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Chapter 1

Introduction

Electromagnetic methods in geophysics cover a broad frequency spectrum. Ordered by increasing
frequency they comprise direct current, low induction number, induction and wave propagation
methods, irrespective of a time-harmonic or transient time characteristic. The thesis presents
the theoretical framework for the numerical solution of time-harmonic, or frequency domain,
Maxwell’s equations using the finite element method. Yet, transient, or time domain, problems
could easily be taken into account by Fourier synthesis of a number of frequency domain problems.
Restriction to the time-harmonic case directs the focus on the properties of the particular finite
element types which are used to spatially approximate the electromagnetic fields. These elements
would also form the basis for the spatial semi-discretization of time-dependent problems. However,
the delicacies of time stepping schemes are avoided here.

The intention of the practical part of this work was to provide a flexible and powerful all-purpose
solver for the Maxwell system. Accordingly, the problem formulation is carried out in an as general
as possible way. The finite element method has been chosen amongst the existing numerical
methods which compute an approximate solution to Maxwell’s equations. It provides the greatest
flexibility regarding model geometry, the option for a higher order spatial approximation and a
rigorous framework for the treatment of virtually arbitrary constitutive parameter distributions.
Early applications of the finite element method to frequency domain electromagnetic problems
in the geophysical literature date back to the 1970s and 80s (Coggon, 1971; Reddy, Rankin, and
Phillips, 1977; Pridmore, Hohmann, Ward, and Sill, 1981; Mur and Hoop, 1985). With the advent of
more powerful computers, the development of sophisticated direct solvers for systems of linear
equations, and the request for a greater geometrical flexibility the finite element method has recently
regained attention (Mogi, 1996; Zanoubi, Jin, Donepudi, and Chew, 1999; Zyserman and Santos,
2000; Badea, Everett, Newman, and Biro, 2001; Mitsuhata and Uchida, 2004). The implemental
overhead required for the treatment of unstructured meshes, higher order spatial approximations
and a general representation of constitutive parameters, boundary values and source terms goes
at the expense of an intricate software design. However, these features are supported by the
finite element method. In contrast to that, the finite difference method (Mackie, Madden, and
Wannamaker, 1993; Newman and Alumbaugh, 1995; Smith, 1996) is far easier implemented but
is restricted to tensor product grids and to piecewise constant constitutive parameters. Usually,
it is only derived with spatial approximations of first or second order. The finite volume method
potentially provides the same flexibility as the finite element method. However, applications to
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Chapter 1 Introduction

geophysical problems reported in the literature (Haber, Ascher, Aruliah, and Oldenburg, 2000;
Haber and Ascher, 2001; Weiss and Constable, 2006) only involve structured grids and piecewise
constant parameter distributions. Quite recently, a subgridding technique has been proposed by
Haber and Heldmann (2007) as a generalization. The integral equation method (Hohmann, 1975;
Weidelt, 1975; Wannamaker, Hohmann, and SanFilipo, 1984; Newman, Hohmann, and Anderson,
1986; Wannamaker, 1991; Xiong and Tripp, 1997; Avdeev, Kuvshinov, Pankratov, and Newman,
1997) provides a somehow complementary approach to the finite element, finite difference and finite
volume methods. Its strength is found in the solution for a possibly complex shaped anomalous
parameter distribution within a simple background medium. However, its scope of application is
limited in comparison to the finite element method. In order to complete the picture of numerical
methods, the finite difference time domain method needs to be mentioned. As a finite difference
method it is subject to the same restrictions as the frequency domain counterpart. If the time
stepping is carried out by an explicit scheme, the finite difference time domain method allows for
a very memory efficient implementation as it does not require storage and solution of a system
of linear equations like frequency domain solvers. The finite difference time domain method is
consequently the most popular approach for time dependent problems (Adhidjaja and Hohmann,
1989; Wang and Tripp, 1996; Roberts and Daniels, 1997; Chen, Chew, and Oristaglio, 1997; Teixeira,
Chew, Straka, Oristaglio, and Wang, 1998; Bergmann, Robertsson, and Holliger, 1998).

Numerical simulation of most of the geophysical methods in frequency domain typically involves
a number of frequencies which may cover a range of several decades. This especially holds if
for example the transient of a time-domain method both at early and late times or the wave
propagation of a broad spectrum radar signal for several cycles of the dominating frequency is to
be computed by Fourier synthesis. A couple of conflicting interests have to be considered when a
numerical algorithm is designed. A simulation involves the solution of a boundary value problem
that models the relevant physical phenomena. Although all boundary value problems describing
geophysical methods are naturally posed on an infinite domain the numerical solution requires
that the computational domain is finite and bounded. An artificial boundary is introduced which
defines the computational domain. Boundary conditions need to be posed on the artificial boundary
such that the field computed on the truncated domain resembles the solution of the boundary
value problem on the original, infinite domain as much as possible. These boundary conditions
typically approximate the behavior of the electromagnetic field at infinity. Their approximation
error is consequently a function of the distance between the artificial boundary and the sources
within the computational domain. In order to keep this approximation error small the artificial
boundary should be placed as far away as possible from any sources. Distance is best expressed
in terms of either wavelength for wave propagation dominated applications or skin depth for
induction dominated applications and consequently depends on frequency. While the boundary
can be considered far away for higher frequencies this might not be true for lower frequencies. If a
model is constructed for a range of frequencies the overall size of the domain is determined by the
lowest frequency considered. The mesh size, i. e., the smallest element size is determined by the
highest frequency because it corresponds with the smallest wavelength or skin depth that needs
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to be resolved by the mesh. The product of mesh and domain size determines the computational
effort in terms of the number of unknowns. Limited computational resources now impose severe
constraints on the useful frequency range which can be treated by one domain size at once. This
is especially true for three-dimensional problems where the mesh and domain size scale with
the third power of length. An optimum mesh with respect to both distance to the boundary and
element size can only be constructed for a single frequency. Multiple frequencies either require
a proportional increase of numerical effort or give rise to a loss of accuracy at either end of the
spectrum considered.

