extensively applied in slope stability analyses. However, in 

most numerical simulations, the modeling of complex slope topography and the 

determination of most vulnerable cross section is difficult to materialize. FLAC; the 

prevailing finite difference program used for numerical simulations of slope stability cannot 

use geospatial data directly without being processed beforehand. To bypass the lengthy 

preprocessing, mostly the 2D models instead of 3D or simplified geological models are 

adopted in numerical simulations, which affect the results significantly. The difficulty of this 

preprocessing hinders the application of numerical simulation techniques in geotechnical 

engineering seriously. Therefore, a simpler and more precious modeling technique of slopes 

stability needs further study. 

GIS provides various excellent functions of capturing, inputting, manipulating, transferring, 

visualizing, combining, querying, analyzing, modeling, and outputting of the geospatial data. 

With the development of many kinds of topography measuring techniques, such as LiDAR, 

satellite imagery, stereographic surveys and GPS, GIS is applied more and more to slope 

stability analyses. However, most of the researchers use a statistical method to quantify the 

relationship between slope failure and the influential factors while GIS is used only to 

perform regional data preparing and processing. Little research has been conducted on the 

integration of GIS and a deterministic numerical simulation technique for slope stability 

analysis. Xie et al. (2004, 2006) developed a column-based three dimensional limit 

equilibrium slope stability analysis model to calculate the 3D safety factor based on GIS grid. 

Dahal et al. (2008) carried out a deterministic distributed analysis using GIS to calculate the 

probability of slope failure. In both these studies, the deterministic calculations were 

performed by means of GIS with input of geometrical data, data on shear strength parameters, 

unit weight and physical parameters. Due to limitations of complex algorithms and iteration 

procedures in GIS only simple models like limit equilibrium models have been conveniently 

applied.  

Aringoli et al (2008) tried to combine the GIS technique and commercial numerical 

simulation code to conduct the deterministic slope stability analysis. Contrary to Xie et al. 

(2004, 2006) and Dahal et al. (2008), Aringoli et al (2008) performed the deterministic 
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calculations outside GIS; two programs Surfer-8 and GiD-8 were applied to edit and 

transform GIS data into numerical simulation software. This technique needs to deal with the 

problem of data conversion among three different programs, which increases the difficulty of 

operation. Consequently a procedure to integrate GIS and a commercial finite difference 

code FLAC
 
in slope stability analysis has been developed. Surfer-8 is applied to deal with the 

topographic data of slope and a script has been written using FISH programming language 

for transforming the topographic data into FLAC directly. The reliability of the coupling of 

GIS and numerical simulation technique is demonstrated by the Xuecheng slope stability 

analysis, after investigating both 2D and 3D models. 

4.1 Overview of FLAC 

FLAC [ITASCA 2005] is the abbreviation of “Fast Lagrangian Analysis of Continua” and is 

developed by ITASCA. The FLAC software is based on the explicit finite difference method 

which can simulate the behavior of many materials such as soils, rocks and structural 

buildings.  

4.1.1 Application range of FLAC 

The application range of FLAC is very extensive, because it is equipped with 11 built-in 

constitutive models, five optional facilities, several kinds of structure element as well as a 

built in language FISH.  

The 11 available models for FLAC are divided into three groups: null model, elastic models 

(isotropic and transversely isotropic) and plastic models (Drucker-Prager, Mohr-Coulomb, 

ubiquitous-joint, strain-hardening/softening, bilinear strain-hardening/softening 

ubiquitous-joint, double-yield and modified Cam-clay). Every element of the numerical 

model can be defined by different material model, and the property parameters of the 

material can be linear or non linear distributed. 

Furthermore, there are also following five optional facilities in FLAC: 

1). Static mode: this is a default mode in FLAC, and the static solution can be obtained 

through the dynamic relaxation.  

2). Dynamic mode: user can directly input the values of acceleration, velocity or stress as 

the boundary or initial conditions of system.  

3). Creep mode: there are six creep modes can be applied to simulate time-dependent 
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material behavior, including both viscoelastic and viscoplastic modes.  

4). Seepage mode: this facility can be used to simulate the flow of underground water, the 

dissipation of pore pressure and the coupling of deformable porous median and the 

viscous liquid inside. This mode can be coupled with the static, dynamic or thermal 

modes.  

5). Thermal mode: it can simulate the heat conduction and thermal stress. 

FLAC also can simulate various structures. For general rock, soil or other material, the eight 

point hexahedron element can be adopted. In FLAC grids, the interface is accepted. The grids 

on the both sides of interface can separate or slide. Therefore it can simulate the joint, fault or 

some other physic boundaries easily.   

Totally, there are four kinds of additional structure element in FLAC: beam, anchor, pile and 

shell. They can be used to simulate the artificial structures in geotechnical engineering, like 

support, liner, anchor, rock bolt, geotextile, friction pile, sheet pile and etc. 

Another highlight of FLAC is the inner language FISH. It can be used to define some new 

variables or functions, and meet the user’s new demands. It can help user to realize following 

functions: 

1). It can be used to define the distribution rule of material property (e.g. non linear or 

random distribution). 

2). It can be used to define some new variables, and trace its change law during the 

simulation and plot or print it out. 

3). it can be used to design user’s own element forms. 

4). It can be used as servo control in numerical tests. 

5). It can be used to define special boundary conditions. 

6). Based on the built-in FISH variables and functions, user can obtain the parameters of 

nodes or elements, like coordinates, displacements, velocities, material parameters, 

stress, strain, unbalanced forces and so on. 

4.1.2 Comparison with finite element methods 

Compared with some finite element methods, FLAC have following advantages: 
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1). FLAC adopts mix discrete method to simulate the yield or plastic flow of material, it is 

more reasonable than the reduced integration method generally used in finite element 

methods. 

2). the dynamic equation applied in FLAC is very suitable to simulate the dynamic 

problems, for example, vibration, failure, large deformation and so on. 

3). over the years, certain “traditional” ways of doing things have taken root: for example, 

finite element programs often combine the element matrices into a large global 

stiffness matrix, whereas this is not normally done with finite differences because it is 

relatively efficient to regenerate the finite difference equations at each step. FLAC 

uses an “explicit” time marching method to solve the algebraic equations, but implicit, 

matrix-oriented solution schemes are more common in finite elements. 

There are still some disadvantages in FLAC: 

1). FLAC needs more time than finite element method to reach convergence for the linear 

problem. 

2). the convergence velocity of FLAC depends on the ratio of maximum natural period and 

the minimum natural period of system. Therefore, the simulation efficiency of some 

problems is very low, like the models which include the elements with different size or 

material elastic modulus.  

In a word, the most obvious disadvantage of FLAC compared with finite element methods 

is that it is more time consuming. 

4.2 Brief description of the Strength Reduction Method 

One approach of computing factor of safety with FLAC is by Strength Reduction Method 

(SRM). In SRM, the safety factor is defined as the shear strength margin, which is also 

adopted in conventional limit equilibrium method and is widely accepted by engineers for 

practical applications. The process of strength reduction technique is discussed as follows. 

For Mohr-Coulomb failure criterion, the shear strength τf is given as:  

                                                 (4.1) 

where σn is the effective normal stress, c is the cohesion, and φ is the angle of internal friction.  

The reduced shear strength τm along the failure surface is expressed as follows: 
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                                                   (4.2) 

By substituting Eq. 4.2 into Eq. 4.1, we get: 

                                              (4.3) 

The value of f is adjusted until the slope fails, where the ultimate f is the factor of safety. In 

FLAC, the convergence criterion to determine the simulation attaining equilibrium is to 

achieve a state when the maximum node unbalanced force approaches zero. The unbalanced 

force is the sum of forces acting on a node from its neighboring elements. If a node is in 

equilibrium, these forces should sum to zero. Thus, the unbalanced force is a measure of how 

far from equilibrium a particle node is. 

To determine if a simulation has reached equilibrium or not, the numerical mesh is searched 

for the node with the greatest unbalanced force. The maximum unbalanced force is then 

normalized by the gravitational body force acting on the node. In a numerical simulation the 

unbalanced force never gets zero and so acceptable lower limit must be chosen. For this study, 

a simulation was considered to have converged to an equilibrium state when the normalized 

nodal unbalanced force of every node in the mesh was less than 10
-3

. 

For quickly obtaining the reference value of f, the bracketing and bisecting procedure was 

used. First, the upper and lower brackets were established. The initial lower bracket was a 

trial value of f for which the solution converged. The initial upper bracket was a trial value of 

f for which the solution did not converge. Next, a middle value between the upper and lower 

brackets was tested. When the solution converged, the lower bracket was replaced by this 

new value. On the contrary, it replaced the upper bracket. The process was repeated until the 

difference between upper and lower brackets was less than 10
-3

.  

After the reference value of f is obtained, it is then used for further calculation with the 

examination of graphic output of yield zone developed within the slope in order to determine 

the slip surface during failure. Smaller incremental values of f are required in the successive 

steps to determine the possible failure surface. 

The processing of geospatial data using GIS software for use in FLAC and application of 

shear strength reduction technique for Xuecheng Slope is demonstrated in the following text. 

4.3 Stability analysis of Xuecheng slope 

In this section, the integration of GIS and FLAC is demonstrated by the Xuecheng slope 
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stability analysis. 

4.3.1 Project overview 

The study area is located in the southwest of China, part of the Qinghai-Tibet Plateau and 

develops eastward the edge of Qionglai Mountain. The exposure soil of this area is 

predominated by Paleozoic Devonian terrain and Quaternary loose deposits and presents a 

complex structural setting. The extensional Quaternary tectonic has produced a general and 

intense uplift of the area, and the velocity of this uplift has increased in recent years. The 

bedrock comprises of thick sequence of phyllites which are divided into strongly weathered 

and moderately weathered.  

The study area belongs to subtropical monsoon climate. Data from the weather station 

indicates that the average temperature is 11.4ºC. The annual average precipitation is 609.6 

mm, the maximum annual precipitation is 709.1 mm (1992), and the maximum daily 

precipitation is 55.9 mm (12, Aug. 1982). 69% of rainfall concentrates in the months from 

May to September of every year. 

Since the beginning of 20th century, many catastrophic slope failures have occurred in this 

area
 
(Huang

 
2009), where earthquake is the most frequent trigger. Wenchuan Earthquake 

induced about 20,000 landslides in 2008 and damaged the vegetation on slope surface and 

structure of the subsurface of many slopes, which are brought to the margin of failure; one of 

them is the Xuecheng slope, which needs stability estimation urgently. 

The Xuecheng slope is located at the back of Xuecheng middle school in Xuecheng town, 

Sichuan province, and its coordinates are N31 33′00″ and E103 18′34″ (Fig. 4.1). The 

elevation of the Xuecheng slope varies from 1,604 to 1,778 m. It is a steep slope with a 

gradient of 30-45°, and the slope aspect is about 330°. Based on the geological investigations, 

the soil of slope consists of 8-10 m thick quaternary alluvial deposits composed of rubble 

mixed with 20-30% silt. Devonian age phyllites predominate as the bedrock. The slope 

surface is sparsely vegetated with grass, shrubs, and some scattered planted fruit trees.  

dict://key.0895DFE8DB67F9409DB285590D870EDD/Qinghai-Tibet%20Plateau
dict://key.0895DFE8DB67F9409DB285590D870EDD/phyllite
dict://key.0895DFE8DB67F9409DB285590D870EDD/fruit%20tree
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Fig. 4.1 Location and view of Xuecheng slope 

Before the 2008 earthquake, the Xuecheng slope was stable integrally, and there was no 

obvious deformation. Impacted by the earthquake, some cracks and deformation appeared in 

the middle and crest of the slope, and that too concentrated in the shallow layer (Fig. 4.2). 

 

Fig. 4.2 Crack and deformation in the middle and crest of slope 

The geotechnical parameters of the slope were obtained from numerous analyses carried out 

during the geognostic surveys derived from in situ and laboratory tests (Table 4.1). The 

gravity is set to 9.81 m/s
2
, and the interface between soil and bedrock is considered 

approximately parallel to the ground surface of the slope having a depth of 10 m. 

Table 4.1 Mechanics parameters of the slope in different layer 

layer 
Weight 

(kN/m
3
) 

Cohesion 

(kPa) 

Friction angle 

(°) 

Bulk 

(GPa) 

Shear 

(GPa) 

Tension 

(MPa) 

Soil 19.5 20 34 3.04 1.65 0.01 

Bedrock 20.1 90 37 28.4 18.7 0.7 
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4.3.2 Preparation of GIS data 

Xuecheng slope is a natural slope modified by human; therefore the topography of this slope 

is very complicated, unlike man made slopes (e.g. dams or banks). Thus, it is difficult to 

construct the precise slope model directly using FLAC. In this study, the GIS technique is 

applied to overcome this difficulty. 

GIS data can be collected from many sources, i.e. GPS, satellite images and different kinds of 

maps. The topographic data of 1:1000 resolution having elevation interval of 1 m for 

Xuecheng slope was used (Fig. 4.3).  

    

Fig. 4.3 Contour line map of Xuecheng Slope 

The graphic program Surfer-8 was used for assigning elevation attribution to the contour 

lines. Then a digital elevation Model (DEM) was generated from the elevation data (Fig. 4.4), 

in which the spatial coordinates (x, y, z) of each superficial point were interpolated with the 

kriging method to obtain a uniform distribution of the nodal values to cover the whole area. 

The resultant map was stored as a grid formation data; comprised of rows and columns of 

cells, with each cell storing a single value of elevation. The elevation is represented by RGB 

(red, green, blue) colors which make the slope and aspect of the Xuecheng slope visually 

clearer. Red indicates a higher elevation, and blue represents a lower elevation. 
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Fig. 4.4 Digital elevation map of Xuecheng slope 

4.3.3 Slope stability analyses in 2D 

4.3.3.1 Numerical modeling of slope in 2D  

In 2D slope stability analysis, the safety factor of the whole slope is determined by the safety 

factor of a particular cross section; therefore choosing and modeling of the most vulnerable 

cross section in the potential slide mass are the most critical steps. Applying cross section 

extraction function of Surfer-8 program, profile of a cross section can be obtained by drawing 

a line on the digital elevation map, and the distance vs. elevation data of this cross section can 

be stored as an ASCII data. A program for automatically generating the FLAC 2D slope 

models from the ASCII data was developed using FISH language. Thus any cross section 

model in the map can be simulated by this process easily, quickly and precisely. 

Three representative cross sections distributed in the west, middle and east of the slope 

respectively (Fig. 4.4) were constructed to perform the numerical simulation. In construction 

of 2D numerical models based on GIS, the elevation data of 20 meters interval was chosen. If 

a higher resolution of the model is required, shorter interval of elevation data can be chosen. 

The profiles and the 2D numerical models of these three cross sections are shown in Fig. 5-7, 

where the green plots are the profiles of slope cross sections constructed using GIS software, 

and the plots at the right side of profiles are the finite deference models of the corresponding 

cross sections. The elements number of each numerical model is 2964, and the element in the 
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rock layer is much coarser than the soil layer. 

     

Fig. 4.5 Profile and the 2D numerical slope model about Cross Section 1 

      

Fig. 4.6 Profile and the 2D numerical slope model about Cross Section 2 
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Fig. 4.7 Profile and the 2D numerical slope model about Cross Section 3 

The Mohr Coulomb constitutive model was used in the numerical simulation. For the 

deformation and failure to occur at shallow level of the slope and because the tectonic stress 

dissipates in the long term geologic process, the horizontal tectonic stress is ignored, and the 

mesh of the soil is constructed denser than that of the bedrock. These calculations are plane 

strain problems ignoring the lateral deformation. The boundary conditions of the slope 

models are: left and right boundaries are fixed only in x direction and the bottom is fixed both 

in x and y directions.  

4.3.3.2 Results of stability analysis of slope in 2D 

Simulations were performed for a series of trial factors of safety with c and φ reduced 

according to Eq. 4.3. Fig. 4.8 shows the normalized unbalanced force obtained as the shear 

strength is reduced in 5,000 steps based on cross section 1.  
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Fig. 4.8 Unbalanced force as the trial factor of safety is increased in 5,000 steps 

For trial factors of safety up to 1.11, simulations converged to equilibrium with an 

unbalanced force of the order of 10
-3

. However, when the trial factor of safety was increased 

to 1.12 the simulation no longer converged, with the unbalanced force exceeding 10
-3

. As the 

strength was reduced further, the unbalanced force continued to increase. 

The sharp break in the unbalanced force in Fig. 4.8 shows that there is no ambiguity in 

identifying the trial factor of safety at which the slope fails. This is a consequence of using a 

linear elastic-perfectly plastic constitutive model, a model with a sudden transition from 

elastic to plastic behavior.  

The safety factors of the Xuecheng slope at the three cross sections using the Strength 

Reduction Method compared with limit equilibrium methods (LEM) are shown in Table 4.2. 

Generally, the safety factor by Strength Reduction Method is a little smaller than the limit 

equilibrium method. Comparing the safety factors of three cross sections, one can see the 

safety factor of Cross Section 3 is the smallest and close to 1.0, which means that the 

potential failure possibly will occur in the area along Cross Section 3 (i.e., at eastern side of 

this slope). 

Table 4.2 Factors of Safety by SRM and LEM 

Cross section SRM Ordinary Bishop Janbu Morgenstern Price 

No.1 1.11 1.207 1.242 1.207 1.231 

No.2 1.15 1.254 1.281 1.256 1.269 

No.3 0.98 1.101 1.129 1.103 1.122 
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Fig. 4.9 shows the slope state of the three cross sections and the x displacement contours of 

Cross Section 3. For all of the cross sections, the shear failure distributes in the interface 

between the soil and bedrock. In Cross Section 3, not only the shear yield, but also the tension 

yield appeared, and the tension yield distributes on the crest of slope and connects with the 

shear yield through the whole slide mass, which means that slope at the Cross Section 3 failed. 

The x displacement of Cross Section 3 reached to 3.5 cm in 5000 steps simulation and 

concentrated in the upper part of the soil layer. 

 

Fig. 4.9 Results of the numerical simulation in 2D  

4.3.4 Slope stability analyses in 3D 

4.3.4.1 Generation of 3D slope numerical model 

For complex and heterogeneous slopes, 1D or 2D slope stability analysis is inappropriate and 

leads to oversimplification with inaccurate results, and 3D analysis is required for an accurate 

evaluation of the slope stability. In this case, a 3D numerical simulation was carried out for 

Xuecheng slope. 

For building 3D numerical model, all the data having values at the coordinates x, y and z of 

the topographic map are needed. After gridding of the DEM data, the bottom face of the map 

needs to be reconstructed based on the scope of slope and size of the expected numerical 
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element. After that, the grid map is converted into ASCII data, and the program developed 

using the FISH language of FLAC3D is run for generating 3D finite difference mesh from 

ASCII data. In this case, the numerical model is made up of wedge elements (Fig. 4.10). The 

analyzed horizontal zone is 366 m×276 m, and the element size of x-y coordinates in 

horizontal plane is 6 m×6 m. Like 2D models, the slope is divided into 10 m thick soil and 

bedrock. For the deformation and failure to occur in the shallow part of the slope, the mesh of 

soil is made denser than that of the bedrock. 

 

Fig. 4.10 3D wedge slope model by FLAC3D 

4.3.4.2 Results of slope stability analysis in 3D 

After building the numerical model based on GIS, the slope stability analysis is performed. In 

the numerical simulation, the boundary conditions employed are: the side boundaries are 

fixed in the corresponding direction, and the bottom is fixed in x, y and z directions. The 

failure criterion of the slope is the Mohr-coulomb criterion and the mechanical properties are 

listed in Table 4.1. In FLAC3D, the convergence criterion to determine if the simulation has 

reached equilibrium is the ratio of the maximum unbalanced force to the gravitational body 

force acting on the node becomes less than 10
-5

. 

The 3D safety factor of Xuecheng slope was calculated to be 1.3 through the FLAC3D 

Strength Reduction Method, which is higher by 13% than the maximum 2D safety factor (i.e. 

1.15). Based on the fact that generally the difference of the safety factor calculated by means 
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of 2D and 3D models is about 20-30%, it is crucial to develop a 3D model for important 

assessments of slope stability using GIS (Xie et al 2003).  

After the shear strength got reduced by a coefficient of 1.3, the displacements in x, y and z 

directions and the slope state are shown in Fig. 4.11. The major displacements are 

concentrated in the eastern side of slope (represented by Cross Section 3). The shear yield 

distributes on the surface at foot hill, and the tension yield concentrates on the surface of hill 

crest.  

Furthermore, the accuracy of results depends upon the accuracy of input data, and the 

resolution of geospatial data, but high resolution geospatial data requires more processing 

time. Compared with 2D analysis, 3D numerical simulation requires significantly more time 

to reach equilibrium state in FLAC. 

 

Fig. 4.11 Representations of max vertical displacements (in meters) and the yielding zones, when shear 

strength reduction coefficient is1.3 

4.4 Conclusions  

Using the outstanding spatial processing function of GIS and the excellent capability of 
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numerical simulation of FLAC, a convenient slope stability analysis procedure is proposed. 

In current study GIS is used effectively as a spatial database for storing, displaying, and 

updating the input data. The calculations of slope stability are performed outside GIS. For 

transforming the GIS topography data into the commercial finite difference code FLAC 

smoothly, Surfer-8 and scripts developed using FISH language are applied and discussed. 

Surfer-8 is used to grid the raw maps, and generate the DEM of slope. Fish language script is 

written to overcome the problem of data format and data structure conversion from GIS into 

FLAC. In FLAC complicated numerical models can be easily applied due to the use of 

complex algorithms, iteration procedures, and the third dimension in the conventional, 

two-dimensional GIS. And the representation and spatial distribution of results in FLAC can 

be shown visually in 2D and 3D. 

Based on the case study of Xuecheng slope, this integration technique is demonstrated to 

have high reliability. It can be used to generate 2D slope numerical models in seconds along 

desired lines. Furthermore, it can be used very effectively in 3D modeling as well, no matter 

how complex the topography of slope is.  

From the comparison of the numerical simulation results, one can conclude that the safety 

factor calculated through 2D analysis is a little conservative as compared to that of 3D, 

because in 2D the assumption of plane strain model without considering the horizontal 

restrict in the vertical direction of the plane is adopted. 3D numerical slope stability analysis 

can be performed to obtain the safety factor, and to seek the potential failure surface for the 

whole slope, and even to simulate the volume of failure mass which is very valuable for 

reinforcing of design. Through 2D numerical simulation one can only obtain the safety factor, 

and can seek the potential failure line for some particular cross section which has been 

selected in advance. Therefore, for a relative important slope, it is recommended to conduct 

3D stability assessment, even though 3D analyses require more time. 
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5. Slope Probabilistic Analyses based on Strength Reduction Method 

Introduction 

Reliability in slope stability analysis is affected by various factors such as uncertainty 

associated with soil properties and uncertainty associated with the methods (or models) 

used. This chapter is to address the reliability of the safety factor due to soil uncertainty, 

including the probability density function and the correlation of soil properties. Model 

uncertainty is addressed in a simple manner by applying a rigorous method-numerical 

simulation method. In the present study, soil properties cohesion c and friction angle φ are 

represented as random variables because they have the strongest influence on slope stability. 

Probabilistic analyses are usually used to evaluate statistical distribution of the safety factor 

of slope based on known statistical characteristics of input variables. In this chapter, three 

most popular probabilistic methods in slope stability analysis: Monte Carlo Simulation 

(MCS), First Order Reliability Method (FORM), and the Point Estimate Method (PEM) are 

applied combined with Strength Reduction Method which has been discussed in chapter 4. 

These techniques are demonstrated by three slope cases: one is homogenous slope with two 

independent random variables; second is a homogenous slope with two correlated random 

variables; and the third one is two-layered slope with four random variables. Based on the 

comparison of results, the accuracy and feasibility of different probabilistic methods are 

discussed. All of the probabilistic analysis processes are programmed using FISH 

programming language in FLAC.   

5.1 Probabilistic methods applied based on Strength Reduction Method 

5.1.1 Monte Carlo Simulation  

Monte Carlo Simulation is a method used to obtain the probability distribution of dependent 

random variables given the probability distribution of a set of independent random variables. 

In this technique, the soil mechanical parameters such as cohesion c and internal friction 

angle φ are considered as independent random variables and sampled thousands times from 

its known (or assumed) probability distribution. Subsequently, thousands of safety factors 

considered as dependent random variables are obtained through numerous slope 

deterministic stability analyses based on these input samples, thus the mean value, standard 

deviation and probability distribution of the safety factor are evaluated.  

As we known, MCS is a time consuming method, which need thousands of deterministic 
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analyses repeating. Strength Reduction Method also needs much iteration to get the safety 

factor, and the time consuming depends on the number of elements in model. Therefore, most 

of time, researchers applied MCS based on the limit equilibrium methods. For simplify, MCS 

combined with LEM is called MCS-LEM in the present study, and MCS directly combined 

with SRM is called traditional MCS-SRM. 

For reducing the time consumption, development of a simplified MCS-SRM is disscused in 

this chapter. In each deterministic analysis, only the stability situation of slope is estimated 

according to the convergence criterion of numerical simulation, without the exact safety 

factor calculation. After deterministic analyses are repeated adequate times, the failure 

probability Pf will be m/n, where m is the times of slope failure, and n is the total number of 

simulations.  

The equilibrium state of slope is defined as (just as used in Strength Reduction Method): after 

adequate steps of simulation, if the normalized nodal unbalanced force of every node a in the 

mesh is less than 10
-3

, it means the slope is stable and vice versa. The process of MCS which 

has been programmed using FISH language is shown in Fig. 5.1. 

 

Fig. 5.1 Flow chart of MCS 

Through this technique, only the mean of safety factor μFS is calculated by the mean of soil 
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parameters and the probability of failure is achieved directly. To get the other characteristic 

parameters of safety factor (e.g. variability), the cumulative distribution function (CDF) of 

safety factor FS can be applied based on the assumed distribution function of safety factor. 

And then the probability of failure Pf is presented as the probability of safety factor less 

than 1.0, as Eq. 5.1. 

                                                 (5.1) 

Based on Eq. 5.1, the standard deviation of the safety factor σFS can be calculated, and 

furthermore the reliability index can be calculated through the probability and statistical 

theory.  

Monte Carlo Simulation is a relative accurate method, which is close to the real answer and 

suitable as reference for comparison with other probabilistic methods results. However, to 

obtain any real confidence, the model needs a large number of simulations. The accuracy of 

MCS results depends on the number of simulations carried out for the input parameters 

considered. Bennet and Ang (1986) suggested that confidence coefficient is 95% to insure 

the tolerance error  . The relationship of error with the number of simulations N and failure 

probability is shown in following equation: 

                  
   

                      (5.2) 

From Eq. 5.2, one can see when the probability failure gets constant, N is bigger with the 

smaller tolerance error  ; when the error is constant, Pf is bigger with smaller N. Hence 

improving the accuracy requires an increase in the number of simulations (Woodward, 1999). 

Simply: 

                                          (5.3) 

5.1.2 First Order Reliability Method  

The first relatively simple alternative to MCS is the First Order Reliability Method (FORM), 

also well-known as the Hasofer-Lind method. It is based on the Taylor series expansion of the 

safety factor or the performance function at the critical points on the failure surface, known 

as design point. This method provides analytical approximations for the mean and standard 

deviation of a parameter of interest as a function of the mean and standard deviations of the 

various input variables, and their correlations. It is a simple method, but the distribution 

function for the safety factor also need to be assumed beforehand to estimate the failure 
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probability.  

In FORM, the performance function for the slope stability is always determined as the safety 

factor function about the soil properties. Its Taylor’s series expansion about the expansion 

point gives  

                  
   

   
  

   
     

      
  

 

 

 
   

   

   
               (5.4) 

where X=(x1, x2,…, xn) is the input random variables, F(X) is the safety factor function, and 

the derivatives are evaluated at X*, which are considered as linearization points or critical 

points. After truncation from second order terms, the first-order Taylor’s series is: 

                  
   

   
  

   
                          (5.5) 

If truncated from third order terms, the Eq. 5.5 will become the second order Taylor’s series. 

This method is called Second Order Reliability Method (SORM) with a higher accuracy than 

FORM, but requires more calculation effort than FORM.  

Considering the variances or standard deviations of random variables X as known, the mean 

value of the performance function is obtained by evaluating the function at the mean values 

of the random variables μX as follows: 

         
 

 
   

  

   
 

  

   
  

   
 
                            (5.6)  

where COV(xi, xj) is the covariance of xi and xj. If the xi and xj are independent variables, the 

COV(xi, xj) will be 0.0. 

The variance of the performance function are given approximately by the following 

equations 

            

   
 
  

 
 

 

        
 
            

   
 
  

 
  

  

   
 
  

 
  

   
             (5.7) 

where 

  
     

       
                                         (5.8) 

   
  

   
      

  
  

   
      

 
 

 
                               (5.9) 
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where αi is the directional derivative of failure face at point X*=(x1*, x2*, …, xn*)
T
 in space 

X, and    
 is the standard deviation of the random variable xi,  

FORM is based on the Taylor series expansion of the performance function. However, 

Strength Reduction Method is a stress-strain analysis method without explicit performance 

function, which is like a “black box”. Therefore, in this study, finite difference method 

approximates the solutions to differential equations by replacing derivative expressions 

with approximately equivalent difference quotients. 

  

   
         

    
     

     
     

       
    

      
       

    (5.10)             

In FORM an iterative solution is usually required to find the expansion point. The process 

of this iteration is shown as follows: 

1). suppose the initial expansion point         
   

   
   

     
   

  which are the means of 

the soil parameters; 

2). calculate the safety factor function          
   

   
   

     
   

 , 

         
   

   
   

     
   

    
     

   
  by Strength Reduction Method, and we can 

get n+1 safety factors; 

3). apply these n+1 safety factors to calculate the μF and 
  

   
    using Eq. 5.10; 

4). use Eq. 5.9 and 5.10 to calculate the expansion point X*
(0)

, and use Eq. 5.7, 5.8 and 3.30 

or 3.31 to calculate the reliability index β
(k)

, where the superscript k means the k
th

 

iteration; 

5). determine the convergence condition 

                                                    (5.11) 

  is always set as 0.05. If Eq. 5.11 cannot be satisfied, new iteration point should be generated 

by the interpolation method as follow: 

                        
         

                
                 (5.12) 

And then return to step (2), until the convergence condition is satisfied. The usual output of 

FORM is the reliability index given by Eq. 3.30 or 3.31.  

http://en.wikipedia.org/wiki/Difference_quotient
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5.1.3 Point Estimate Method  

Point Estimate Method is a computationally straightforward technique for uncertainty 

analysis, and is capable of estimating statistical moments of a model output involving several 

stochastic variables, whether correlated or uncorrelated and symmetric or asymmetric. The 

basic idea of this method is to replace the probability distributions of continuous random 

variables by discrete equivalent distribution having the same first three central moments to 

calculate the mean value, standard deviation and skewness of a performance function, which 

depends on the input variables. To do this, generally two point estimates are considered with 

one standard deviation on either side of the mean value from each distribution representing 

the random variables. Then the performance function is calculated for every possible 

combination of the point estimates, producing 2
n
 solutions, where n is the number of the 

random variables involved. Then the mean value, standard deviation and skewness of the 

performance function can be found from these 2
n
 solutions. 

In this study, the Strength Reduction Method is applied to calculate the safety factor on the 

estimation points. First of all, the locations of the sampling points for every random variable 

should be estimated. To do this, one should first evaluate the so-called standard deviation 

units      and     , which depend on the skewness coefficient    
 of the input variables 

and are given by  

     
   

 
     

   

 
 

 

 
   

               
              (5.13) 

If the input variables are symmetrically distributed, the standard deviation units will be both 

equal to unity.  

If the variable X is lognormally distributed, the skewness coefficient   can be calculated 

using the following formulas 

        
      

                                    (5.14) 

      
       

                             (5.15) 

Knowing the mean value and standard deviation of the input variables, the corresponding 

sampling point locations     and     can be calculated as follows: 

       
         

        
         

                    (5.16) 
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After that, the weights Pi, also called probability concentrations, can now be determined to 

obtain all the point estimates. As the probability density function encloses an area of unity, 

then the weights must also sum to unity and they have to be positive. The weights of the 

random variables are given by different expressions depending on the number of the input 

variables and on the correlation.  

For a single random variable, the weights are easily calculated using the standard deviation 

units as 

    
   

       
                                       (5.17) 

When the random variable is symmetric then the weights are both equal to 0.5. 

For two correlated random variables (Rosenblueth, 1981), the weights are given as follows 

     
     

     
              

      
   

 
 

 

      
   

 
 

 

  

   

   (5.18) 

where      
 are the associated weights, with     

and     
being the weights for the input 

variables evaluated as single variables. s1 and s2 take positive sign for points greater than the 

mean value of the variables and negative sign for points smaller than the mean value.      
 is 

the correlation coefficient between the variables X1 and X2, when the variables are 

uncorrelated then      
will be zero. For two uncorrelated random variables, where the 

weights can be evaluated as  

     
     

     
                                    (5.19) 

Now, it is possible to determine the deterministic analysis F(X) at each sampling point 

located at Xi+ and Xi-.  

Finally the first three moments of the safety factor, the mean value, the standard deviation 

and the skewness can be determined respectively using the following equations 

           
  

                                     (5.20) 

                     

                          (5.21) 
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                                   (5.22) 

Unfortunately, Eq. 5.18 has some evident drawbacks. First of all, if the skewness coefficient 

of the input variables has different sign then the radicand under the square root can be 

negative, which is mathematically impossible. This can happen for example if one input 

variable has a negatively skewed distribution and the other a symmetrically or positively 

skewed distribution. Secondly if the skewness coefficient of the input variables is equal to -2 

then the denominator of the second term of Eq. 5.18 tends to infinity, giving then infinite 

weights. Moreover this formula can sometimes give negative values. It is unacceptable, 

because the weights are described as probability values, which are always positive by 

definition. For example, negative values of the weights can occur when the random variables 

are symmetric and perfectly correlated (i.e. ρ = ±1). 