The increase of numerical effort might be balanced if the solution for a number of frequencies
can be computed using the same domain and mesh faster than by separate domain and mesh
sizes. A saving of simulation time is first of all linked with the overhead of creating the model,
generating a mesh and assembling the system of linear equations. Special cases of boundary
problems furthermore allow for an efficient solution of the system of linear equations for multiple
frequencies (Druskin and Knizhnerman, 1999; Zanoubi et al., 1999; Börner, Ernst, and Spitzer,
2008) when the factorization of the system matrix for one frequency can be reused. For practical
applications the trade-off between the saving of computational time by exploiting common data
structure, increase of domain and mesh size as well as loss of accuracy needs to be carefully
considered.

The main focus of this work lies on a numerically stable solution of Maxwell’s equations for a
single domain size with a fixed spatial discretization and for multiple frequencies. It is instructive
to consider the static case as the limiting case of low frequencies. However, the approximate nature
of boundary conditions mentioned previously should be kept in mind. A solution stable at low
frequencies requires that an appropriate subset of differential equations is chosen from the Maxwell
system and is supplemented by suitable boundary conditions. This stability consideration regards
the continuous side, the formulation of the boundary value problem in terms of the electromagnetic
fields as functions of space prior to any numerical approximation. The discrete side involves
the application of the finite element method in order to derive a system of linear equations. Its
solution expresses an approximation of the spatial distribution of the electromagnetic field by a
finite number of degrees of freedom. The condition number of the coefficient matrix of the linear
equation system is used as an experimental indicator for stability of the discrete problem. While
the usable lower frequency limit is determined by the choice of the correct boundary value problem
and the approximation error of the truncated domain boundary conditions, the upper frequency
limit is governed by approximation errors of the finite spatial discretization, ultimately by the
Nyquist wavelength of the mesh.

The boundary value problem can be stated in a number of different ways. A system of first
order partial differential equations involving both the electric field E and the magnetic field H was
solved by Mackie et al. (1993) and Zyserman and Santos (2000). If one of the fields is eliminated the
vector Helmholtz equation in terms of E or H emerges which is a partial differential equation of
second order. Solution of the vector Helmholtz equation in terms of E has been carried out, e. g.,
by Newman and Alumbaugh (1995) and Mogi (1996) and will also be the first attempt pursued
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Chapter 1 Introduction

here. Other formulations can be stated in terms of the magnetic vector and the electric scalar
potential (A-φ method; Haber et al., 2000; Badea et al., 2001), and in terms of the electric vector
and the magnetic scalar potential (T-Ω method; Mitsuhata and Uchida, 2004). These two potential
formulations are especially suited for low frequency problems. They involve a scalar field which
will be introduced in a similar fashion here in order to augment the vector Helmholtz equation in
terms of E and to stabilize the BVP for low frequencies. The resulting formulation will be called the
E-V formulation. While the mixed potential formulations in terms of A and φ or T and Ω require
both the vector and the scalar field, the scalar field of the E-V formulation can as well be dropped
at higher frequencies if stabilisation is not required.

The E-V formulation suggested here is considered a partial novelty in that it is a generalisation
of the E-p formulation of Demkowicz and Vardapetyan (1998). In particular, the E-V formulation
(a) uses a different scaling for the scalar field and the equation of continuity; (b) introduces a
zeroth-order term for V in order to account for a wider range of boundary conditions; and (c) takes
into account inhomogeneous boundary conditions. In addition, a slightly transformed set of field
quantities and constitutive parameters is put forward which makes use of the vacuum wavenumber
instead of frequency. This approach realizes a concept which penetrates the theoretical and practical
work of this thesis and can be summarized as follows:

‘Devise a formulation of the boundary value problem which reduces to its discretized
form as a system of linear equations such that the coefficient matrix is symmetric, is
scaled appropriately for all frequencies, and only requires a minimum of algebraic
manipulation prior to solving the system.’

Based on either the E-field formulation or the E-V formulation a software package has been
implemented as the practical part of this work. It encompasses a number of features and a flexibility
the combination of which is, to the best of the author’s knowledge, so far unparallelled to any
existing geophysical software. For example, Mogi (1996) and Mitsuhata and Uchida (2004) only
consider structured meshes with linear hexahedral elements. Badea et al. (2001) present a finite
element solution based on unstructured tetrahedral meshes but only with a piecewise linear
approximation. They only consider isotropic parameters and neglect displacement currents. All
the three papers mentioned use a set of equations different from the one considered here.

The ensued software suite gathers the following benefits:

1. Treatment of the full set of frequency domain Maxwell’s equations. All three constitutive
parameters magnetic permeability, electric permittivity and electric conductivity are, in
general, assumed to be non-zero, inhomogeneous and anisotropic. They are consequently
expressed as piecewise polynomial matrix functions.

2. Optional use of the E-field formulation or the E-V formulation. The E-V formulation stabilizes
the classical vector Helmholtz equation in terms of the electric field for low frequencies.

3. Optional use of a total field or a scattered field formulation. Incident fields are predefined for
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a point electric or point magnetic dipole in a homogeneous fullspace as well as for a plane
wave in a horizontally stratified earth.

4. Implementation of the anisotropic complex frequency shifted perfectly matched layer
(CFS PML; Berenger, 1994; Kuzuoglu and Mittra, 1996). Definition on input by a complex
coordinate stretching.

5. Support of unstructured hexahedral or tetrahedral meshes for a maximum of geometric
flexibility.

6. Vector finite element approximation with piecewise polynomials of practically arbitrary order.

7. Implementation of an a posteriori error indicator which can guide adaptive mesh refinement,
i. e., automatic mesh generation.