To overcome the problem in Rosenbluth’s formula 5.18, a better definition for two correlated 

random variables, being symmetrically distributed, is given by Christian et al. (1999), where 

the weights can be evaluated as  

            
     

     
    

              
     

     
    

  (5.23) 

For n symmetrically distributed and correlated random variables, Christian et al. (1999) 

defined the weights as 

        
 

 

                   
 
     

   
                      (5.24) 

In the next sections, three examples were selected for studying the reliability and 

uncertainty of slope’s factor of safety using Monte Carlo simulation, First Order Reliability 

Method and Point Estimate method. The first example illustrates the stability of a 

homogeneous slope with two independent input variables, the second illustrates the stability 

of the same homogenous slope but with two correlated input variables, and the third 

illustrates the stability of a non-homogeneous slope with four input variables.  

5.2 Slope stability analysis of case 1 

The first case deals with the study of stability analysis of a homogenous soil slope with a 

length of 40 m and a depth of 30 m. The slope is divided into 740 elements in FLAC2D 

shown in Fig. 5.2. Movement is allowed vertically on both lateral boundaries, while the 

constraint is imposed in both directions of the base boundary. The soil parameters cohesion c 
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and fiction angle φ are considered as two independent random variables. More specifically, 

the soil type is what can be called a grossly uniform soil, in which the whole mass is of the 

same consistency throughout and whose properties show no marked trend with depth or 

distance.  

 

Fig. 5.2 Finite difference model of a homogeneous soil slope 

All of the soil properties are taken as constants, while the parameters c and φ are taken into 

account as independent normal or log normal random variables. In this chapter, the values 

of coefficient of variations (CV) are assumed according to their proposed range by Harr 

(1977) (Table 5.1). Knowing the mean value and the coefficient of variation of cohesion 

and friction angle, it is possible to define their standard deviations and shapes of the 

probability density functions (Fig. 5.3).  

  Table 5.1 Soil properties for the example 1 

  (kN/m
3
)  Bulk (GPa) Shear (GPa) μc (kPa) CVc  μφ (°) CVφ  

19.5 1.8 1.2 20 0.25 25 0.20 
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   (a)                        (b) 

Fig. 5.3 (a) Distributions about cohesion c and (b) distributions about friction angle φ  

5.2.1 Monte Carlo Simulation results for case 1 

For the probabilistic slope stability analysis, Monte Carlo Simulations are initially performed. 

First, the mean of safety factor is calculated by Strength Reduction Method based on the 

mean value of soil properties. Fig. 5.4 presents the simulation result for example 1. The 

critical failure surface is found automatically as the max shear strain rate zone, so it is not 

necessary to specify the shape of the failure surface in advance (e.g. circular, log spiral, 

piecewise linear, etc.). The calculated factor of safety for this slope is 1.07. The deterministic 

analysis therefore showed that the failure of the slope was imminent.  

 

Fig. 5.4 Simulation results of a homogenous slope by SRM 

To perform the reliability analysis based on Monte Carlo Simulation, thousands of samples 
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of the soil parameters should be generated.   

1). for the normally distributed input variables, a set of standard normally distributed 

variables should be generated first. 

There are many algorithms to generate the standard normal variables. In this study, the 

Box-Muller method (Box and Muller, 1958) is applied. It uses two independent random 

numbers U and V distributed uniformly on (0, 1). Then the two independent standard random 

variables X and Y:  

                                             (5.25) 

                                             (5.26) 

will both have the standard normal distribution, and be independent. This formulation arises 

because for a bivariate normal random vector (X, Y), the squared norm X
2
+Y

2
 will have the 

chi-square distribution with two degrees of freedom, which is an easily generated 

exponential random variable corresponding to the quantity -2ln(U) in these equations; and 

the angle is distributed uniformly around the circle, chosen by the random variable V. 

The standard normal variable can be transformed into normal variable with the 

corresponding mean value and standard deviation as Eq. 5.27.  

      
      

                                   (5.27) 

where,    is the standard normal variable,    is a normal variable, and    
 and    

 are its 

mean value and standard deviation respectively. 

2). for the log normally distributed variables, we can produce a series normal random 

variable y first and then transfer it to lognormal random variables following the given Eq. 

5.28: 

                                               (5.28) 

where F is a series log normal random variable. The relationship of mean values and standard 

deviations of F and y are given by: 

           
                                   (5.29) 

             
                               (5.30) 

                                               (5.31) 



 

74 

During the generation of the random samples, there are some issues that should to be noticed. 

For example, in practical engineering all of the soil parameters are non-negative, and the 

friction angle is less than 90º. In the present thesis, all the generated negative soil parameter 

samples are replaced by a very small value of 0.1, and the friction angle which are greater 

than 90º are replaced by 89 º.   

The accuracy of MCS depends on the number of calculations carried out for the input 

parameters considered. Hence improving the accuracy requires an increase of the 

simulations number. The appropriate sample size of soil properties should be determined 

beforehand since its strong influence on the accuracy of the MCS. For this purpose, the 

samples with different sizes ranging from 50 to 2,000 were generated and the associated 

probability of failure Pf was calculated, when both of the input soil properties c and φ were 

assumed as normal distributed. Fig. 5.5 shows the relationship between sample size 

(generated number) and the probability of failure. It is clearly shown in this figure that there 

is no significant difference in the calculated (Pf) when the sample size exceeds 1,000. 

Therefore, the sample size of 1,000 was chosen in this study. 

 

Fig. 5.5 Relationship of the probability failure and sample size 

After the sample size is determined, the traditional MCS-SRM is carried out first. One 

thousand cohesion and friction angle values are generated according to each different 

random variable distribution, and then one thousand safety factors are calculated. The 

histograms of the safety factor shown in Fig. 5.6 are based on different random variable 

distributions. Comparing these two diagrams shows that when the input random variables 
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are normally distributed, the probability density function of the safety factors tends to be 

normally distributed; in turn, when the input random variables are log normally distributed, 

the probability density function of the safety factors tends to be log normally distributed. 

The means of these two different distributed safety factors are the same, and there is only 

slight difference between the standard deviations. 

 

Fig. 5.6 Frequency and probability density function by traditional MCS-SRM 

After that, the MCS-LEM is also carried out. In the present study, one of the LEM, 

Morgenstern Price method is applied as the deterministic method, and the number of 

samples is also determined as 1000. The histograms by different distributed random 

variables are shown in Fig. 5.7. Comparing these two diagrams reveal that when the input 

random variables are normally distributed, the probability density function of the safety 

factors also tends to be normally distributed and vice versa. The mean and standard 

deviation of safety factors by log normally distributed random variables are obviously 

greater than the results by normally distributed random variables. For log normally 

distributed random variables, the maximum value of safety factor reaches 25.75, which is 

non sensitive in practice.  

dict://key.0895DFE8DB67F9409DB285590D870EDD/vice%20versa
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Fig. 5.7 Frequency and probability density function by MCS-LEM 

From these two kinds of MCS studies, we can conclude that: the normal distributed random 

variables will generate the normal distributed safety factors, and the log normal distributed 

random variables will generate the log normal distributed safety factors. This rule will be 

adopted in the whole thesis. 

At last, the simplified MCS-SRM developed in above section is carried out. After thousand 

of soil properties c and φ are generated and thousand of slope stabilities are estimated, the 

probability of failure is obtained, and the statistical results are calculated based on the 

assumed probability density functions of safety factor. The probability density function 

distributions of safety factor by simplified MCS-SRM are shown in Fig. 5.8. 

The results and the time consumption of different methods and different distributed random 

variables are compared in Table 5.2. 

 

Fig. 5.8 Assumed probability density function distributions of safety factors for simplified MCS-SRM 
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Table 5.2 Statistical results predicted by 1,000 MCS for case 1 

Methods 
Normal distribution Log normal distribution Time 

consuming Pf (%)         β Pf (%)         β 

Traditional MCS-SRM 37.6 1.06 0.191 0.31 40.8 1.06 0.193 0.23 20 hours 

Simplified MCS-SRM 38.4 1.07 0.139 0.50 39.5 1.07 0.227 0.22 4 hours 

MCS-LEM 32.5 1.09 0.194 0.46 33.8 1.12 0.688 -0.08 4 seconds 

Comparing the statistical values of Table 5.2, it becomes evident that the results by 

traditional MCS-SRM are very similar as simplified MCS-SRM, but the time consumption 

is 5 times that of the simplified MCS. Both of the value and discreteness of safety factor by 

LEM are greater that of MCS, but only needs seconds to obtain the results. Therefore, 

MCS-LEM is absolutely the fastest method for slope probabilistic analysis, but the 

MCS-SRM integrates the advantage of numerical simulations and has a higher accuracy. 

The simplified MCS-SRM proposed in the present study reduces the time consuming 

significantly and retains the high accuracy.  

5.2.2 First Order Reliability Method results for case 1 

It was highlighted that the simplest alternative to MCS is the FORM, which produces a 

linearization around the critical points of the input soil parameters. This section will show 

the process of FORM applied to case 1 that is already considered. 

Considering the slope safety factor formula as a function of two independent random 

variables cohesion c and friction angel φ, the Taylor’s series expansion for the safety factor 

about the expansion value c* and φ* truncated after the first order terms is given by 

                 
  

  
          

  

  
              (5.32) 

where the first term is determined by substituting the expansion value of c* and φ*, while 

the derivative of the second term is evaluated at c* and φ*. The mean value and the 

variance of the safety factor are obtained using the following equations 

                                                          (5.33) 

               
  

  
    

 

         
  

  
    

 

                 (5.34) 

For log normal soil properties, the mean and standard deviation of the equivalent normal 

cohesion and friction angle are shown in follows based on the R-F method. Both of the mean 
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and standard deviation values are reduced slightly compared with the original ones. 

            ,             

         ,          

Now it is possible to evaluate the variance and the standard deviation of the safety factor 

through the process in section 5.1.2. It is important to remember that FORM does not provide 

any skewness coefficient, so no information about the shape of the probability density 

function of the safety factor is given. The rule of the distribution of safety factors following 

the distribution of input random variables as suggested above is adopted here. Through the 

calculation of FORM, the probability density function distributions for different distributed 

safety factor are shown in Fig. 5.9 and the statistical values of different types of soil 

properties are shown in Table 5.3.  

 

Fig. 5.9 Assumed probability density function distributions of safety factors by FORM 

Table 5.3 Statistical values by FORM for case 1 

Input variables         β Pf (%) 

Normal distribution 1.07 0.198 0.35 35.4 

Log normal distribution 1.05 0.193 -0.08 43.7 

From Table 5.3, one can see that the mean of safety factor by the log normal distributed 

variables is lower than the result by normal distributed variables because of the equivalent 

normalization of the input variables. The estimated Pf by the log normal distributed variables 

is greater than the result by normal distributed variables because of the different probability 
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density function. The probability of failure by normal distribution from FORM is a little 

smaller than MCS, but the probability of failure by log normal distribution from FORM is a 

little greater. 

5.2.3 Point Estimate Method results for case 1 

In order to assess the slope stability related to the first case, the two point estimate method is 

applied now. The procedure for implementing the PEM and the corresponding calculations 

are described step by step in this section. 

The relationship between the dependent variable safety factor FS and the random variables c 

and φ is considered. The two sampling point locations for c and φ have to be computed. 

First of all, the standard deviation units, giving locations of the sampling points to the right 

and to the left of the mean value, are evaluated using Eq. 5.29 and 5.30, and then the 

weights Pi are determined by Eq. 5.31.  

1). for normal distributed random variables, the standard deviation unites are unity, and the 

corresponding sampling point locations can be evaluated with Eq. 5.16. 

c+ = 25 kPa, c- = 15kPa 

φ+ = 30º, φ- = 20º   

The weights Pi, giving each of the four point estimates of soil parameters considered as 

single random variable, are then determined using Eq. 5.17, thus obtaining 

Pc+ = Pc- = Pφ+ = Pφ- = 0.5  

Then the associated weights need to be found, considering the input parameters as multiple 

uncorrelated variables. Eq. 5.19 gives the following weights 

Pc+φ+ = Pc+φ- = Pc-φ+= Pc-φ- = 0.25 

2). for log normally distributed random variables, first the skewness coefficient v of the 

input variables should be obtained using Eq. 5.14 and 5.15. 

vc = 0.7656, vφ = 0.608 

The standard deviation units which depend on the skewness coefficient v of the input 

variables c and φ are given by Eq. 5.13. 

ξc+ = 1.4536, ξc- = 0.688 
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ξφ+ = 1.3492, ξφ- = 0.7412 

The corresponding sampling point locations are 

c+ = 27.268 kPa, c- = 16.56 kPa 

φ+ = 31.746º, φ- = 21.294º 

Then the associated weights and safety factors for different combination of the cohesion 

and friction angle are shown in Table. 5.4. 

Table 5.4 Associated weights and safety factor for different variables combinations 

Combinations c+φ+ c+φ- c-φ+ c-φ- 

Associated weights P 0.1139 0.2074 0.2407 0.4380 

Safety factor 1.429 1.057 1.250 0.8941 

The values of the safety factor are then evaluated at both sampling point locations of c and φ, 

and the first three moments of the safety factor can be evaluated using Eq. 5.20 and 5.21, 

where n = 2. After that, based on the assumed probability density function of safety factors, 

the probability of failure is obtained. The results are presented in Table 5.5 and Fig. 5.10. 

Table 5.5 Statistical values by PEM for case 1 

Input variables         β Pf (%) 

Normal distribution 1.07 0.189 0.37 35.5 

Log normal distribution 1.07 0.190 0.32 37.4 

 

Fig. 5.10 Assumed probability density function distributions of safety factors for PEM 

From Table 5.5, the mean value is exactly the same as the deterministic analysis results (i.e., 
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1.07). In addition, the estimated failure probability Pf obtained from the log normal 

distributed input variable is a little higher than that of the normal distributed input variable. 

Considering the results of simplified MCS-SRM as reference, one can see that the accuracy 

of probabilities of failure by PEM is greater than FORM. The PEM may be better to capture 

the behavior of non linear functions. And as a non-iterative procedure, the PEM overcomes 

the convergence problems of the FORM, thus being less time consuming. There is another 

advantage compared with FORM, the PEM can handle the asymmetric random variables 

directly without equivalent normalization involved.  

5.3 Slope stability analysis of case 2 

It is well accepted that there exists a negative correlation between cohesion and friction 

angle of a soil mass. Soil properties are generally modeled as perfectly uncorrelated random 

variables and the results could therefore be uncertain. To perform a proper analysis 

involving correlated random variables, it is necessary to generate random numbers which 

will simulate the correlation structure of soil properties. 

The geometry of the second example is the same as the first one, the effective soil cohesion 

and friction angle both are considered as normal random variables and the correlation 

coefficient between these two parameters is considered as varying from -1.0 to 0. 

5.3.1 Monte Carlo Simulation results for case 2 

In the second case, the correlation between effective cohesion c and friction angle φ is taken 

into account. Therefore these two correlated random variables should be generated based on 

the method shown as follows.  

First, generate two sets of standard normal variables, X1 and X2. And then according to Eq. 

5.35 produce a set of standard normal variables Xa which correlate with X1.  

                                        (5.35) 

where ρ is the correlation coefficient of these two input variables X1 and Xa. 

Then transform X1 and Xa into normal variables with the corresponding mean value and 

standard deviation as Eq. 5.27. 

After thousand generations of the random variables, the simplified MCS-SRM is carried 

out for different correlation coefficient. The statistical values of the safety factor are listed 
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in Table 5.6 for different correlation coefficients ranging from -1.0 to 0.0. 

The mean value of safety factor is the same as the deterministic one, but by increasing the 

correlation coefficient, the failure probability increases slightly, from around 27.7% when 

cohesion and friction angle totally negatively correlate up to around 38.4% when the soil 

parameters are independent. 

Table 5.6 Influence of ρcφ on the statistical results by simplified MCS-SRM  

ρ    μFS    σFS β Pf (%) 

-1.0 1.07 0.118 0.593 27.7 

-0.9 1.07 0.127 0.551 29.2 

-0.8 1.07 0.139 0.504 30.4 

-0.7 1.07 0.145 0.483 31.0 

-0.6 1.07 0.151 0.464 32.2 

-0.5 1.07 0.158 0.443 32.8 

-0.4 1.07 0.162 0.432 33.3 

-0.3 1.07 0.165 0.424 33.4 

-0.2 1.07 0.170 0.412 34.1 

-0.1 1.07 0.178 0.393 34.6 

0 1.07 0.239 0.293 38.4 

Fig. 5.11 shows the influence of the correlation coefficient variation on the shape of the 

normal fit of the safety factor. The curves become narrow for lower correlation coefficients, 

thus decreasing the variability of the safety factor and increasing the peak of the fit. 

 

Fig. 5.11 Influence of the correlation coefficient variation on the normal fit of safety factor for simplified 

MCS-SRM 
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5.3.2 First Order Reliability Method results for case 2 

For FORM method, considering now the safety factor of slope as a function of two correlated 

soil parameters cohesion c and friction angle φ, the Taylor’s series expansion for the safety 

factor about the expansion values μc and μφ, truncated after the first order terms, is given by 

Eq. 5.5. 

Considering the correlation between cohesion and friction angle, the mean value and 

variance of safety factor are obtained using Eq. 5.36 and 5.37. 
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At last, the results are shown in Table 5.7. Varying the correlation coefficient from -1.0 to 0, 

the standard deviation of safety factor increases up to around 0.198 for ρcφ=0.0, while the 

mean value is always constant and equal to 1.07. Therefore, the probability of failure 

increases from 25.1% to 35.5%. 

Table 5.7 Influence of ρcφ on the statistical results of slope stability by FORM  

ρcφ Cov(c, φ) μFS σFS β Pf (%) 

-1 -25 1.07 0.110 0.636 25.1 

-0.9 -22.5 1.07 0.122 0.574 27.2 

-0.8 -20 1.07 0.133 0.526 28.8 

-0.7 -17.5 1.07 0.142 0.493 30.2 

-0.6 -15 1.07 0.152 0.461 31.3 

-0.5 -12.5 1.07 0.160 0.438 32.2 

-0.4 -10 1.07 0.169 0.414 33.0 

-0.3 -7.5 1.07 0.177 0.396 33.8 

-0.2 -5 1.07 0.184 0.380 34.4 

-0.1 -2.5 1.07 0.191 0.367 34.9 

0 0 1.07 0.198 0.354 35.5 

The normal distribution is assumed to draw the probability density curves of the safety factor 

results of table 5.7, then the same conclusions of Fig. 5.11 about the shape of the curves and 
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the variability of the safety factor with the correlation between the input soil parameters 

would come out as (in Fig. 5.12). 

 

Fig. 5.12 Influence of the correlation coefficient variation on the normal fit of safety factor for FORM 

5.3.3 Point Estimate Method results for case 2 

If the soil parameters c and φ are correlated, then Rosenblueth ś formula (5.18) cannot be 

applied for this case, because negative weights are found. For this reason Christian’s formula 

(5.24) is used.  

As c and φ are both symmetrically distributed, then computations of the sampling point 

locations and weights for single random variable are just the same as in case 1, only the 

associated weights are different. 

Varying the correlation coefficient from -1.0 to 0.0, the associated sampling weights and the 

statistical values of the slope stability are listed in Table 5.8.  

By increasing the correlation coefficient and considering the equivalent normal variables c 

and φ as input for the analysis, the mean value changes slightly (less than 0.2% difference 

for soil parameters with ρc φ́  ́= 0.0 to ρc φ́  ́= -1.0), while the standard deviation decreases 

significantly down to about 126% reduction for the case with ρc φ́  ́ = -1.0. The failure 

probability decrease to about 22.8% for a correlation of ρc φ́  ́ = -1.0. Fig. 5.13 shows the 

influence of the correlation coefficient variation on the shape of the normal fit of the safety 

factor. 
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Table 5.8 Statistical values of the slope stability from PEM for different correlation coefficients 

ρcφ P c+φ+ P c+φ- P c-φ+ P c-φ- μFS σFS β pf (%) 

-1.0 0.000 0.5 0.5 0.000 1.07 0.094 0.747 22.8 

-0.9 0.025 0.475 0.475 0.025 1.07 0.107 0.654 25.7 

-0.8 0.050 0.450 0.450 0.050 1.07 0.119 0.588 27.8 

-0.7 0.075 0.425 0.425 0.075 1.07 0.130 0.539 29.5 

-0.6 0.100 0.400 0.400 0.100 1.07 0.139 0.504 30.7 

-0.5 0.125 0.375 0.375 0.125 1.07 0.148 0.473 31.8 

-0.4 0.150 0.350 0.350 0.150 1.07 0.156 0.449 32.7 

-0.3 0.175 0.325 0.325 0.175 1.07 0.164 0.427 33.5 

-0.2 0.200 0.300 0.300 0.200 1.07 0.175 0.400 34.5 

-0.1 0.225 0.275 0.275 0.225 1.07 0.179 0.391 34.8 

0.0 0.250 0.250 0.250 0.250 1.07 0.189 0.370 35.5 

 

Fig. 5.13 Influence of the correlation coefficient variation on the normal fit of safety factor for PEM 

Comparison of results 

Comparison of the influence of correlation coefficient ρ on different methods is shown in Fig. 

5.14. The probability of failure by MCS is the greatest, and the probability of failure by 

PEM is the smallest among these three methods. The curves of the probability of failure vs. 

correlation coefficient by methods of MCS and PEM are almost parallel, while the curves 

by the methods of FORM and PEM intersect gradually when the correlation coefficient 

tends to be 0.0. The probability of failure increases as the correlation coefficient increase 
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for all of these three methods.  

Recapitulating all these observations, it is then possible to conclude that the choice of a 

negative correlation for the soil parameters is reasonable, because the uncertainty in the 

problem decrease considerably. 

 

Fig. 5.14 Comparison of results by MCS, FORM and PEM for case 2 

5.4 Slope stability analyses of case 3 

This example is a two-layered slope with a length of 40 m and a depth of 30 m, and the depth 

of upper layer is 15m. The whole slope is divided into 1286 elements as in Fig. 5.15.  

 

Fig. 5.15 Mesh of slope for case 3 

In this case, the cohesion and friction angle of both layers are considered as random variables, 
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so, the number of input variables increases from 2 to 4. In example 1 and 2, the cohesion and 

friction angle of two layers soil are considered as three types: normal distributed variables, 

log-normal distributed variables and negative correlated normal distributed variables. The 

slope soil parameters are shown in Table 5.9.  

Fig. 5.16 presents the simulation result for case 3 using Strength Reduction Method based on 

the mean value of soil properties, and the factor of safety is calculated to be 1.10.  

Table 5.9 Soil properties for case 3 

soil   (kN/m
3
) Bulk (GPa) Shear (GPa) μc (kPa) CVc μφ (°) CVφ  

Layer 1 2000 2.0 1.4 25 0.2 25 0.2 

Layer 2 1950 1.8 1.2 20 0.2 20 0.2 

 

Fig. 5.16 Simulation result for two layered slope by SRM 

The influence of the type of the soil properties on the calculated reliability index using three 

probabilistic analysis methods is shown in Table 5.10. One can see that, generally the results 

of PEM are closer to MCS than FORM. It means that the accuracy of FORM decreases as 

the number of input variables increases. For the probabilistic analysis of non homogenous 

slope with more input variables, MCS and PEM are very efficient. 
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Table 5.10 Reliability comparison between the three probabilistic methods for example 3 

Methods 
Normal distributed Log-normal distributed 

Correlated normal distributed 

(ρ=-0.6) 

μFS σFS β Pf μFS σFS β Pf μFS σFS β Pf 

MCS 1.10 0.254 0.394 34% 1.10 0.210 0.409 34% 1.10 0.135 0.741 22% 

FORM 1.10 0.147 0.680 24% 1.09 0.113 0.620 26% 1.10 0.108 0.926 17% 

PEM 1.05 0.147 0.340 36% 1.05 0.150 0.333 36% 1.08 0.116 0.690 24% 

5.5 Conclusions  

This chapter presents general and user-friendly computational methods for reliability 

analysis of slope stability. “User-friendly” methods refer to those that can be implemented on 

a desktop PC by a non-specialist with limited programming skills; in other words, methods 

within reach of general practitioner. At last, following conclusions are presented:  

First, MCS is the most accurate method, but it is too time consuming for practical purposes; 

consequently too expensive. For the simulation of uncertain inputs following arbitrary 

non-normal probability distribution functions and correlation structure, the translation model 

involving memoryless transform of the multivariate normal probability distribution function 

can cater for most practical scenarios. 

Second, FORM is an approximate method with similar conservative results. It should be 

pointed out that the safety factor does not vary linearly, but exponentially with c and φ. The 

FORM procedure only considers linear functions, and then uncertainty is introduced in the 

safety factor calculations, giving less accurate results than MCS. Furthermore, equivalent 

normalization for non normal distributed variables and the iteration process make the FORM 

difficult for operation. PEM is chosen as alternative probabilistic method instead of MCS and 

FORM, because it requires much less computational effort than MCS. This approach does 

not require the determination and evaluation of partial derivatives of the safety factor 

function as FORM, thus being more straightforward to use. However there are also some 

drawbacks in calculation process when the variables are correlated and non-symmetric.  

At last, there is much difference of the standard deviations of safety factor between the input 

variables with different correlations. Therefore considering the correlations of the soil 

parameters can decrease the uncertainty of the slope stability analysis significantly. 

In practice, FORM and PEM can be used as a preliminary check for the failure probability of 
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slope stability. However, the MCS should be used in the analysis if the slope is of greater 

importance. 



 

90 

6. Spatial Variability and Slope Reliability Analysis  

Introduction 

Soil properties are highly spatial variable and rarely homogeneous by nature, i.e., soil 

properties vary from one point to another in space due to different deposition conditions and 

different loading histories (Elkateb et al., 2002). However, in slope stability analysis, most 

deterministic analysis methods and even probabilistic analysis methods ignore the spatial 

variations of soil properties and assume that soil parameters of the distinct soil layer are 

constant.    

In 1984, the random field model was introduced into geotechnical engineering by Vanmarke. 

This model can effectively describe the spatial variations of soil properties by spatial 

correlation theory. However, the model is seldom applied with numerical simulation because 

of the complexity of the discretization process in the numerical model. Recently, a more 

rigorous method of probabilistic geotechnical analysis, the random finite element method 

(RFEM), which integrates the random field model and finite element method, has been 

developed and applied in geotechnical engineering (Fenton and Griffiths, 1993), Paice, 

1997), and Griffiths and Fenton, 2000)). Griffiths, Fenton, Hicks and Spencer (2010), 

investigated the influence of the spatial variability of soil properties on the stability of 

saturated soil slope based on random field theory.  

Unfortunately, RFEM has limited application because of its complex programming. 

Furthermore, the feasibility and accuracy of this method also need further study. Thus, in the 

present study, a more practical procedure for probabilistic slope stability analysis that 

considers the spatial variability of soil properties is presented. The local average subdivision 

is applied to discretize continuous random fields. Both of the stationary and the non 

stationary random field models for soil properties are investigated in this paper. For 

studying the influence of the local averaging on the probability of failure, in the first two 

cases, only one parameter soil cohesion is considered as random variable. In the case 3, the 

cohesion and friction angle of soil both are considered as random variable. After the 

random field modeling, the Monte Carlo simulation is applied to compute the probability of 

slope failure, and then the influence of local averaging on the probability of failure and the 

convergence of analysis is studied. The whole procedure is performed using a commercial 

finite difference code FLAC, which requires less programming. 
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6.1 Brief description of the random field model 

6.1.1 Statistical model of soil 

In the process of geotechnical probability analysis, the primary and the most difficult work is 

the statistical analysis about the soil properties, because it is the fundamental of geotechnical 

analysis and the soil properties are different in different point. Theoretically, the distribution 

of soil properties in space is not absolutely stochastically, but follows some regulars. If 

infinite surveys can be conducted, the distribution of soil properties would be determined 

exactly. While in practice no matter the geological work or laboratory work is finite, so it is 

unavoidable to extrapolate the whole situation from a handful of data. We have to apply the 

probabilistic and statistical stools to deduce the most feasible distribution of the geological 

characters which are considered as stochastic. The probability profile about the soil layer is 

more representative and can be used in the following geotechnical probabilistic analysis.  

The probabilistic modeling of soil layer profile is fatal in slope probabilistic analysis which is 

not only to calculate the safety factor function, but also to determine the uncertainty of the 

safety factor. Therefore, the uncertainty about the geological parameters is deserved to 

quantify. 

 

Fig. 6.1 Profile of soil property 

As aforementioned, the uncertainty sources of the soil layer profile are: the inherent 

heterogeneity and variability of soil, the shortage of data about underground situation and the 

test error. In regular profile, the mechanical character of soil is determined by single value 

parameters, but ignoring their fluctuation. While in probabilistic profile, at least one property 
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of soil is treated as a random variable in one or more dimensions. Except for mean, standard 

deviation and variance, there is another parameter to describe the spatial variance of the soil 

layer character, i.e. the spatial correlation length θ (as Fig. 6.1), which indicates the 

fluctuation range of the parameter. The spatial correlation length represents the span in where 

the soil character remains sequence. A smaller θ indicates that the soil parameter fluctuate 

fast, otherwise, the parameter is relative steady in big range. 

In the spatial variability analysis about the random field, the geostatistical method is the most 

efficient. It is based on the Regionalization Variable Theory, and applies the variability 

function to analyze the spatial variability of the geotechnical parameters. 

6.1.2 Spatial variation 

Spatial variation in a soil deposit can be characterized in detail, but only with a great number 

of observations, which normally are not available. Thus, it is common to model spatial 

variation by a smooth deterministic trend combined with residuals about that trend, which are 

described probabilistically. 

Generally, considering the geometry of the geotechnical space as V (V∈R
2
 or R

3
), the actual 

soil mechanic parameter at location x (in one or more dimensions) is z(x). z(x) can be 

expressed as  

z(x)=m(x)+R(x)                                    (6.1)  

where m(x) is a smooth trend at x, and R(x) is residual deviation from the trend. The residuals 

are characterized as a random variable of zero-mean and some variance because there are too 

few data to do otherwise. This does not presume that soil properties actually are random. The 

variance of the residuals reflects uncertainty about the difference between the fitted trend and 

the actual value of soil properties at particular locations. Spatial variation is modeled 

stochastically not because soil properties are random but because information is limited. 

Trends are estimated by fitting lines, curves, or surfaces, to spatially referenced data. The 

easiest way to do this is by regression analysis. Usually, m(x) can be expressed as follow 

polynomial 

              
                                     (6.2) 

where al is the coefficient of drift polynomial; fl(x) is the drift polynomial, fl(x) = x
l
; k is the 

exponent number of drift and always not more than two.  
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6.1.3 Random field 

The application of random field theory to spatial variation is based on the assumption that the 

property of concern, z(x), is the realization of a random process. When this process is defined 

over the space x∈V, the variable z(x) is said to be a stochastic process. In this chapter, when 

V has dimension greater than one, z(x) is said to be a random field.  

A random field is defined as the joint probability distribution: 

                                                           (6.3) 

The joint probability distribution describes the simultaneous variation of the variables z 

within a space Vx. Let, E[z(x)] = μ(x) be the mean or trend of z(x), and let Var[z(x)] = σ
2
(x) be 

the variance. The covariances of z(x1), …, z(xn) are defined as: 

                                                            (6.4) 

A random field is said to be second order stationary (weak or wide-sense stationary) if E[z(x)] 

= μ for all x, and Cov[z(xi), z(xj)] depends only on vector separation of xi and xj, and not on 

location. Cov[z(xi), z(xj)] = Cz(xi-xj), in which Cz(xi-xj) is the auto covariance function. The 

random field is said to be stationary (strong or strict stationarity) if the complete probability 

distribution, Fx1, …, xn(z1, …, zn)is independent of absolute location, depending only on 

vector separations among the xi…xn. Strong stationarity implies second-order stationarity. In 

the geotechnical literature, stationarity is sometimes referred to as statistical homogeneity. 

If the auto covariance function depends only on the absolute separation distance and not 

direction, the random field is said to be isotropic. 

A random field that does not meet the conditions of stationarity is said to be non-stationary. 

Loosely speaking, a non-stationary field is statistically heterogeneous. It can be 

heterogeneous in a number of ways. In the simplest case, the mean may be a function of 

location, for example, if there is a spatial trend that has not been removed. In a more complex 

case, the variance or auto covariance function may vary in space. Depending on the way in 

which the random field is non-stationary, sometimes a transformation of variables can 

convert a non-stationary field to a stationary or nearly stationary field. For example, if the 

mean varies with location, perhaps a trend can be removed. 

In the field of geostatistics, a weaker assumption is made on stationarity than that described 

above. Geostatisticians usually assume only that increments of a spatial process are 
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stationary (i.e. differences |z1-z2|) and then operate on the probabilistic properties of those 

increments. This leads to the use of the variogram rather than the auto covariance function. 

Stationarity of the auto covariance function implies stationarity of the variogram, but the 

reverse is not true. 

Like most things in the natural sciences, stationarity is an assumption of the method and may 

only be approximately true in the world. Also, stationarity usually depends on scale. Within a 

small region soil properties may behave as if draw from a stationary process, whereas the 

same properties over a larger region may not be so well behaved. 

6.1.4 Correlation function 

For a homogeneous soil layer, the random variable of parameter in position x1 is Z(x1), the 

correlation characteristic of Z(x1) and Z(x2) can be expressed by the correlation function as 

follow: 

      
                

            
 

                              

            
                  (6.5) 

The correlation function of homogeneous isotropic random field ρx(t1, t2) is only related to τ = 

t1-t2, independent to the individual t1 and t2. The homogeneous isotropic random field is the 

univariate function about τ. 

According to the views of Vanmarcke et al., the correlation function of soil can be expressed 

by the single-index model, double-indexes mode, triangle mode, Exponential Cosine mode, 

Markovian mode and so on. Although the correlation modes of soil are very complex, there 

are some rules. For seeking the suitable correlation mode with universal meaning, the typical 

correlation functions were discussed in this chapter. In the following equations, where ρ is the 

correlation coefficient between the soil parameters at any two points separated by a distance τ 

in a random field with spatial correlation length θ.  

1). Constant mode (Fig. 6.2)  

                                                  (6.6) 

This is the perfect correlation, where the soil is isotropic without considering the variability. 

2). White noise mode (Fig. 6.3) 

      
           
            

                                    (6.7) 
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When the soil properties vary fast, and without considering the correlation, this mode will be 

adopted. 

       

    Fig. 6.2 Constant mode                 Fig. 6.3 White noise mode 

3). Cosine wave mode (Fig. 6.4) 

                                                  (6.8) 

The soil properties vary as a cosine curve approximately. This situation seldom appeared in 

practice, it maybe indicates that there is periodicate geological process or physics and 

chemistry process during soil layer generation.  