8. XML input file format with a self-explanatory structure.

The general design of the software allows for the simulation of almost every electromagnetic
method used in geophysics. It supports the direct simulation of frequency domain methods and
the simulation of time domain methods by combination with a Fast Fourier Transform (FFT).

The features of the finite element software suite of this thesis can well be compared to those of the
commercial product COMSOL Multiphysics® which has reached its competitive state only recently.
In order to perform the same numerical modelling using, e. g., the scattered field approach, COM-
SOL Multiphysics® nevertheless requires an additional piece of work which is already an integral
part of the software presented here, namely, the definition of the incident fields. Implementational
and design details of the software are partially hidden to the users of COMSOL Multiphysics®

but can potentially looked at in the source code of this thesis’ software. Due to its availability as
a package of C++/Fortran source code the software is more easily ported to different computing
facilities, in particular to distributed memory architectures, than it is possible with any commercial
software product.

In accordance with the practical part of the thesis its written part collects and documents the
theoretical background of the software. The presented work has been written with the intention
of promoting the understanding of the mathemetical and numerical methods to the interested
geophysicist reader. Its outline is as follows.

The derivation of the boundary value problems from Maxwell’s equations with particular atten-
tion to the low frequency stability aspect as well as the derivation of their weak form equivalents
are described in Chapter 2. The weak form serves as the basis for the finite element method
which is described in Chapter 3. A brief summary of the particular finite element spaces and
types is given, which are required for the discretization of the electromagnetic field quantities. It
is followed by the derivation of the discrete boundary value problem, i. e., the system of linear
equations. Some implementation details of the emerged collection of finite element software tools
precede the description of the experimental part. Numerical tests have been carried out which were
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Chapter 1 Introduction

designed to provide empirical evidence for the theoretical stability considerations of Chapter 2.
The influence of the non-trivial nullspace of the curl-curl operator on the matrix condition seems to
be considered evident throughout the literature since it is rarely demonstrated by example. This
effect is illustrated here by a carefully designed series of numerical tests which are instructive in
order to make this link clear.

The boundary value problem formulations introduced in Chapters 2 and 3 constitute a quite
straightforward approach to the simulation of geophysical problems. It provides the framework
required for the stability considerations and at the same time avoids an overly complex notation.
Chapter 4 extends the model setup by two more sophisticated concepts. The so-called scattered
field formulation improves the accuracy of the computed total field by assuming part of the
field, the incident field, known, and by approximating only the other part, the scattered field,
numerically. Furthermore, the famous perfectly matched layer (PML; Berenger, 1994) is introduced
which provides a means to reduce the influence of the approximate boundary conditions on
truncated domains at least for wave propagation phenomena. The PML properties are defined by
the means of a continuous coordinate stretching function. This function is usually approximated
by a piecewise constant, i. e., a discontinuous function. In contrast to the wealth of finite difference
codes a well-designed finite element code can thoroughly treat the continuous stretching function.
The benefit of doing that is demonstrated by an example. Finally, the application of the emerged
finite element software suite to two marine controlled source electromagnetics (CSEM) problems
is described in Chapter 5. Treatment of seafloor topography by unstructured tetrahedral meshes
when simulating marine CSEM has not been reported in the geophysical literature so far. The thesis
gives a first example of this. Chapter 6 finishes the thesis with a summary and an outlook.
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Chapter 2

Boundary value problems of electromagnetic wave
propagation – The continuous case

2.1 Fundamentals

It is convenient to start this chapter by introducing some notation that will be used throughout the
remainder of this work.

2.1.1 Basic notation

While most boundary value problems in geophysics do not have natural boundaries but rather
involve the whole space R3, the numerical approximation of solutions will require a domain of
finite volume. Therefore, the following considerations are restricted to the case of a finite domain
Ω ( R3.

The domain Ω is subdivided into a number of non-overlapping subdomains Ωi, Ω =
⋃

i Ωi and
Ωi ∩Ωj = ∅ for i 6= j (Figure 2.1), such that within each subdomain constitutive parameters and
source terms are continuous functions of space. Discontinuities have to coincide with interfaces
between subdomains. The interface is denoted by Σi,j = Ωi ∩Ωj. On each interface Σi,j the normal
vector n is defined to point from domain Ωi to domain Ωj. The normal vector makes the interface
direction dependent, i. e., interchanging the indices turns the normal vector in the opposite direction
and Σi,j = −Σj,i. The jump of a function u(r) across the interface Σi,j will be expressed by the short
hand notation

[u(r)]Σi,j
= u+(r)− u−(r), r ∈ Σi,j, where (2.1a)

u+(r) = lim
δ→0

u(r + δn) and (2.1b)

u−(r) = lim
δ→0

u(r− δn). (2.1c)

The boundary of Ω is denoted by Γ = ∂Ω. It is decomposed into a number of non-overlapping
parts Γi, Γ =

⋃
i Γi and Γi ∩ Γj = ∅ for i 6= j, such that the data of boundary conditions are smooth

functions on each boundary part. In particular, different types of boundary conditions will be
posed on different boundary parts.

Note that the indices i, j of subdomains and boundary parts are independent of each other.
Usually, the meaning of an index variable can be derived from the context. A more elaborate
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Ω1

Ω2

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Σ1,2

n

Figure 2.1: Notation for a domain Ω which is subdi-
vided into two subdomains. The boundary Γ con-
sists of six parts.

indexing scheme is sacrificed for simplicity of notation. A similar problem arises with the use of i
as an index variable and as the imaginary unit i =

√
−1. Since index variables will only appear as

subscripts and the imaginary unit as a factor the correct meaning should be clear from the context.
Finally, some basic mathematical notation: The real part of a complex number c ∈ C is denoted

by <{c} or c<; the imaginary part by ={c} or c=; the magnitude, absolute value or modulus by |c|
or mod{c}; and the angle, phase or argument by arg{c}. The Kronecker symbol is defined by

δi,j =

1 i = j,

0 i 6= j.
(2.2)