4). Triangle correlation mode (Fig. 6.5) 

                       
                          

                             (6.9) 

        

        Fig. 6.4 Cosine wave mode           Fig. 6.5 Triangle correlation mode   

This mode is too simple, and has much difference with the real situation of the soil, so it is not 

representative.  
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5). Exponention cosine mode (Fig. 6.6) 

       
 

 
                                             (6.10) 

This correlation mode and its spectral density function have more adaptability. It is relative 

accurate, but the disadvantage is that the expression is two complex. 

6). Markovian mode (Fig. 6.7)  

In the present study, a Markovian spatial correlation function was used, of the form  

         
 

 
                                             (6.11) 

     

Fig. 6.6 Exponention cosine mode            Fig. 6.7 Markovian mode 

In the two-dimensional analysis presented in this chapter, the spatial correlation lengths in 

the vertical and horizontal directions are taken to be equaled (isotropic) for simplicity. And 

the correlation function from Eq. 6.11, repeated here in the form, 

   
 

 

 
   

    
 

                                      (6.12) 

where τx is the difference between the x coordinates of any two points in the random field, 

and τy is the difference between the y coordinates. 

However, the actual spatial correlation structure of soil deposits is not usually well known, 

especially in the horizontal direction (e.g. Asaoka and Grivas, 1982; de Marsily, 1985; 

DeGroot and Baecher, 1993). In this chapter therefore, a parametric approach has been 

employed to study the influence of θ. 

6.1.5 Variance reduction function 

Actually, the stability of a soil slope tends to be controlled by the averaged soil strength rather 
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than the soil strength at a particular location along the slide surface, since soils generally 

exhibit plastic behavior (Li and Lumb, 1987). The effect of spatial averaging and spatial 

autocorrelation of soil properties on the stability of the slope has been noted in the literature 

(Vanmarke, 1977; Li and Lumb, 1987; El-Ramly et al., 2002).   

Many different random field generator algorithms are available of which the following are 

perhaps the most common: 

1). Fast Fourier Transform (FFT) method, 

2). Turning Bands Method (TBM), 

3). Local Average Subdivision (LAS) method. 

If the problem at hand requires or would benefit from a local average representation, then the 

LAS method is the logical choice. In this technique, the local average value z(vi) of the 

random field z(x) attributes the property in the unit body vi.  

      
 

  
        
  

                                  (6.13) 

so, the random field z(x) is discrete as n random variables z(v1), z(v2), …, z(vn), and described 

by the discrete parameters, as mean E[z(vi)], variance Var[z(vi)] and covariance Cov[z(vi), 

z(vj)] (i, j=1, 2, …, n).  

           
 

  
        
  

  
 

  
       
  

                   (6.14) 

Based on the correlation function theory, the variance should be reduced as follow 

  
                                                    (6.15) 

where    is the variance of point property,   
  is the variance after local averaged, T is the 

averaging domain and Γ(T) is the variance reduction function. 

Γ(T) has follow mathematic meanings: 

1). Γ(0) = 1; 

2). For every T ≥ 0, there is 0 ≤ Γ(T) ≤ 1; 

3). Γ(-T) = Γ(T). 

Variance reduction function reflects that: when the averaging domain increasing, the variance 
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of the average property will reduce. The variance reduction is related to the spatial 

correlation of soil properties. For a square finite element of side length T, it can be shown 

(Vanmarke, 1983) that for an isotropic spatial correlation field, the variance reduction factor 

is given by: 

     
  

 

   
 

                
 

 
 

 
 

 
   

    
 

 
 

 
            (6.16) 

In this chapter, a dimensionless spatial correlation length measure Θ is used, where 

                                                          (6.17) 

Numerical integration of this function leads to the variance reduction values shown plotted in 

Fig. 6.8. 

 

Fig. 6.8 Variance reduction function over Θ with a Markov correlation function 

From Fig. 6.8, one sees that as the spatial correlation length compared with the averaging 

domain tends to infinity, the variance reduction factor reaches 1.0. At the other extreme, as 

the spatial correlation length tends to zero, the variance reduction factor reaches 0.0. 

6.1.6 Calculation methods of spatial correlation length 

In particular, the spatial correlation length (θ) describes the distance over which the spatially 

random values will tend to be significantly correlated in the underlying Gaussian field. Thus 

a large value of θ will imply a smoothly varying field, while a small value will imply a ragged 

field. The spatial correlation length can be estimated from a set of tested data taken over some 

spatial region simply by performing the statistical analyses on the log-data.  

The values of spatial correlation length reported in literature are not numerous and regard 
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especially clay soils (Cherubini, 1997; Phoon and Kulhawy, 1999). It is possible, however, to 

state that the horizontal correlation length θh is more than one order of magnitude larger than 

the vertical one. In particular, for the vertical correlation length the values most frequently 

found are varying from 0.5 to 2 m whereas for the horizontal one the typical range is 30~60 

m. 

For calculate the spatial correlation length, there are mainly following methods: Recurrence 

Space Method, Curve Limit Method, Correlation Function Method, Statistical Simulation 

Method, Semi-variogram Method and so on. 

6.2 Application of Random Field Method in slope stability analysis 

The random field modeling of a two-layer slope is realized in the finite difference code 

FLAC. The slope is 20 m high with a slope angle of 45º. The elements of the soil are 

considered as proximate squares measuring 1×1 m (Fig. 6.9). The left and right boundaries 

are fixed in x-direction, and the bottom is fixed in both the x- and y-directions.  

 

Fig. 6.9 Mesh used in slope stability analyses 

The model is a linear elastic-perfectly plastic material with a Mohr-Coulomb failure criterion. 

For investigating the influence of spatial correlation on the probability of failure, all 

mechanical properties are considered as constant except for the cohesion of soil (Table 6.1).  

Table 6.1 Mechanical parameters about the slope 

Layer  Density (kg/m
3
) Bulk (Pa) Shear (Pa)  Cohesion (Pa)  Friction angle (º) 

Soil  1950 1.8e9 1.2e9 - 22 

Rock  2000 2.0e9 1.5e9 4.0e4 40 
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6.2.1 Case 1. Stationary random field model 

In this case, the cohesion of soil c is assumed to be characterized statistically as random 

variables with a constant trend 21 kPa, and the standard variance σc is 4 kPa.  

The safety factor of this slope using the Strength Reduction Method based on the trend value 

of soil cohesion (i.e., the residual deviation from the trend is zero) is 1.01, which means it is 

in the edge of failure. The simulation result for the slope presents in Fig. 6.10. Critical failure 

surface is found automatically as the max shear strain rate zone, and it is not necessary to 

specify the shape of the failure surface (e.g. circular, log spiral, piecewise linear, etc.).   

 

Fig. 6.10 Results of slope by Strength Reduction Method 

When the random field method applied, the numerical solution algorithm requires that the 

continuous parameter field of cohesion c be discretized, and it is realized through the 

following transformation 

      
    

                                       (6.18) 

in which ci is the cohesion assigned to the i
th
 element, trend    

 is the mean value of c in i
th

 

element, and residual Rci is a normal random variable with a mean of zero and a standard 

deviation of σT.  
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In the present study, the cohesion of soil is a stationary random field, and the trend in every 

element is a constant 21 kPa. The variance of the residual Rci can be obtained by the local 

average subdivision based on the spatial correlation theory. In the two dimensional analysis 

presented in the following case study, the spatial correlation lengths in the vertical and 

horizontal directions are taken to be equal (isotropic) for simplicity.   

In the first case, the averaging domain T is determined as the same of mesh size 1m, and the 

relationship between the variance reduction coefficient Γ and spatial correlation length θ is 

shown in Table 6.2 based on Eq. 6.16.  

Table 6.2 Relationship between Γ and θ when T is 1 m 

θ 0.1 0.2 0.5 1.0 2.0 4.0 5.0 8.0 10.0 

Γ(T) 0.0138 0.048 0.1932 0.3965 0.612 0.7764 0.8156 0.8796 0.9020 

Subsequent to determining the trend and residual deviation of cohesion in every element, the 

random values of cohesion can be generated by means of FISH program based on Eq. 6.18. 

The generations of two sets of random variables of cohesion based on different spatial 

correlation length are presented as the scattered points in Fig. 6.11, and the solid line presents 

the trend of cohesion in the depth of 1~10 m. The random variables are symmetrically 

distributed on both sides of the trend, and they are more dispersive when the spatial 

correlation length is greater. 

 

Fig. 6.11 Two sets of random variables with constant trend μc  

The next step is to input the random variables generated by LAS to the slope mesh. This 

process also needs the help of FISH language in FLAC. The distribution of cohesion in slope 

with a relative lower spatial correlation length of θc=1.0 m is presented in Fig. 6.12 (a), and 
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the model with a relative higher spatial correlation length of θc=10 m is shown in Fig. 6.12 

(b). It should be emphasized that both these cohesion distributions come from the same 

normal distribution, only the spatial correlation lengths are different.   

 

Fig. 6.12 Random field models of slope with constant trend and T is 1 m 

In this section, stationary random field, whose first moment mean independent with the 

spatial position, is considered in slope probabilistic analysis. The analysis is performed using 

the mesh of Fig. 6.9. The random variables can be correlated to one another by controlling the 

spatial correlation length θ as described previously.  

After the random field model of cohesion built, slope probabilistic analysis based on Monte 

Carlo simulation is performed. The random variables in different element are correlated to 

one another by controlling the spatial correlation length θ. For a given set of input cohesion 

parameters (mean, standard deviation and spatial correlation length), the slope stability 

analysis is repeated many times until the statistics of the output quantities of interest become 

stable. During each “realization” of the Monte Carlo process, each element in the soil is 

assigned a constant cohesion.  

To perform the reliability analysis by Monte Carlo Simulation, the appropriate sample size 

of soil properties should be determined first. For this purpose different sample sizes ranged 

from 50 to 2000 were generated and the associated probabilities of failure pf were 

calculated. Fig. 6.13 shows the relationship between the sample size (generated number) 

and the probability of failure, when the spatial correlation length is 0.1 m, 1 m and 10 m 

(i.e., reduction coefficient of variability is 0.0138, 0.3965 and 0.9021 respectively). It is 

clearly shown in this figure that when the spatial correlation length is 0.1 m, almost there is 

no significant difference in the calculated pf as the sample size exceeds 500, but for the 

spatial correlation length 10 m, we need 1,000 samples to get the relative stable result. It 
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indicates that the spatial correlation length affects the convergence of the probabilistic 

analysis, and a longer correlation length need larger sample size to obtain the relative stable 

results.  

 

Fig. 6.13 Relationship between probability of failure and sample size 

The correlation length θ of the random field, is in general the most difficult to evaluate. For 

this reason, a parametric study on the influence of this parameter was performed. Table 6.3 

shows the influence of the spatial correlation length to the probability of failure, and the 

sample size of 1000 was chosen here in each case. One sees that for the mean of safety 

factor is more than 1.0, the probability of failure increase as the spatial correlation length 

increases (i.e., the reduction coefficient of cohesion increases).  

Table 6.3 Probability of failure based on different θ when T is 1 m 

θ (m) 0.1 0.2 0.5 1.0 2.0 4.0 5.0 8.0 10.0 

Pf (%) 1.85 18.5 59.7 68.3 72.6 74.9 76.1 77.5 78.8 

For study the influence of the averaging domain T on the probability failure of slope, in the 

second case, the averaging domain T is determined as 2 m, and the mesh size of the slope is 

the same as the Fig. 6.9. The relationship between the variance reduction coefficient Γ and 

spatial correlation length θ is shown in Table 6.4. 

After generated the random values of cohesion according to local averaging subdivision, 

the distributions of cohesion in slope with a relative lower spatial correlation length of 

θc=1.0 m a relative higher spatial correlation length of θc=10 m are compared in Fig. 6.14. 

From the plot, one can see that when the spatial correlation length longer, the discreteness 
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of cohesion is greater. 

Table 6.4 Relationship between Γ and θ when T is 2 m 

θ 0.1 0.2 0.5 1.0 2.0 4.0 5.0 8.0 10.0 

Γ 0.0037 0.0138 0.0699 0.1932 0.3965 0.6118 0.6718 0.7765 0.8158 

 

Fig. 6.14 Random field models of slope with constant trend and T is 2 m 

Table 6.5 shows the probability of failure based on different spatial correlation length when 

T is 2 m, and the sample size of 1000 was chosen here in each case. One sees that for the 

mean of safety factor is more than 1.0, the probability of failure increase as the spatial 

correlation length increases (i.e., the reduction coefficient of cohesion increases). 

Table 6.5 Probability of failure based on different θ when T is 2 m 

θ (m) 0.1 0.2 0.5 1.0 2.0 4.0 5.0 8.0 10.0 

Pf (%) 0.25 9 38.3 54.1 60 62.9 63.8 65.4 67.4 

The results based on T=1 m and 2 m are present in Fig. 6.15. The figure of probability of 

failure vs. the spatial correlation length is a curve, and initially the probability of failure 

increase very fast with the spatial correlation length increase, at last, it is asymptotic in 

about 80% and 70%.  

From Fig. 6.15, one can see that the average domain will influence on the probability of 

failure on some degree. When the T is greater, the probability of failure is smaller. Basically, 

we need to choose an average domain approximately equal the spatial correlation length. 
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Fig. 6.15 Influence of the spatial correlation length to the probability of failure 

6.2.2 Case 2. Non stationary random field model 

Most of time, for the influence of earth stress and self weight, the property of sediment varies 

in depth (Leng Wuming, 2000). In this case the trend of the soil properties is assumed as a 

function of depth z, m(z) = 9+2z kPa, and the standard variance of point σc is 4 kPa. Therefore, 

the cohesion of soil is a non stationary random field, and the trend is obtained by  

   
 

 

 
       

    

  
                                (6.19) 

where zi is the height of the bottom of the i
th

 element, and zi+1 is the height of the top of the i
th
 

element and h is the height of every element. Because m(z) is a linear function, so    
 can be 

expressed as the cohesion value in the center of the i
th
 element as Eq. 6.20. 

   
      , (j=21, 22, …, 30)                       (6.20) 

where j is the number of element along the depth of soil. 

The variance of the residual Rci is obtained by the local average subdivision as above case. 

After determined the trend and residual deviation of cohesion in every element, the random 

value will be obtained based on Eq. 6.18. In Fig. 6.16, the scattered points show the 

generation of a set of random variables about cohesion, and the solid line presents the trend of 

cohesion in the range of 0~10 m depth. One sees that the trend is an oblique line, and the 
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random variables are randomly distributed in both sides of the trend. 

 

Fig. 6.16 Two set of random variables with inconstant trend μc  

Next step is to input the random variables generated by LAS to the slope mesh. Fig. 6.17 (a) 

presents the distribution of cohesion in slope with a relative lower spatial correlation length 

of θc=1.0 m and Fig. 6.16 (b) shows the model with a relative higher spatial correlation 

length of θc=10 m. 

 

Fig. 6.17 Random field models of slope with inconstant trend  

Fig. 6.18 presents the simulation result for slope using Strength Reduction Method based on 

the trend value of soil cohesion, (i.e. the residual deviation from the trend is zero). The 

critical failure surface is found automatically as the max shear strain rate zone. The safety 

factor of this slope is 1.05.   

To determine the appropriate sample size of soil properties, different sample sizes ranged 

from 50 to 2000 were generated and the associated probabilities of failure pf were 

calculated. Fig. 6.19 shows the relationship between the sample size (generated number) 
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and the probability of failure. It just like stationary random field, soil property with longer 

spatial correlation length needs larger sample size to get the stable result. 

    

     Fig. 6.18 Results of slope by Strength Reduction Method     

 

Fig. 6.19 Relationship between probability of failure and sample size 

Fig. 6.20 shows the influence of the spatial correlation length to the probability of failure. 

The probability of failure at last asymptotic in about 80% as the spatial correlation length 

increases. 
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Fig. 6.20 Influence of the spatial correlation length to the probability of failure 

6.2.3 Case 3. Double random field models 

In this case, both cohesion and friction angle of soil, which impacted slope stability 

significantly, are considered as random variables and vary as the depth of soil. The mesh of 

the slope in Fig. 6.9 is applied. The trend of cohesion is 10+2z kPa, and the standard 

deviation of the cohesion is 4 kPa. The trend of friction angle is 16+2z º, and the standard 

deviation of the friction angle is 5º. The spatial correlation spatial lengths of cohesion and 

friction angle both are 2.0 m, and same in horizontal and vertical directions. The distributions 

of cohesion and friction angle are shown in Fig. 6.21.  

Fig. 6.22 presents the simulation result for slope using Strength Reduction Method based on 

the trend value of soil cohesion, i.e. the residual deviation from the trend is zero. The critical 

failure surface is found automatically as the max shear strain rate zone. The safety factor of 

this slope is 1.04. 

 

Fig. 6.21 Distributions of cohesion and friction angle 
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Fig. 6.22 Results of slope by Strength Reduction Method 

To perform the reliability analysis by Monte Carlo Simulation, different sample sizes 

ranged from 50 to 2,000 were generated and the associated probability of failure pf was 

calculated. Fig. 6.23 shows the relationship between the sample size (generated number) 

and the probability of failure. It is clearly shown in this figure that almost there is no 

significant difference in the calculated (pf) as the sample size exceeds 500.   

 

Fig. 6.23 Relationship between probability of failure and sample size 

6.3 Conclusion 

Modeling soil material properties properly is of crucial importance in geotechnical 
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engineering. The natural heterogeneity of soil can be fruitfully modeled using probability 

theory. 

If an accurate description of the spatial variability is required, random fields may be 

employed. Their use in engineering problem requires their discretization. An efficient 

method has been presented for this purpose, namely local averaging method.  

In this chapter, a numerical procedure for a probabilistic slope stability analysis based on a 

Monte Carlo simulation that considers the spatial variability of the soil properties is 

presented. The approach adopts the numerical simulation to determine the critical failure 

surface and to evaluate the safety of the slope. The analysis considers the spatial variability of 

soil property cohesion based on local averaging to discretize continuous random fields. The 

study focuses primarily on the non stationary random field to model the inhomogeneous soil. 

The importance of the spatial correlation structure of soil properties is highlighted and its 

effect on the stability of slope is studied. 
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7. Rock Slope Reliability Analysis based on Random Set Theory 

7.1. Introduction  

Uncertainty and variability are very common in geology engineering, especially in rock 

material which has many discontinuous joints. There are two sources of uncertainty in rock 

slope engineering-geometry and geomechnic. The former means the scattered values for 

discontinuity orientations and geometries such as discontinuity length and persistence; the 

latter means the variability of the geomechanical parameters of the rock mass as well as the 

discontinuous joints. Most probabilistic studies are focused on the geometric uncertainties 

based on the stochastic fracture network models (Dershowitz, 1988; Young, 1993; Meyer, 

2002). Some researchers also try to deal with the second source of uncertainties in rock slope 

engineering by some classical probabilistic analysis methods. For example, Low (2007) has 

implemented First Order Reliability method and Monte Carlo Simulation to study the 

reliability of a rock slope in Hong Kong. 

Besides probabilistic analysis methods, there are also non-probabilistic analysis methods to 

deal with the uncertainty in geotechnical engineering, such as Interval Analysis, Fuzzy 

Approach, Imprecise Probability Method based on p-box representation and Random Set 

Method. All of these methods are regarded as imprecise analysis methods.  

In this study, by coupling Random Set Theory (RS) and Distinct Element Method (DEM), the 

Random Set Distinct Element Method (RS-DEM) has been developed and applied in the 

reliability analysis of a rock slope in China considering the uncertainty of rock material 

property. The safety factor of rock slope is assessed by Strength Reduction Method in a 

comerical distinct element code UDEC.   

7.2. Random Set Theory 

Random Set Theory provides a general framework for dealing with set-based information 

and discrete probability distributions. It yields the same results as Interval Analysis when 

only range information is available and under certain conditions results are similar to Monte 

Carlo simulations (Peschl 2004). 

Suppose a system response is F=X1×…×Xp, where × indicates Cartesian product, F is the 

system response results, X1,…Xp are the influence parameters of the system response. 

Because of the uncertainties, the influence parameters are not a single value, but a set with 

every possible value. Therefore, F is also a set impacted by the variation of parameters X.  
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Because of the imprecision, the set X is also composed by many subsets A={Aj, j=1,…, 

M}which are called focal elements, and m(Aj) is the basic probability assignment of Aj. So 

that m(Ф)=0 and  

      
 
                                         (7.1) 

For example, in geotechnical engineering, each set A is the interval of one parameter values 

measured for one sample, and m(A) is the frequency of this kind of sample occurring in all 

the samples. The parameter values measured from all samples compose the set X. 

Alternatively, the sets Aj could be ranges of a variable obtained from another source with 

relative credibility m(Aj). 

In probabilistic analysis method, all of the possible values of an input parameter conform to a 

certain probability distribution. While in Random Set approach, the parameters are 

composed of several intervals shown in Fig. 7.1 as an example. Only lower and upper limits 

of these intervals are considered as input variables in the deterministic model. 

 

Fig. 7.1 Types of random set visualization: a) random interval b) p-box (after Nasekhian, 2011) 

If A1i ,…, A1j are random sets on X1 and X1,…, Xp are stochastically independent, then the 

joint basic probability assignment is given by  

                                                 (7.2) 

In this chapter, Random Set Theory will be applied with Distinct Element Method in rock 

slope stability analysis. 
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7.3. Distinct Element Method in rock slope stability analysis 

There are many discontinuous faces with different structure, and strength properties, like 

bedding plane, joint, fissure, soft and weak layer and fault in rock material. They induce 

great deal of difficulties in the rock slope stability analysis. Based on the situation of 

cementation and fill, the discontinuity joints can be divided into hard joints (no filled) and 

soft joints (filled). And according to the transfixion situation, the structure face can be 

divided into transfixion, half transfixion and non transfixion. In a low tectonic stress, the 

strength of rock is mainly controlled by the strength property of these discontinuous joints. 

Therefore, it is not reliable to apply the conventional soil slope stability analysis methods in 

rock slope directly. 

For establishing the reasonable rock mechanical behavior model many numerical methods 

have been developed. All of these numerical methods can be divided into three groups: 

continuum modeling (e.g. finite element, finite difference), discontinuum modeling (e.g. 

distinct element, discrete element) and hybrid/coupled modeling. Stead et al. (2001) has 

reviewed these numerical techniques used in the rock slope stability analysis, including 

advances in computer visualization and the use of continuum and discontinuum numerical 

modeling codes.  

Compared with the conventional rock slope stability analysis methods (e.g. Block Theory 

(Fu, 2000), limit equilibrium methods, rockfall simulation), the advantage of above 

numerical techniques are: the material deformation and failure are allowed, and complex 

behavior and mechanisms can be modeled; the effects of groundwater and pore pressures, 

dynamic events can be considered; block deformation and movement of blocks relative to 

each other are allowed. The limitation of numerical techniques is that, the users must be 

well trained and have extensive experience in programming and modeling. To overcome 

this limitation, many user-friendly slope stability numerical codes have been developed. In 

1980’s the ITASCA Company developed the Universal Distinct Element Code UDEC (Itasca, 

2000), and has since been improved continually accordingly with the development of rock 

mechanics and computer.   

Because of the complexity of the rock structure, it is impossible to exactly reflect the 

property of structure face and to conduct precise calculation. Therefore, for real slope 

engineering, generally only representative joints which have dominant influence on the slope 

stability are elected, according to the length, density, transfixion and orientation of the 
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structure faces. While for the rock cut by the joints with high density and diverse orientations, 

researchers always use an equivalent continuous medium to simulate it. 

UDEC can employ several joint models which are used extensively, like perfect 

Elastic-Plasticity Model, Continuous Yield Model, Barton-Bandis Model and so on. The 

Strength Reduction Method applied in this chapter is based on Mohr-Coulomb model. The 

general shear yield, opening and the dilatancy of the joints all can be realized in this model.  

The strength parameters c, and φ of deformable blocks and the joint faces both are reduced 

until the slope fails, and the last reduction coefficient at failure is the safety factor. In the 

process of calculation, when the ratio of the largest unbalanced force and the system load is 

greater than a tolerance value, the slope is considered in a non equilibrium situation and vice 

versa otherwise. For this study, the tolerance value is chosen as 10
-4

. The location and shape 

of the slip surface can be determined by the plots of displacement vectors or shear strain 

increment contours. 

UDEC is particularly well suited to problems involving jointed media and has been used 

extensively in the investigation of both landslides and surface mine slopes. Benko et al. 

(1998) used finite difference method (FLAC) and distinct element techniques (UDEC) to 

analysis the failure mechanism of the Frank Slide in 1903 on the east face of Turtle 

Mountain, southwestern Alberta, Canada. Eberhardt et al. (2004) applied UDEC to 

investigate the underlying mechanisms contributing to the episodic nature of the rockslide. 

Lei et al. (2006) have studied the feasibility of UDEC Strength Reduction Method in 

jointed rock slopes.  

7.4. Procedure of the RS-DEM in rock slope stability analysis 

On the occasion of the 35
th

 Rankine Lecture, Goodman (1960) pointed out: “Charged with 

responsibility for design, an engineer hopes to have available tools appropriate to the 

applicable materials and conditions. When the materials are natural rock, the only thing 

known with certainty is that this material will never be known with certainty”. 

For example, Sakurai and Shimizu referred to this problem (1978): “Compared with 

materials such as steel and concrete, the determination of a probability density function for 

the mechanical constants of rock masses is extremely difficult. In other words, there is no 

reliable way to determine the input data for the probabilistic approach. This means that the 

probabilistic approach may be less applicable to practical engineering problems.” 
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In rock slope engineering, because the discontinuous joints are involved, therefore, there are 

more influential parameters and the geometry is more complicated than a soil slope. The 

parameters are mostly obtained from the laboratory and in-situ investigations, and expert 

experience. Therefore, most of the parameters cannot be determined very accurately, and 

only a proximate interval is available. In this situation, it is senseless to conduct the 

deterministic analysis or probabilistic analysis. In this chapter, by combining the 

non-probabilistic analysis method random set theory with the distinct element method, the 

Random Set Distinct Element Method (RS-DEM) has been developed. The procedure of 

RS-DEM is shown in Fig. 7.2. 
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Fig. 7.2 RS-DEM procedure (modified from Peschl, 2004) 

7.5. Application of RS-DEM to rock slope stability analysis 

7.5.1 Slope overview  

In this part, a real case study is conducted to demonstrate the feasibility and efficiency of 

RS-DEM in the rock slope stability analysis.   
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The slope is located in north of Zagunao town, Sichuan Province. It is an active rock collapse 

slope. After years’ of weathering, denudnation and falling, the collapsed sediments have 

accumulated at the top of the fence of the residents’ houses located at the foot of the slope. 

Especially in 2008 the Wenchuan Earthquake and its aftershocks loosened the rock block, 

and induced local collapse and falling resulting in three new collapse sediments. The falling 

rocks bashed the masonry fence with a length of 7.7 m, broke 3 telegraph poles (in Fig. 7.3) 

and made holes in the building wall; luckily no one was hurt. The collapse sediments are 

composed of gravel and rock blocks having a depth of 0.5-2.5 m. The diameter of collapsed 

rock is 10-40 cm; the biggest one reached to 0.8 m. 

The full view of the slope is shown in Fig. 7.4. The slope has shape of a triangle. The 

maximum length of the slope is 330 m, and the height varies from 99 to 425 m. The total area 

of this slope is about 77,900 m
2
. The orientation of the potential collapse is 255-265ºN. Based 

on the in-site investigations, one of the potential dangerous areas has been selected as case 

study for detail analysis.  

  

Fig. 7.3 Destroyed fence and telegraph poles 

According to the field observation, the area of the potential dangerous zone is about 17.15 m
2
 

(3.5×4.9 m), and the average depth is 3.6 m. The volume of potential rockfall is about 61.74 

m
3
. The top elevation is 1969 m. The rock blocks in this zone are strongly weathered, and the 

rock is cracked by many joints and fissures. The bedding plane dips parallel to the surface of 

the slope, and some fissures cut the rock into blocks. The experts assessed that this rock 

zone has a low stability, and may slide along the bedding plane. 
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Fig. 7.4 Full view of the slope 

7.5.2 Input geomechnical parameters  

In rock slope models, there are many input parameters which can influence the safety factor, 

for example, the rock density, strength of the rock material as well as the joints strength, 

among these parameters, 5 most important parameters have been chosen as basic variables. 

They are density of rock (γ), normal stiffness (kn), shear stiffness (ks) of the joints, joint 

friction angle (jφ) and joint cohesion (jc). If necessary, other more parameters can be 

considered in this step, and the parameters with little influence on slope stability can be 

eliminated after the sensitivity analysis in the next section.  

The random sets of basic variables can be collected from different sources, like geotechnical 

tests, expert experience, similar projects, and published literature. These are in the form of 

ranges, and at least two sets are needed in order to build the probability distributions. In this 

case, the ranges of basic variables are obtained from two sources, first from the geotechnical 

tests including laboratory test and in-situ tests, and second from the expert experience which 

accumulated from the previous and similar investigations in this area after the earthquake. 

The basic values are presented in Table 7.1. The probability assignments of both sources are 
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considered to be 0.5, so there is no preference and both sources have the same reliability. In 

Table 7.1, the reference values are the values adopted for the previous deterministic analysis. 

These are the mean value of the upper and lower limits of two sets.  

Table 7.1 Basic variables of rock slope 

Set No. 
Probability 

assignment 

γ 

(kN/m
3
) 

kn 

(GPa/m) 

ks 

(GPa/m) 

jφ 

(º) 

jc 

(MPa) 

1 0.5 20-24 9-12 4-6 18-22 35-65 

2 0.5 22-26 10-13 5-9 20-24 40-70 

reference value 23 11 6 21 47.5 

The basic variables are illustrated in Fig. 7.5~7.9 in the forms of p-box.  

 

Fig. 7.5 Random sets of rock density  
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Fig. 7.6 Random sets of normal stiffness of joints 

 

Fig. 7.7 Random sets of shear stiffness 
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Fig. 7.8 Random sets of cohesion of joints 

 

Fig. 7.9 Random sets of friction angle of joints 

For UDEC, the rock blocks can be considered as rigid or deformable. In this case, the Mohr 

Coulomb model is applied for deformable rock blocks. The rock block has significantly 

higher strength than the joints, and the fluctuation of these parameters has almost no 

influence on the slope stability. Hence the strength parameters of rock, which are necessary 

input parameters for UDEC code running, are considered as single values, as shown in Table 

7.2. 
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Table 7.2 Parameters input in DEM model as single values 

Bulk  

(Pa) 

Shear  

(Pa) 

Friction angle 

(º) 

Cohesion  

(Pa) 

Tension  

(Pa) 

1.5e9 6.25e8 39 1.2e6 1.5e7 

7.5.3 Deterministic analysis of rock slope based on the DEM 

The Strength Reduction Method is applied in this part to perform the rock slope 

deterministic analysis. The model has a length of 105 m and a height of 123 m (Fig. 7.10). 

Distinct element code UDEC treat the problem domain as an assemblage of distinct, 

interacting bodies or blocks, and the other part of the slope is considered as a large intact 

deformable block. A force-displacement law is applied to specify the interaction between 

deformable intact rock blocks. Joints are viewed as interfaces between the blocks, but they 

are treated as a special element with strength parameters rather than boundary conditions. 

Movement is allowed vertically on both lateral boundaries, while the constraint is imposed in 

both directions on the base boundary.  

 

Fig. 7.10 Distinct element model of rock slope 

The value of safety factor calculated by UDEC Strength Reduction Method is 1.15. Fig. 

7.11 and 7.12 show the maximum shear strain rate contours and displacement vectors after 

the shear strength of rock blocks and discontinuity joints is reduced by a coefficient of 1.15. 

One can see that the slip face is located in the joint which is parallel to the surface of the 

slope. And the displacement concentrates in the rock blocks which are cut by joints. 



 

123 

 

Fig. 7.11 Maximum shear strain rate contour after the shear strength reduced by coefficient of 1.15 

 

Fig. 7.12 Displacement vectors after the shear strength reduced by coefficient of 1.15 

7.5.4 Sensitivity analysis 

The sensitivity analysis is to identify the degree of influence of every input parameter on 

slope stability. The purpose of this step is to reduce the number of basic variables in RS-DEM 

analysis. The reduction of number of basic variables can increase the efficiency of RS-DEM 
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analysis significantly. For example, the slope reliability analysis with 4 basic variables and 

with two sets of each variable requires running deterministic distinct element analysis for 

256 times, while this amount gets decreased to 81 times in case of 3 basic variables. 

Here, a relatively simple sensitivity method is applied. This method was originally proposed 

by U.S. EPA: TRIM (1999) and extended by Peschl (2004) in order to make it compatible 

with the Random Set approach. In this method, there are basically three steps.  

First, the change in model output per unit change of an input variable is calculated according 

to Eq. 7.3.   

 
  

  
 
             

     
 

 
       

  
 

                                   (7.3) 

where, ηSR is called the sensitivity ratio of variable x, and it is independent of the units of 

the variable. In the process of random set analysis, each variable has four sensitivity ratios 

over both a small and a large amount of change in input variables which are called local and 

global intervals respectively (Fig. 7.13). Therefore, xL,G means the upper or lower limits of 

the local and global intervals of variable x. xr is the reference value. 

The results of this step can also be used to assess the monotonicity of the system response, 

which can help to reduce the number of combination of basic variables in following 

reliability analysis procedure.  

Second, the error of the sensitivity ratio is reduced because of different intervals of variables 

using Eq. 7.4. 

           
         

  
       

         
     

  
  

   
  

  
       (7.4) 

where ηSS is the sensitivity score of variable x.  

At last, after the calculation of the sensitivity score of every variable, the relative sensitivity α 

of every variable is obtained as follows: 

      
     

      
 
 

                                      (7.5) 
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Fig. 7.13 Local and global intervals  

Depending on the different performance function, the relative sensitivity of the same variable 

may be different. For instance, the relative sensitivity of joint cohesion on the safety factor of 

slope and the displacement may be different, which means it has a different degree of 

influence on the safety factor and displacement analyses. In this study, only the performance 

function of safety factor is taken into account.   