2.1.2 Maxwell’s equations

All electromagnetic phenomena are described by the system of Maxwell’s equations,

curl E = −Ḃ, Faraday’s law, (2.3a)

curl H = j + Ḋ, Maxwell-Ampère’s law, (2.3b)

div B = 0, Gauss’s magnetic law, (2.3c)

div D = ρ, Gauss’s electric law, (2.3d)

which link electric field E, magnetic field H, electric flux density D, magnetic flux density B, electric
current density j and electric charge density ρ. All field quantities are functions of space and
time. As usual, the dot denotes the time derivative. The system of partial differential equations is
completed by the set of constitutive relations

B = µ ∗ H, (2.3e)

D = ε ∗ E, (2.3f)

j = js + σ ∗ E, Ohm’s law, (2.3g)

where the symbol ‘∗’ denotes convolution in time and js an impressed current density. For inhomo-
geneous, anisotropic and dispersive media the electric permittivity ε, the magnetic permeability µ

and the electric conductivity σ are symmetric tensors that depend on space and time.
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2.1 Fundamentals

The time dependency of all quantities can be removed if equations (2.3) are Fourier transformed.
Using the Fourier transform defined by

E(r, ω) =
1

2π

∞∫
−∞

E(r, t)e−iωt dt (2.4)

for the electric field and similarly for all other fields, Maxwell’s equations in frequency domain
read

curl E = iωB, (2.5a)

curl H = j− iωD, (2.5b)

div B = 0, (2.5c)

div D = ρ. (2.5d)

The convolution in the time domain constitutive relations reduces to a product in frequency domain,

B = µH, (2.5e)

D = εE, (2.5f)

j = js + σE. (2.5g)

The usage of the same symbols for time and frequency domain quantities is ambiguous. However,
it is restricted to this section. Only the frequency domain quantities will be considered throughout
the remainder of this work.

Continuity equation

The Maxwell system (2.5) involves the two vector differential operators curl and div. It is well
known that the identity div curl u ≡ 0 holds for any smooth vector field u. Using this vector
identity, Gauss’s magnetic law can be derived from Faraday’s law for non-zero frequencies ω. The
static case ω = 0, however, requires that Gauss’s magnetic law is enforced explicitly since it cannot
be derived from the other equations in that case.

Similarly, the divergence of Maxwell-Ampère’s law produces

div j− iω div D = 0. (2.6)

Gauss’s electric law turns out to be independent and cannot be derived from the other equations
even for non-zero frequencies. Combining this equation with Gauss’s electric law results in the
well-known continuity equation

div j− iωρ = 0 (2.7)

which establishes a relation between volumetric charge density and current density.
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Σ

n

δ

r

Figure 2.2: Area of integration around a
surface point r ∈ Σ for application of
Stokes’ theorem.

r

Σ
n

δ

Figure 2.3: Volume of integration around
a surface point r ∈ Σ for application of
Gauss’ theorem.

Continuity conditions

The partial differential equations given above are only valid if the functions involved are sufficiently
smooth. Conditions concerning the smoothness of the electromagnetic field quantities can be
derived from Maxwell’s equations directly. For this purpose the field behavior is examined at a
point on an arbitrary surface Σ (Nolting, 1997).

First, consider Faraday’s and Maxwell-Ampère’s law. Integrating these equations over an area
perpendicular to the surface (Figure 2.2), using Stokes’ theorem and making the edge perpendicular
to the surface infinitely small (δ→ 0) leads to the continuity of the tangential electric and magnetic
field components

[n× E]Σ = 0, (2.8a)

[n× H]Σ = j f . (2.8b)

j f is an impressed surface current density which flows only within the surface. It is imperative that
j f satisfies n · j f = 0. If n · j f 6= 0, equation (2.8b) is not an equality since n · (n× H) = 0 for any
H.

Second, integrating Gauss’ electric and magnetic laws, equation (2.6) as well as the continuity
equation over a volume around the surface point (Figure 2.3), invoking Gauss’ theorem, and
making the height of the volume perpendicular to the surface infinitely small (δ→ 0) finally results
in the conditions

[n · B]Σ = 0, (2.8c)

[n · D]Σ = ρ f , (2.8d)

[n · j− iωn · D]Σ = 0, (2.8e)

[n · j]Σ = iωρ f (2.8f)

which enforce the continuity of the normal fluxes. ρ f denotes a surface charge. Similar to the un-
derlying differential equations only two of the three continuity conditions (2.8d) to (2.8f) involving
D, j and ρ f are independent of each other.
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2.1 Fundamentals

The continuity conditions of the flux density normal components can partially be derived from
those of the tangential field components. More precisely, equation (2.8c) can be derived from
equation (2.8a) by applying the surface divergence (Monk, 2003). If the surface is smooth enough the
surface divergence divΓ of the tangential electric field is related to the normal component of the curl
of the electric field by equation (A.1i) given in Appendix A. For non-zero frequencies, Faraday’s
law yields the final form of equation (2.8c). Application of the surface divergence to equation (2.8b)
and making use of equation (2.8e) reveals another restriction on the surface current density. Its
surface divergence divΓ j f has to vanish in order to make equations (2.8b) and (2.8e) compatible.
Note that the volume divergence of the surface current density is not well-defined since j f could
only be extended to the vicinity of the surface by employing the Dirac delta distribution in the
surface normal direction.

Summarizing, the normal component of the electric and magnetic field across a surface is
discontinuous if the constitutive parameters are discontinuous even if there is no surface charge.
Similarly, the tangential components of the electric and magnetic flux density as well as of the
electric current density are discontinuous if the constitutive parameters are discontinuous even if
there is no surface current density.

These observations motivate the subdivision of domain Ω into subdomains Ωi (section 2.1.1)
according to the smoothness of constitutive parameters and source terms. In particular, surface
currents or charges are restricted to the interface between subdomains. Maxwell’s equations are
only enforced within the subdomains Ωi. At the interface Σi,j between two adjacent subdomains Ωi

and Ωj, the system of partial differential equations is supplemented by the continuity conditions
derived above.