The sensitivity analysis process described above is applied in the case study with 5 basic 

variables. A total number of 4×5+1 deterministic analyses are needed to accomplish the 

sensitivity analysis. In each deterministic analysis, lower or upper limit of the local and 

global interval of one variable is adopted, and other input parameters are keeping with 

reference value. The impact of each input parameters on safety factor is shown in Fig. 7.14 as 

a relative sensitivity. 

A threshold value has to be introduced to determine which parameters have great impact on 

the safety factor. Usually a threshold value between 5 to 10 percent can be considered 

appropriate (Nasekhian 2011). Here, a threshold value of 8% was chosen. As depicted in Fig. 

7.14 with the acceptance of the 8% threshold value, three parameters rock density γ, joint 

friction angle jφ and joint cohesion jc were chosen as basic variables for the RS-DEM 

analysis. Experience shows that usually 3 to 4 basic variables are sufficient to obtain 

relatively smooth cumulative probability distribution functions of output variables. 
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Fig. 7.14 Results of sensitivity analysis 

7.5.5. Reliability analysis of rock slope by RS-DEM 

After sensitivity analysis, the reliability analysis of rock slope can be conducted. Since the 

uncertainty of slope geometry has not been considered, the DEM model of the slope in 

Random Set approach is the same and the Mohr Coulomb criterion is adopted for the slope 

material. The three basic variables: rock density γ, joint cohesion jc and joint friction angle jφ, 

which are determined by sensitivity analysis in advance will be changed in every 

deterministic DEM analysis. For every basic variable, there are two random sets. Therefore, 

there are 8 different cases, which are given in the following vector: 

                                                                    (7.6)  

here the index of parameters denotes the relevant set number and the index of pairs signifies 

one case of basic variables. 

After that, the best (largest safety factor) and the worst (smallest safety factor) combinations 

of each case need to be calculated based on the input of upper and lower limits of each 

random set. For there are one upper and one lower limit of every random set, there are 8 

possible combinations of each case. As an example, the deterministic input values of such 

analysis for the case of (γ1, jc1, jφ1) are presented in Table 7.3. 
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Table 7.3 Inputs variables of case 1 in the deterministic distinct element calculation 

Var. Prob. Set No. 

L
L

L
﹡

 

L
L

U
 

L
U

L
 

U
L

L
 

L
U

U
 

U
L

U
 

U
U

L
 

U
U

U
 

γ† 0.5 1 20 20 20 24 20 24 24 24 

jc 0.5 1 35 35 65 35 65 35 65 65 

jφ 0.5 1 18 22 18 18 22 22 18 22 

Safety factor 1.15 1.19 1.41 0.96 1.49 1.12 1.25 1.34 

 † units: γ, g/cm
3
; jc, MPa; jφ, degree. 

 ﹡ L denotes the lower limit of a random set variable and U denotes the upper limit.  

From Table 7.3, the best and the worst combinations are LUU and ULL, and the largest and 

smallest safety factors are 1.49 and 0.96 respectively. It means the rock density has a negative 

influence on the slope stability, the density is higher, the safety factor will be smaller; and the 

joint cohesion or the joint friction angle has a positive influence on the slope stability, the 

joint cohesion or friction angle is higher, the safety factor will be larger. These relations can 

also be improved by the monotonicity of system response. According to the results of the 

sensitivity analysis process, the influences of these three basic variables on the safety factor 

can be illustrated in Fig. 7.15~17. 

Therefore, in every case, only two combinations, (1) lowest rock density and the highest joint 

cohesion and joint friction angle, and (2) highest rock density, and the lowest joint cohesion 

and joint friction angle are necessary to be realized in order to obtain the lower and upper 

limits of safety factor. This has reduced the computation effect significantly, and the total 

number of DEM runs has been decreased from 64 to 16.   

 

Fig. 7.15 Relation of safety factor and rock density 
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Fig. 7.16 Relation of safety factor and joint cohesion 

 

Fig. 7.17 Relation of safety factor and joint friction angle 

The next step is to determine the probability of the assignment of each realization. In this case, 

the random variables are considered as independent from of one other; the joint probability of 

the response focal element obtained from the distinct element model is the product of the 

probability assignment m of input focal elements by each other. For the mass probability of 

each set equal to 0.5, the first realization can be obtained as follows: 

                                     

                         

                                       (7.7) 

The results of these 16 combinations are shown in Table 7.4. 
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Table 7.4 Results of 16 combinations and their probabilities 

No. Cases Probability 
Safety factor 

Lower limit Upper limit 

1 γ1×jc1×jφ1 0.125 0.96 1.43 

2 γ2×jc1×jφ1 0.125 0.93 1.37 

3 γ1×jc1×jφ2 0.125 1.01 1.51 

4 γ1×jc2×jφ1 0.125 1.00 1.48 

5 γ2×jc1×jφ2 0.125 0.97 1.44 

6 γ2×jc2×jφ1 0.125 0.97 1.43 

7 γ1×jc2×jφ1 0.125 1.00 1.48 

8 γ2×jc2×jφ2 0.125 1.00 1.49 

At last, the random set results of safety factor can be constructed in the form of p-box as Fig. 

7.18. Contrary to classical probability theory, the probability of failure computed by 

RS-DEM cannot be interpreted as a frequency of failure. The safety factor ranges with 

different credibility are presented in Fig. 7.18. 

The practical purpose of the random set analysis of rock slope stability is to get the most 

likely safety factors. The most likely safety factor is the result which obtains most frequently 

when every possible parameters values input in the DEM model. For simplification, it is 

assumed that the most likely results are those values, whose measure of their belief degree 

are less than 50% and their corresponding plausible likelihood of occurrence are larger than 

50% (Nasekhian, 2011) as shown in Fig. 7.18.  

The mean value of the true system response obtained by random set bounds is within the 

following range given by Tonon et al. (2000a): 

              
 
             

 
                           (7.8) 

where inf(A) and sup(A) denote lower and upper limits of focal element A, respectively. 

There is a good conformity between the intervals obtained from both the most likely range 

definition and those calculated from Eq. 7.8, and have been presented in Table 7.5.  
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Fig. 7.18 Lower and upper bounds of safety factors of rock slope 

Table 7.5 lower and upper mean values of true system response 

 Interval of true mean values Interval of most likely values 

lower upper lower upper 

Safety factor 0.98 1.45 1.00 1.48 

7.6 Conclusion 

In this chapter, the RS-DEM analysis was applied to a real rock slope in China. Based on 

the previous researches, the rock slope stability is impacted by the strength of the 

discontinuity joints. Therefore, in this study, the discontinuous joints geomechanical 

parameters as well as rock block geomechanical parameters were considered in the distinct 

element model, and their influences on the results were assessed by the sensitivity analysis. 

After that, the basic variables which have the highest influence on the slope stability for the 

RS-DEM analysis were chosen. The RS-DEM results for the slope safety factor were 

presented in the form of lower and upper probability bounds.  

From this study, we can see that RS-DEM is one of the most suitable methods to deal with 

the uncertainty in the rock slope stability analysis, considering the complexity of rock 

material and the difficulty of the geomechanical parameters determination.   
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8. Conclusions and Further Research 

Introduction 

The aim of this research was to give a further contribution to the application of well known 

non-deterministic methods with numerical simulation to the study of the reliability of slope, 

showing that a non-deterministic analysis does not require considerably more effort than that 

needed in a conventional deterministic study, but it provides a very useful mean of modeling 

uncertainties involved in the calculations.  

In the next section the most important conclusions of the present thesis are given, followed 

by some recommendations for further research.  

8.1 Conclusions with respect to the numerical modeling based on GIS 

Strength Reduction Method is a kind of efficient numerical simulation method which always 

applied in finite element code or finite difference code. Compared with the conventional limit 

equilibrium methods, it is more competent for slope stability analysis. It not only can give 

the safety factor, but can also simulate the failure progress of slope considering the 

constitutive relationship of slope material. However, construction of models is always a 

complicated and time consuming work in numerical simulation. In chapter 4, for improving 

the method of numerical modeling, the excellent spatial function of GIS technique was 

adopted. The GIS data of the slope topography was transformed into ASCII data, and some 

programs were written to transform the GIS data into FLAC by means of FISH 

programming language. At last, both 2D and 3D slope models are constructed and their slope 

stability analyses are conducted. The case study has approved that the using of GIS can 

make the numerical modeling easier and more precise. Compared with the simulation 

results, one can see that the location and distribution of the failure zone by 2D and 3D are 

matched very well. However, the safety factor from 2D is a little conservative as compared 

to 3D, because the horizontal restrict in the vertical direction of the plane is ignored in 2D.  

8.2 Conclusions with respect to the slope probabilistic analysis methods  

In chapter 5, well-known probabilistic methods combined with Strength Reduction Method 

were applied to the study of two examples, one is a homogeneous slope, and the other is a 

non-homogeneous slope, considering different probability density functions and correlation 

coefficients between the soil parameters. 
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It has been shown that the Monte Carlo Simulation requires only fundamental knowledge of 

statistics and of probability theory to solve the slope stability problem. It is generally 

considered as the most accurate and reliable probabilistic method. Furthermore, the example 

proved that combination of MCS and Strength Reduction Method is more accurate than the 

combination of MCS and limit equilibrium methods, because Strength Reduction Method is 

more rigorous than the limit equilibrium methods and its results are more reasonable. The 

example also expounded that the probability distribution of safety factor is dependent on 

the distribution of input soil parameters, which will be the practical evidence of the 

assumption of probability density function of safety factor in the following studies.  

However, MCS is the most time consuming method, and the Strength Reduction Method also 

need much time for iteration to get the safety factor. For solving this problem, the author 

developed a simplified MCS-RSM. This method omits the iteration process which is used to 

calculate the safety factor in strength reduction technique, but only judges the slope stability 

in every simulation to get the probability of slope failure, and calculates the mean safety 

factor by means of soil properties. After that, based on the probability statistics theory, the 

variance of safety factor and reliability of slope stability can be achieved. This treatment 

saves about 4/5 of time of traditional MCS-RSM, and retain almost the same accuracy. This 

development supplies a practical way to apply MCS in rigorous numerical simulation 

without reducing the accuracy.    

The moment’s method First Order Reliability Method was chosen as an alternative approach 

to replace the Monte Carlo Simulation, because it involved a limited amount of calculations. 

FORM uses Taylor's series expansion to estimate the local uncertainty of the factor of safety 

at a selected expansion point, and the closed form solution of the partial derivatives is used to 

calculate the mean and standard deviation of the performance function. For lack of explicit 

performance function in Strength Reduction Method, the derivative expressions is replaced 

with equivalent difference quotients to solve the differential quotients approximately. The 

accuracy of FORM is lower than MCS, because it does not provide the shape of the 

probability density function and the skewness coefficient of the performance function. The 

probability of failure by normal distributed random variables from FORM is a little smaller 

than MCS, but the probability of failure by log normal distributed random variables is a 

little greater. 

It has been highlighted that the Point Estimate Method decreases the computational effort of 
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the probabilistic analysis of slope stability significantly. On one hand, the PEM did not 

involve the evaluation of partial derivatives of the safety factor formula, thus being more 

straightforward applied than FORM. On the other hand, when both soil cohesion and friction 

angle were considered as input variables, at least thousands of Monte Carlo simulations were 

necessary to get accurate statistical values of the slope stability, while only four calculations 

were required by the PEM to get results as accurate and reliable as those of the Monte Carlo 

method in terms of mean value and standard deviation. 

In last decades, the PEM is finding increasing application in practical problems. However, 

there are many limits for its application in some conditions, like the correlation between soil 

properties are considered. In this study, the formula proposed by Christian et al. (1999) was 

adopted. Unfortunately this formula is valid only for symmetrical input variables. Thus one 

should normalize the unsymmetrical input variables first. All of these approximations 

decrease the accuracy of results. 

Another important finding in this chapter refers to the correlation between the soil parameters 

cohesion and friction angle. Many researchers discovered negative correlation between 

cohesion and friction angle on the basis of experimental data. However, most literatures have 

often neglected this correlation for simplifying the calculations. In this study, different 

correlations between cohesion and friction angle was taken into account for the probabilistic 

analysis of the slope stability. By increasing the correlation coefficient of cohesion and 

friction angle from -1.0 to 0.0, the failure probability of slope increased about 13%.  

At last, the probabilistic analysis of a two-layered slope with four input random variables 

has been studied. The results showed that the probability of failure by PEM is closer to 

MCS than FORM. 

8.3 Conclusions with respect to the spatial variability 

Spatial variability is one of the most important factors influencing the property of soil. Since 

Vanmarke leaded the random field model in the geotechnical engineering in 1977, spatial 

variability of soil properties has received more and more attention in the literature. However, 

all of the studies were only focused on the stationary random field, i.e. the mean of soil 

property is the same everywhere of the soil deposit. But most of the time, because of the earth 

stress and self weight, the property of sediment varies in depth, which is called 

non-stationary random field. 
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In this study, the author reviewed the random field modeling and local averaging technique in 

slope stability analysis, and applied them in numerical simulation. Furthermore, an example 

about a slope with random field of cohesion was studied. In this case, both stationary random 

field and non-stationary random field were investigated, and the probabilistic analysis of 

slope stability was carried out by using Monte Carlo Simulation. From the comparison study 

of probabilistic analysis about different correlation length of cohesion, we found that the 

influence of spatial variation on probability of failure is very strong. Based on the same 

average domain T, the probability of failure increased from about 1% to 70% as the 

correlation length of cohesion increased from 0.1 m to 10 m. after that, the same slope 

geometry with both cohesion and friction angle considered as random field was studied.  

8.4 Conclusions with respect of RS-DEM 

In this study, combing with the random set theory and the distinct element method, the non 

deterministic slope stability analysis method RS-DEM has been developed, and it has been 

applied in a rock slope from China. 

It was illustrated that the RS-DEM is very practical to deal with the uncertainty in rock 

slope stability analysis. Based on the imprecise probabilities concepts, it can predict the 

system response within a range in the form of a p-box. RS-DEM provides user-friendly 

framework that can apply the advanced constitutive models available in DEM programs. 

The rock blocks and discontinuity joints can be simulated appropriately. 

The relatively smooth bounds on the system responses were obtained after small number of 

simulations. In this case with 3 basic variables, after the monotonicity analysis, only 16 

realizations were needed. The application of RS-DEM requires much less computational 

effort as compared to fully probabilistic methods like Monte Carlo Simulation. 

8.5 Recommendations for further research 

Many issues could be recommended, based on the outcomes of this research, and 

considering the stage of development of slope stability analysis research. In this section, a 

number of the main recommendations are presented. 

As extend of this thesis, the non-deterministic slope stability analysis methods developed in 

this study should be applied in more real landslides to test their feasibility and efficiency. 

The non-deterministic analysis can be used not only in the natural soil or rock slopes, but 

also in the manmade slopes which has been reinforced by geotextile or vegetable (Wu, 
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2007, 2011). This process can make the slope design more reasonable and economic.  

More research is needed in the area of application of geography information system (GIS) 

in slope stability analysis. GIS is very powerful in spatial analysis as explained in Chapter 4, 

so it should be applied in geohazard prediction and protection more extensively, from 

single slope stability analysis to landslide risk analysis for a region; from the slope 

deterministic analysis to the slope non-deterministic analysis. For example, by coupling 

limit equilibrium analysis and Monte Carlo analysis with GIS, Shou et al. in 2005 have 

tried to implement a method that can evaluate the risk (corresponding to probability of 

failure) of landslide with consideration of spatial uncertainties in Li-shan landslide in 

Central Taiwan.  

The analysis of complex landslides, no matter the deterministic or non deterministic 

analysis, can be carried out using various user-friendly numerical codes on desktop 

computers. If the benefit of these methods is to be maximized then the advanced and more 

comprehensive field data collection techniques are very important. There is little change for 

most of current data collection methodology which is aimed towards limit equilibrium 

analysis. Data including slope mass, discontinuities and groundwater should be collected 

enough to describe the whole slope mechanisms. Anyway, if there is no adequate and 

reliable input data, any rigorous analysis model (like random field method) is just a 

numerical game. Therefore, it is necessary to improve some efficient and cheap lab and 

in-situ test methods. And the uncertainty levels of input variables or inter-dependency of 

the variables need to be further studied, which are essential issues for further development 

of the probabilistic analysis model (Shou, 2005). 