Boundary conditions

The solution to a system of partial differential equations is not uniquely defined unless some
appropriate boundary conditions are posed on Γ. The boundary is divided into two parts, Γe and
Γh. These symbols are chosen according to the prescription of the tangential components of either
the electric or magnetic field.

Boundary conditions can be grouped into two classes. The first class treats the boundary just as
an interface between the interior and the exterior domain where the fields in the exterior domain
are assumed known. Consequently, the continuity conditions (2.8) are reinterpreted as boundary
conditions. If the known exterior fields are marked by subscript 0, the boundary conditions require
that

n× E = n× E0, (2.9a)

n · B = n · B0 (2.9b)

on Γe and

n× H = j f + n× H0, (2.9c)

n · D = ρ f + n · D0, (2.9d)

11



Chapter 2 Boundary value problems

n · (j− iωD) = n · (j0 − iωD0), (2.9e)

n · j = iωρ f + n · j0 (2.9f)

on Γh. n denotes the outer normal vector on Γ. It is important to understand that the exterior fields
have to be a valid solution of Maxwell’s equations. Sorting the equations into the two sections for
Γe and Γh is not arbitrary. Indeed, E and B are mutually linked by Faraday’s law; H, j and D are
mutually linked by Maxwell-Ampère’s law.

The class of boundary conditions (2.9) contains two special cases. If E0 = 0 and B0 = 0 equa-
tions (2.9a) and (2.9b) describe the surface of a perfect electric conductor (PEC). The analogous choice
for the magnetic field, equations (2.9c) to (2.9f) with H0 = 0, D0 = 0, j0 = 0, j f = 0 and ρ f = 0, is
called a perfect magnetic conductor (PMC) despite the fact that there is no magnetic conductivity.

The second class of boundary conditions originates in the solution of boundary value problems
posed on an infinite domain. The solution is required to satisfy a Sommerfeld radiation condition
infinitely far away from sources. This condition is usually approximated on the boundary of a
truncated, finite domain by a so-called absorbing boundary condition (ABC). Here, only the lowest
order ABC will be considered. A plane wave proportional to eikn·r, i. e., travelling into the direction
of n with wavenumber k, passes the ABC boundary without reflection if

n× E + n× (κ (n× H)) = 0, (2.10a)

n · B = 0 (2.10b)

on Γe and

n× H + n× (λ (n× E)) = 0, (2.10c)

n · (j− iωD) = 0 (2.10d)

on Γh. Note that n denotes both the outer normal vector on the boundary and the propagation
direction of the plane wave. The wavenumber k depends on n for anisotropic media (section 2.5).
Therefore, the coefficients κ = k (σ − iωε)−1 and λ = k (ωµ)−1 are tensors which respectively have
the dimension of an electromagnetic admittance or impedance.

The scalar equations (2.10b) and (2.10d) are independent of the vector equations (2.10a)
and (2.10c). Indeed, taking the surface divergence of the vector equations yields another set
of scalar boundary conditions

iωn · B + n · curl (κ (n× H)) = 0 on Γe and (2.10e)

n · (j− iωD) + n · curl (λ (n× E)) = 0 on Γh. (2.10f)

2.2 Derived systems

The constitutive equations can be inserted into the partial differential equations in order to eliminate
B, D and j. Then, the vector fields E and H and the scalar field ρ have to satisfy all of the following

12



2.2 Derived systems

partial differential equations

curl E− iωµH = 0, (2.11a)

curl H − (σ − iωε)E = js, (2.11b)

div µH = 0, (2.11c)

div εE− ρ = 0, (2.11d)

div (σ − iωε)E = −div js, (2.11e)

div σE− iωρ = −div js (2.11f)

given the impressed current density js. These equations are repeated in Table 2.1 which also
gives an overview of the corresponding interface and boundary conditions. For compactness of
notation the boundary conditions (2.9) and (2.10) have been combined. However, one should
always keep in mind that either the external fields or κ and λ are to be set zero. The normal
flux ABCs (2.10e) and (2.10f), which are consistent to the tangential field ABCs (2.10a) and (2.10c),
are preferred to equations (2.10b) and (2.10d). There is no ABC contribution to the normal flux
boundary conditions (2.9d) and (2.9f) in terms of the induced current density or the displacement
current density only because the ABC involves the sum of both current densities.

Obviously, this collection of equations contains redundancies as, e. g., the continuity equation
can be derived from Faraday’s law and the electric Gauss’s law. One aim of this section is to derive
appropriate subsets of equations which constitute a well posed boundary value problem. The other
goal is to eliminate the magnetic field and to reformulate the boundary value problems in terms
of the electric field only. While the original Maxwell system is of first order, the derived system
of partial differential equations will be of second order. It is expected that the reduction of the
number of unknowns implies less computational effort when solving the boundary value problem
numerically.

2.2.1 Simple approach – The E-field formulation

Comparing the number of equations and unknowns, a plausible approach is to select the two vector
partial differential equations involving the curl of the electric and magnetic field and to drop the
equations involving the divergence of the corresponding flux densities. According to this choice
only continuity and boundary conditions are taken into account which involve the fields and to
drop those conditions which involve their flux densities (Table 2.1, second and fourth row). Let
ω 6= 0. Then, Faraday’s law can be used to express the magnetic field in terms of the curl of the
electric field. The resulting boundary value problem amounts to finding the electric field E such
that

curl
(

µ−1 curl E
)
− iω(σ − iωε)E = iωjs on Ωi, (2.12a)

[n× E]Σ = 0 on Σi,j, (2.12b)[
n× µ−1 curl E

]
Σ

= iωj f on Σi,j, (2.12c)
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2.2 Derived systems

n× E = n× E0 on Γe and (2.12d)

n× µ−1 curl E + iωn× (λ (n× E)) = iωj f + iωn× H0 on Γh. (2.12e)

Only boundary condition (2.9a) has been chosen for Γe in order to obtain a Dirichlet boundary
condition. The absorbing boundary condition is expressed by equation (2.10c) and combined with
equation (2.9c) into a mixed (λ 6= 0) or Neumann (λ = 0) boundary condition on Γh. The boundary
value problem (2.12) only involves one vector valued function to be determined. Once the electric
field is computed the magnetic field and all flux densities can be derived using Maxwell’s equations.