Furthermore, other control factors, such as earthquake (Shou, 2001), heavy rain (Baum, 

2003; Borja, 2011), and time effect are also important for practical risk estimation of a 

landslide. In future studies, the uncertainties of seismic loads or rainfall can be considered 

in slope probabilistic analysis model based on numerical simulation,  

At last, the probabilistic analysis can not only be carried out in the slope stability analysis, 

but also in the whole landslide risk assessment, while vulnerability can be conveniently 

expressed as a conditional probability (Einstein, 2001). For example, a rock block crossing 

a road and hitting a car, it can be determined with straightforward models including block 

dynamics, traffic density, average traffic speed, road geometry, all the input parameters 

should not be single numbers, but some ranges. 
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As emphasized by the observation of Chen (2000), “In the early days, slope failure was 

always written off as an act of God. Today, attorneys can always find someone to blame and 

someone to pay for the damage - especially when the damage involves loss of life or 

property”. Therefore, any uncertainty in slope stability analysis is deserved to be considered 

by all relevant available slope analysis techniques. 
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Appendix: Programs by FLAC  

A1. Program of Strength Reduction Method of slope stability by FISH in FLAC 

def calfos 

; --- define the possible range of safety factor --- 

fs=1.0 

loop while fs<1.4 

fs=fs+0.1 

; --- calculate the safety factor of the slope with a friction of 0.675 and a cohesion of 20 kPa 

--- 

refric=atan(0.675/fs)*180/3.14 

recoh=20000/fs 

  command 

    ini sxx 0.0 syy 0.0 

    ini xvel 0.0 yvel 0.0  

    ini xdis 0.0 ydis 0.0  

    pro fric refric cohesion recoh range group soil  

    solve step 5000 

    hist unblance 

    hist fs 

  end_command 

aa=mec_ratio 

; --- print results --- 

  command 

    print aa 

    print fs 

  endcommand 

end_loop 

end 

A2. Program of Strength Reduction Method of slope stability by FISH in FLAC3D 

def calfos 

; --- define the possible range of safety factor --- 

fs=1.0 
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loop while fs<1.4 

fs=fs+0.1 

; --- calculate the safety factor of the slope with a friction of 0.675 and a cohesion of 20 kPa 

--- 

refric=atan(0.675/fs)*180/3.14 

recoh=20000/fs 

  command 

    ini sxx 0.0 syy 0.0 szz=0.0 

    ini xvel 0.0 yvel 0.0 zvel 0.0 

    ini xdis 0.0 ydis 0.0 zdis 0.0 

    pro fric refric cohesion recoh range group soil  

    solve step 5000 

    hist unblance 

    hist fs 

  end_command 

aa=mec_ratio 

; --- print results --- 

  command 

    print aa 

    print fs 

  endcommand 

end_loop 

end 

A3. Monte Carlo Simulation considering normal distributed random variables 

Config 

; --- build slope model --- 

grid 30,30 

gen (0.0,0.0) (0.0,20.0) (20.0,20.0) (20.0,0.0) i 1 9 j 1 11 

gen (20.0,0.0) (20.0,20.0) (90.0,20.0) (90.0,0.0) i 9 31 j 1 11 

gen (20.0,20.0) (60.0,50.0) (90.0,50.0) (90.0,20.0) i 9 31 j 11 31 

model mohr i=1,8 j=1,10 

model mohr i=9,30 j=1,10 

model mohr i=9,30 j=11,30 



 

139 

prop density 1950 bulk 1.8e9 shear 1.2e9  

set gravity 10 

fix x i 1 

fix x i 31 

fix x y j 1 

; --- define initial soil parameters --- 

def parm_mech 

    u_c=20000; --- mean of cohesion --- 

    a_c=5000; --- variance of cohesion ---   

    u_f=25.0; --- mean of friction angle --- 

a_f=5.0; --- variance of friction angle --- 

end 

parm_mech 

def monte 

; --- generate normal distributed random variables ---   

  array norm(2,1000) 

  loop ii(1,1000) 

    a1=urand 

    b1=urand 

    c1=sqrt((-2)*ln(a1))*cos(2*3.14*b1) 

    d1=sqrt((-2)*ln(a1))*sin(2*3.14*b1) 

    norm(1,ii)=abs(c1*a_c+u_c) 

    norm(2,ii)=min(abs(d1*a_f+u_f),89) 

  end_loop 

; --- input generated random variables --- 

loop nn(1,1000)    

    c_c=norm(1,nn)    

    f_f=norm(2,nn)      

    command 

      ini sxx 0.0 syy 0.0 sxy 0.0  

      ini xvel 0.0 yvel 0.0  

      ini xdis 0.0 ydis 0.0  

      prop friction f_f cohesion c_c notnull        

      set sratio=1e-3  
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      solve step 5000        

    end_command 

aa=mech_ratio 

; --- calculate probability of failure --- 

command 

    print aa 

  endcommand 

if aa>1e-3 then 

   fs=fs+1 

end_if 

   command 

     print fs 

   endcommand 

  end_loop 

pf=fs/1000.0 

; --- print result --- 

command 

print pf 

endcommand 

end 

monte 

A4. Monte Carlo Simulation considering log normal distributed random variables 

config 

; --- build slope model --- 

grid 43,34 

gen (0.0,0.0) (0.0,20.0) (20.0,20.0) (20.0,0.0) i 1 9 j 1 14 

gen (20.0,0.0) (20.0,20.0) (90.0,20.0) (90.0,0.0) i 9 44 j 1 14 

gen (20.0,20.0) (60.000004,50.0) (90.0,50.0) (90.0,20.0) i 9 44 j 14 35 

model mohr i=1,8 j=1,10 

model mohr i=9,30 j=1,10 

model mohr i=9,30 j=11,30 

prop density 1950 bulk 1.8e9 shear 1.2e9  

set gravity 10 
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fix x i 1 

fix x i 44 

fix x y j 1 

; --- define initial soil parameters --- 

def parm_mech  

    u_c=20000.0; --- mean of cohesion --- 

    a_c=5000.0; --- variance of cohesion --- 

    aln_c=sqrt(ln(1+(a_c/u_c)^2));  

    uln_c=ln(u_c)-(aln_c^2)/2;  

u_f=25.0; ---mean of friction angle --- 

a_f=5.0; ---variance of friction angle --- 

    aln_f=sqrt(ln(1+(a_f/u_f)^2));  

    uln_f=ln(u_f)-(aln_f^2)/2;  

  end 

  parm_mech 

  def monte 

    ; ---generate random variables---   

    array norm(2,1000) 

  loop ii(1,1000) 

; --- generate standard normal distributed random variables --- 

    a1=urand 

    b1=urand 

    c1=sqrt((-2)*ln(a1))*cos(2*3.14*b1) 

    d1=sqrt((-2)*ln(a1))*sin(2*3.14*b1) 

    ; --- transfer to log normal distributed random variables --- 

    norm(1,ii)=exp(c1*aln_c+uln_c) 

    norm(2,ii)=exp(d1*aln_f+uln_f) 

  end_loop 

    ; --- input random variables --- 

loop nn(1,1000)    

      c_c=norm(1,nn)    

      f_f=norm(2,nn)       

      command 

         ini sxx 0.0 syy 0.0 sxy 0.0  
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         ini xvel 0.0 yvel 0.0  

         ini xdis 0.0 ydis 0.0  

         prop friction f_f cohesion c_c notnull        

         set sratio=1e-3  

         solve step 5000        

     end_command 

aa=mech_ratio 

; --- calculate probability of failure --- 

command 

   print aa 

   endcommand 

if aa>1e-3 then 

   fs=fs+1 

end_if 

   command 

   print fs 

   endcommand 

  end_loop 

pf=fs/1000.0 

; --- print result --- 

command 

print pf 

endcommand 

end 

monte 

A5. Monte Carlo Simulation considering correlated random variables 

config 

; --- build slope model --- 

grid 30,30 

gen (0.0,0.0) (0.0,20.0) (20.0,20.0) (20.0,0.0) i 1 9 j 1 11 

gen (20.0,0.0) (20.0,20.0) (90.0,20.0) (90.0,0.0) i 9 31 j 1 11 

gen (20.0,20.0) (60.0,50.0) (90.0,50.0) (90.0,20.0) i 9 31 j 11 31 

model mohr i=1,8 j=1,10 
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model mohr i=9,30 j=1,10 

model mohr i=9,30 j=11,30 

prop density 1950 bulk 1.8e9 shear 1.2e9  

set gravity 10 

fix x i 1 

fix x i 31 

fix x y j 1 

; --- define initial soil parameters --- 

def parm_mech    

u_f=25.0; --- mean of friction angle --- 

a_f=5.0; --- variance of friction angle --- 

    u_c=20000.0; --- mean of cohesion --- 

    a_c=5000.0; --- variance of cohesion --- 

end 

parm_mech 

  def monte 

  ; --- generate random variables with a correlation coefficient of -0.6 ---   

  array norm(2,1000) 

  loop ii(1,1000) 

    a=urand 

    b=urand 

    c=sqrt((-2)*ln(a))*cos(2*3.14*b) 

    e=sqrt((-2)*ln(a))*sin(2*3.14*b) 

    d=(-0.1)*c+sqrt(1-0.6^2)*e 

    norm(1,ii)=abs(c*a_c+u_c) 

    norm(2,ii)=abs(min(d*a_f+u_f,89)) 

  end_loop 

    ; --- input random variables --- 

loop nn(1,1000)       

      f_f=norm(2,nn) 

      c_c=norm(1,nn)       

      command 

         ini sxx 0.0 syy 0.0 sxy 0.0  

         ini xvel 0.0 yvel 0.0  
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         ini xdis 0.0 ydis 0.0  

         prop cohesion c_c friction f_f notnull        

         set sratio=1e-3  

         solve step 5000        

     end_command 

aa=mech_ratio 

; --- calculate probability of failure --- 

command 

   print aa 

   endcommand 

if aa>1e-3 then 

   fs=fs+1 

end_if 

  end_loop 

pf=fs/1000.0 

; --- print results --- 

command 

print pf 

endcommand 

end 

monte 

A6. Failure probability of slope with stationary random field 

config 

; --- build slope model with two layers --- 

grid 60,30 

gen (0.0,0.0) (0.0,10.0) (20.0,10.0) (20.0,0.0) i 1 21 j 1 21 

gen (20.0,0.0) (20.0,10.0) (40.0,30.0) (40.0,0.0) i 21 41 j 1 21 

gen (40.0,0.0) (40.0,30.0) (60.0,30.0) (60.0,0.0) i 41 61 j 1 21 

group rock j 1 21 

gen (0 10) (0 20) (20 20) (20 10) i 1 21 j 21 31 

gen (20 10) (20 20) (40 40) (40 30) i 21 41 j 21 31 

gen (40 30) (40 40) (60 40) (60 30) i 41 61 j 21 31 

group soil j 21 31 



 

145 

model mohr i=1,60 j=1,30 

prop density 2000 bulk 2e9 shear 1.5e9 cohesion 4e4 fric 25 j 1 21 

prop density 1950 bulk 1.8e9 shear 1.2e9 friction 22 j 21 31 

set gravity 10 

fix x i 1 

fix x i 61 

fix x y j 1 

def monte 

fs=0 

loop iii(1,800) 

command 

   ini sxx 0.0 syy 0.0 sxy 0.0  

   ini xvel 0.0 yvel 0.0  

   ini xdis 0.0 ydis 0.0  

endcommand 

; --- define initial parameters --- 

    loop m_m(21,30)       

       p_p=m_m+1 

       y_y=m_m 

    a_c=4000; --- variance of cohesion --- 

    u_c=21000; --- mean of cohesion --- 

    r_a=0.0138; --- variance-reduction coefficient --- 

    ; --- generate reduced normal distributed random variables --- 

    array norm(1,60) 

  loop ii(1,60) 

    a=urand 

    b=urand 

    c=sqrt((-2)*ln(a))*cos(2*3.14*b)*sqrt(r_a) 

    d=sqrt((-2)*ln(a))*sin(2*3.14*b)*sqrt(r_a) 

    norm(1,ii)=abs(c*a_c+u_c) 

  end_loop 

  ; --- build random field --- 

nn=0 

  loop x_d(1,60) 
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      q_q=x_d+1 

       nn=nn+1 

      c_c=norm(1,nn) 

      command 

        prop coh c_c i x_d q_q j m_m p_p        

     end_command 

    end_loop 

  end_loop 

; --- calculate probability of failure --- 

command 

set sratio=1e-3  

   solve step 5000   

   end_command 

   aa=mech_ratio 

   command 

   print aa 

   endcommand 

if aa>1e-3 then 

   fs=fs+1 

end_if 

command 

print fs 

endcommand  

end_loop 

pf=fs/800.0 

; --- print result --- 

command 

print pf 

endcommand 

end 

monte 

A7. Failure probability of slope with non stationary random field 

config 
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; --- build slope model with two layers --- 

grid 60,30 

gen (0.0,0.0) (0.0,10.0) (20.0,10.0) (20.0,0.0) i 1 21 j 1 21 

gen (20.0,0.0) (20.0,10.0) (40.0,30.0) (40.0,0.0) i 21 41 j 1 21 

gen (40.0,0.0) (40.0,30.0) (60.0,30.0) (60.0,0.0) i 41 61 j 1 21 

group rock j 1 21 

gen (0 10) (0 20) (20 20) (20 10) i 1 21 j 21 31 

gen (20 10) (20 20) (40 40) (40 30) i 21 41 j 21 31 

gen (40 30) (40 40) (60 40) (60 30) i 41 61 j 21 31 

group soil j 21 31 

model mohr i=1,60 j=1,30 

prop density 2000 bulk 2e9 shear 1.5e9 cohesion 4e4 fric 25 j 1 21 

prop density 1950 bulk 1.8e9 shear 1.2e9 friction 22 j 21 31 

set gravity 10 

fix x i 1 

fix x i 61 

fix x y j 1 

def monte 

fs=0 

loop iii(1,800) 

command 

   ini sxx 0.0 syy 0.0 sxy 0.0  

   ini xvel 0.0 yvel 0.0  

   ini xdis 0.0 ydis 0.0  

endcommand 

    ; --- define initial parameters --- 

    loop m_m(21,30)       

       p_p=m_m+1 

       y_y=m_m 

    a_c=4000; variance of cohesion 

    u_c=72000-2000*y_y; --- mean of cohesion --- 

    r_a=0.0138; ---variance reduction coefficient --- 

    ; --- generate reduced normal distributed random variables --- 

    array norm(1,60) 
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  loop ii(1,60) 

    a=urand 

    b=urand 

    c=sqrt((-2)*ln(a))*cos(2*3.14*b)*sqrt(r_a) 

    d=sqrt((-2)*ln(a))*cos(2*3.14*b)*sqrt(r_a) 

    norm(1,ii)=abs(c*a_c+u_c) 

  end_loop 

  ; --- build random field --- 

  nn=0 

  loop x_d(1,60) 

      q_q=x_d+1 

       nn=nn+1 

      c_c=norm(1,nn) 

      command 

        prop coh c_c i x_d q_q j m_m p_p        

     end_command 

    end_loop 

  end_loop 

; --- calculate probability of failure --- 

command 

set sratio=1e-3  

   solve step 5000   

   end_command 

   aa=mech_ratio 

   command 

   print aa 

   endcommand 

if aa>1e-3 then 

   fs=fs+1 

end_if 

command 

print fs 

endcommand  

end_loop 
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pf=fs/800.0 

; --- print result --- 

command 

print pf 

endcommand 

end 

monte 

A8. Failure probability of slope with double random fields 

config 

; --- build slope model with two layers --- 

grid 60,30 

gen (0.0,0.0) (0.0,10.0) (20.0,10.0) (20.0,0.0) i 1 21 j 1 21 

gen (20.0,0.0) (20.0,10.0) (40.0,30.0) (40.0,0.0) i 21 41 j 1 21 

gen (40.0,0.0) (40.0,30.0) (60.0,30.0) (60.0,0.0) i 41 61 j 1 21 

group rock j 1 21 

gen (0 10) (0 20) (20 20) (20 10) i 1 21 j 21 31 

gen (20 10) (20 20) (40 40) (40 30) i 21 41 j 21 31 

gen (40 30) (40 40) (60 40) (60 30) i 41 61 j 21 31 

group soil j 21 31 

model mohr i=1,60 j=1,30 

prop density 2000 bulk 2e9 shear 1.5e9 cohesion 4e4 fric 25 j 1 21 

prop density 1950 bulk 1.8e9 shear 1.2e9 j 21 31 

set gravity 10 

fix x i 1 

fix x i 61 

fix x y j 1 

def monte 

fs=0 

loop iii(1,500) 

command 

   ini sxx 0.0 syy 0.0  sxy 0.0  

   ini xvel 0.0 yvel 0.0  

   ini xdis 0.0 ydis 0.0  
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endcommand 

    ; --- define initial parameters --- 

    loop m_m(21,30)       

       p_p=m_m+1 

       y_y=m_m 

    a_c=4000; --- variance of cohesion ---   

    u_c=72000-2000*y_y; --- mean of cohesion --- 

    a_f=5; --- variance of friction angle ---  

    u_f=76-2*y_y; --- mean of friction angle --- 

    r_a=0.6120; --- variance reduction coefficient  

    ; --- generate reduced random variables --- 

    array norm(2,60) 

  loop ii(1,60) 

    a=urand 

    b=urand 

    c=sqrt((-2)*ln(a))*cos(2*3.14*b)*sqrt(r_a) 

    d=sqrt((-2)*ln(a))*sin(2*3.14*b)*sqrt(r_a) 

    norm(1,ii)=abs(c*a_c+u_c) 

    norm(2,ii)=abs(d*a_f+u_f) 

  end_loop 

; --- build random fields --- 

   nn=0 

  loop x_d(1,60) 

      q_q=x_d+1 

       nn=nn+1 

      c_c=norm(1,nn) 

      f_f=norm(2,nn) 

      command 

        prop coh c_c friction f_f i x_d q_q j m_m p_p        

     end_command 

    end_loop 

  end_loop 

; --- calculate random fields --- 

command 
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set sratio=1e-3  

   solve step 5000   

   end_command 

   aa=mech_ratio 

   command 

   print aa 

   endcommand 

if aa>1e-3 then 

   fs=fs+1 

end_if 

command 

print fs 

endcommand  

end_loop 

pf=fs/500.0 

; --- print result --- 

command 

print pf 

endcommand 

end 

monte 
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