Let E a solution of boundary value problem (2.12) and smooth enough such that the divergence
of equation (2.12a) can be taken. Since div curl u ≡ 0, the electric field has been shown to also
satisfy

−iω div (σ − iωε)E = iω div js, (2.13)

i. e., one form of the continuity equation times iω. The electric field implicitly satisfies the continuity
equation as it is not enforced explicitly as part of the boundary value problem formulation.

However, there is one conceptional weakness of this formulation which is pointed at by the
assumption that ω 6= 0: The limit ω → 0 renders the boundary value problem (2.12) ill-posed as
uniqueness of the solution can only be proven for non-zero frequencies. From a computational
point of view this limit will turn out to cause numerical instabilities at low but far from zero
frequencies. Therefore, it is instructive to study the null-space of boundary value problem (2.12)
with ω = 0 which is essentially the kernel of the curl-operator subject to particular boundary
conditions.

2.2.2 The kernel of the curl-operator

The nullspace, or kernel, of boundary value problem (2.12) with ω = 0 is spanned by functions
which satisfy the boundary value problem with homogeneous source and boundary terms, i. e., a
vanishing right hand side,

curl
(

µ−1 curl E
)

= 0 on Ωi, (2.14a)

[n× E]Σ = 0 on Σi,j, (2.14b)[
n× µ−1 curl E

]
Σ

= 0 on Σi,j, (2.14c)

n× E = 0 on Γe and (2.14d)

n× µ−1 curl E = 0 on Γh. (2.14e)

Note that the zeroth order term of the mixed boundary condition on Γh vanishes since
limω→0 iωλ = 0. Due to the vector identity curl grad u ≡ 0, the field E = grad V expressed as
the gradient of any scalar function V ∈ H1(Ω) satisfies the partial differential equation, the con-
tinuity conditions as well as the Neumann boundary condition on Γh. The Dirichlet boundary
condition additionally requires that n× grad V = 0 on Γe. This is equivalent to V = const. on Γe.
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Chapter 2 Boundary value problems

In order to render the boundary value problem (2.12) well-defined for the static limit, i. e, stable
for low frequencies the kernel just described has to be removed. Therefore, the continuity equation
and its corresponding interface and boundary conditions, which had been dropped previously,
are taken into account. From the three partial differential equations coming into question, Gauss’
electric law and the two forms of the continuity equation, equation (2.13) is chosen because it is the
divergence condition consistent with the vector Helmholtz equation (2.12a). Unfortunately, this
choice introduces a severe restriction. The electrical conductivity σ has to be assumed non-zero
in all of Ω. If σ vanishes, equation (2.13) is trivial for ω = 0. The case of a dielectric requires that
Gauss’ electric law is enforced. However, combination of two different divergence conditions, the
continuity equation where σ 6= 0 and Gauss’ electric law where σ = 0, leads to difficulties when
deriving the weak form. The discussion of this issue is deferred to Appendix B.

Now, the source-free, static boundary value problem (2.14a) to (2.14e) is augmented by the set of
conditions

div σE = 0 on Ωi, (2.14f)

[n · σE]Σ = 0 on Σi,j, (2.14g)

n · σE = 0 on Γh. (2.14h)

The solutions of the non-augmented problem, E = grad V with V = const. on Γe, are now reduced
to those which solve the following boundary value problem:

Search V ∈ H1(Ω) such that

div σ grad V = 0 on Ωi, (2.15a)

[V]Σ = 0 on Σi,j, (2.15b)

[n · σ grad V]Σ = 0 on Σi,j, (2.15c)

V = const. on Γe, (2.15d)

n · σ grad V = 0 on Γh. (2.15e)

Existence and uniqueness of solutions of this boundary value problem depend on the topology
of the domain as well as of the Dirichlet and Neumann boundaries. For simplicity the domain
Ω is assumed to be connected. This will rarely be a restriction for geophysical model settings.
Concerning the different types of boundary conditions, consider first the case of a non-empty,
connected Dirichlet boundary Γe. The boundary condition V = C on Γe, C ∈ C fixed, renders
V = C in Ω the unique solution of boundary value problem (2.15). The kernel of boundary value
problem (2.14a) to (2.14e) in terms of the electric field is spanned by the gradient of V. Because the
gradient of the constant V vanishes the augmented boundary value problem (2.14a) to (2.14h) has
a trivial nullspace and, provided existence, a unique solution E.

The same argument holds for the second case of an empty Dirichlet boundary. Even though V as
a solution of boundary value problem (2.15) with Γe = ∅ is not determined uniquely, the solution
is nevertheless a constant, V = C in Ω where C ∈ C is not fixed.
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2.2 Derived systems

A complication arises with the third case of a disconnected Dirichlet boundary. Let
Γe = Γe,1 ∪ · · · ∪ Γe,J where each of the Dirichlet boundary patches Γe,j, j = 1, . . . , J, is a connected
part of Γe but different patches Γe,i and Γe,j, i 6= j, are not connected with each other. Then any solu-
tion of boundary value problem (2.15) with V = Cj on Γe,j, j = 1, . . . , J will satisfy n× grad V = 0,
i. e., V = const. on Γe. If, and only if, Ci = Cj for all i, j = 1, . . . , J the potential V is constant and its
gradient is zero. In general, V and its gradient do not vanish. Consequently, only part of the kernel
of the curl-operator has been removed by the additional equations (2.14f) to (2.14h), namely all
functions E = grad V, V ∈ H1(Ω), V = 0 on Γe. They span an infinite dimensional function space
whose orthogonal complement using the Hcurl (Ω) inner product is called the cohomology space
(Monk, 2003)

KN :=
{

Vi ∈ H1(Ω) : div σ grad Vi = 0 in Ω and Vi = δi,j on Γe,j,

i = 1, . . . , J − 1, j = 1, . . . , J
}

. (2.16)

The normal cohomology space is finite dimensional and of dimension J − 1. KN is empty if Γe

consists of exactly one connected, possibly empty part. The physical interpretation of KN can easily
be derived from its definition. KN represents the static electric field which is caused by electric
potential differences between J > 1 disconnected Dirichlet boundary patches where V = Cj on
Γe,j, j = 1, . . . , J. Since the cause is a potential difference, the dimension of KN must be J − 1 if there
are J boundary patches. The normal cohomology space could be annihilated by imposing J − 1
additional boundary conditions on Γe, corresponding to the dimension of KN . The discussion of
one possible way of treating a non-empty normal cohomology space is deferred to Appendix C.
For the sake of simplicity the case of a disconnected Dirichlet boundary is excluded from the
following considerations. This assumption is satisfied if the domain Ω has no holes, and if the outer
boundary does not contain disconnected parts where a Dirichlet boundary condition is imposed. If
Ω contains holes, only mixed or Neumann boundary conditions are admitted on their boundary.
This assumption precludes, e. g., modelling the surface of buried metallic objects by a perfectly
electric conducting (PEC) boundary condition.

Note that the restrictions concerning the topology of the computational domain and the assump-
tion of a non-vanishing electric conductivity apply only to the augmented boundary value problem.
The E-field formulation (2.12) is not subject to these restrictions but suffers from the low frequency
instability.

Returning to the non-static case, the boundary value problem (2.12) is augmented by the conti-
nuity equation (2.13) which is now enforced explicitly. Along with this condition, which involves
electric current and electric flux densities, also the corresponding continuity and boundary condi-
tions have to be taken into account. The augmented boundary value problem reads

curl
(

µ−1 curl E
)
− iω(σ − iωε)E = iωjs on Ωi, (2.17a)

−div (σ − iωε)E = div js on Ωi, (2.17b)
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[n× E]Σ = 0 on Σi,j, (2.17c)[
n× µ−1 curl E

]
Σ

= iωj f on Σi,j, (2.17d)

− [n · (σ − iωε)E]Σ = [n · js]Σ on Σi,j, (2.17e)

n× E = n× E0 on Γe, (2.17f)

n× µ−1 curl E + iωn× (λ (n× E)) = iωn× H0 + iωj f on Γh and (2.17g)

n · (σ − iωε) E + n · curl (λ (n× E)) = n · curl H0 − n · js on Γh. (2.17h)

It is important to distinguish the three source fields in boundary conditions (2.17g) and (2.17h).
While js denotes the impressed current density which is prescribed in the interior of Ω, H0 is an
external magnetic field, and j f is the surface current density only defined on Γh with n · j f = 0 and
divΓh j f = 0.

Now, there are four scalar partial differential equations to determine three components of the
electric field vector. To resolve this apparent ambiguity the boundary value problem can be
augmented by introducing a scalar field V as a fourth, unknown function (Jiang, Wu, and Povinelli,
1996). The extension of the boundary value problem is constructed such that it is equivalent to the
original boundary value problem (2.17) and the electric field retains its values. This implies that V
is introduced as a dummy variable which has to vanish in Ω.

2.2.3 Mixed approach – The E-V formulation

The extended boundary value problem amounts to finding the electric field E and the scalar field V
such that

curl
(

µ−1 curl E
)
− iω (σ − iωε) E

+ (σ − iωε) grad V = iωjs on Ωi, (2.18a)

−div (σ − iωε) E− γV = div js on Ωi, (2.18b)

[n× E]Σ = 0 on Σi,j, (2.18c)

[V]Σ = 0 on Σi,j, (2.18d)[
n× µ−1 curl E

]
Σ

= iωj f on Σi,j, (2.18e)

[n · (σ − iωε) E]Σ = [n · js]Σ on Σi,j, (2.18f)

[n · (σ − iωε) grad V]Σ = 0 on Σi,j, (2.18g)

n× E = n× E0 on Γe, (2.18h)

V = 0 on Γe, (2.18i)
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n× µ−1 curl E + iωn× (λ (n× E))

− n× (λ (n× grad V)) = iωn× H0 + iωj f on Γh, (2.18j)

n · (σ − iωε) E + n · curl (λ (n× E)) = n · curl H0 − n · js on Γh, (2.18k)

n · (σ − iωε) grad V − n · curl (λ (n× grad V)) = 0 on Γh. (2.18l)

The additional term (σ − iωε) grad V in equation (2.18a) is chosen as the symmetric counterpart
of −div (σ − iωε) E. Similarly, −n× (λ (n× grad V)) in equation (2.18j) is the symmetric coun-
terpart of −divΓh (n× (λ (n× E))) = n · curl (λ (n× E)) in equation (2.18k). These symmetry
considerations assume, of course, that the tensors σ, ε and λ are symmetric. The interpretation
of symmetry for the system of partial differential equations will become more evident when the
weak form of the boundary value problem is derived in section 2.3. The underlying objective of
deriving a symmetric formulation is to obtain a symmetric finite element system matrix when the
boundary value problem is discretized. Symmetric matrices require less memory to be stored than
non-symmetric ones.

The parameter γ in equation (2.18b) is either a scalar, non-negative function of space or chosen
to vanish, γ ≡ 0. Taking the divergence of equation (2.18a) and inserting equation (2.18b) shows
that V implicitly satisfies

−div ((σ − iωε) grad V)− iωγV = 0 on Ωi, (2.19a)

[V]Σ = 0 on Σi,j, (2.19b)

[n · (σ − iωε) grad V]Σ = 0 on Σi,j, (2.19c)

V = 0 on Γe and (2.19d)

n · (σ − iωε) grad V − n · curl (λ (n× grad V)) = 0 on Γh. (2.19e)

Only if V ≡ 0 is the unique solution of boundary value problem (2.19), the boundary value prob-
lem (2.18) will have a unique solution (E, V) where E is also a solution of boundary value prob-
lem (2.17). Consequently, γ has to be chosen such that it is not a solution of the eigenvalue problem

div
((

ε +
i
ω

σ
)

grad V
)

= γV (2.20)

subject to the boundary conditions (2.19d) and (2.19e). The eigenvalues λ of the differential
operator on the left hand side of (2.20) are situated in the third quadrant of the complex plane
including the negative real axis and the origin, <{λ} ≤ 0 and ={λ} ≤ 0, if the tensors ε and σ

have positive eigenvalues. Therefore, the choice <{γ} > 0 or ={γ} > 0 guarantees that boundary
value problem (2.19) only has the trivial solution for any set of homogeneous boundary conditions.

If γ is chosen to vanish, equation (2.19a) is not a Helmholtz-like but a Laplace-like equation. In
this particular case, Γe has to be assumed non-empty. If Γe is empty, any constant V will satisfy the
boundary value problem and non-uniqueness renders it ill-posed. Note that this is a problem which
originates from introducing V as a dummy variable and not from the kernel of the curl-operator.
The kernel is spanned by the gradient of V which is trivial for constant but non-zero V.
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Chapter 2 Boundary value problems

A similar set of equations has been suggested by Demkowicz and Vardapetyan (1998) where a
scalar variable p is introduced and interpreted as a Lagrange multiplier. Their set of equations,
however, differs from the one presented here by a different scaling of the scalar variable V = iωp,
by a factor of iω in front of the continuity equation as well as by considering only the case of γ = 0,
a non-empty Γe and homogeneous boundary conditions. They further prove for the dielectric case
(σ = 0) that their E-p formulation has a unique solution which is uniformly stable for ω → 0. This
result is derived by choosing a suitable norm which involves a factor of ω2 for the term ‖ grad p‖.
If this factor is modified for the case of conductive media (σ 6= 0) and included into the scalar field
the definition V = iωp naturally arises. For symmetry reasons the factor iω is also removed from
the continuity equation. Only this choice guarantees that neither the term (σ − iωε) grad V in
equation (2.18a) nor the continuity equation (2.18b) do not vanish if the limit ω → 0 is taken.

2.3 The weak form

So far, the physics of electromagnetic phenomena has been mathematically described by a system
of partial differential equations, continuity conditions and boundary conditions. This description
was naturally derived from Maxwell’s equations in differential form. However, it suffers from a
number of inconveniences. First, if point sources, such as an electric or magnetic dipole, are to be
modelled, the source term is not a classical function any more but a distribution, the Dirac delta
distribution. This leads to the questions how to ‘interpret’ the partial differential equation and
which function space to choose the solution from. Second, the second order partial differential
equation requires the electric field to be differentiable twice while the original Maxwell system
requires only the first derivative to be defined. The third point is merely a trifle in that the splitting
of the domain into subdomains with smooth constitutive parameters and coupling the solution of
the partial differential equations defined on each subdomain by continuity conditions is not very
elegant.

All these conditions can be relaxed by introducing the weak form of the boundary value problem.
In addition, the weak form is the basis for the method of finite elements which will be presented in
Chapter 3.

The notion of ‘weak’ in mathematical terminology means that something is interpreted in the
sense of an inner product. If two quantities u and f are equal in the weak sense, only their inner
products with a test function v are required to be equal, (u, v) = ( f , v), for every possible choice of
v.

In the case of the boundary value problems considered here, the inner product is the usual L2

inner product of complex valued scalar or vector functions,

(u, v)L2(Ω) :=
∫
Ω

vu d3r and (u, v)L2(Ω) :=
∫
Ω

v · u d3r. (2.21)

The partial differential equations of the boundary value problem are interpreted in the weak sense,
i. e., the inner product is applied to the partial differential equations. Formally, the inner product

20



2.3 The weak form

is taken on the whole domain Ω with test functions defined on the whole of Ω. Since the partial
differential equations are only defined on the subdomains and Ω =

⋃n
i=1 Ωi the integration is split

into the sum over all n subdomains.

The E-field formulation

Let Φ be a test function defined on Ω. Then, equation (2.12a) reads in the weak sense as

n

∑
i=1

∫
Ωi

Φ ·
(

curl
(

µ−1 curl E
)
− iω(σ − iωε)E

)
d3r =

n

∑
i=1

∫
Ωi

Φ · (iωjs) d3r (2.22)

The first integral on the left hand side involving the curl can be transformed using Green’s theo-
rem (A.3*) (Appendix A.2)∫

Ωi

Φ · curl
(

µ−1 curl E
)

d3r

=
∫
Ωi

curl Φ ·
(

µ−1 curl E
)

d3r +
∫

∂Ωi

Φ ·
(

n×
(

µ−1 curl E
))

d2r (2.23)

where n is the outer normal vector on ∂Ωi. The boundary of Ωi is composed of an outer boundary
part Γi = Γ ∩ ∂Ωi and an inner boundary part ∂Ωi \ Γi =

⋃
j 6=i Σi,j which is the union of all interfaces

with adjacent subdomains Ωj. Consider first all inner boundary integrals. If the normal vector n on
Σi,j is defined to point from Ωi to Ωj, the following holds

n

∑
i=1

∫
∂Ωi\Γi

Φ ·
(

n×
(

µ−1 curl E
))

d2r =
n

∑
i,j=1
i 6=j

∫
Σi,j

Φ ·
(

n×
(

µ−1 curl E
))

d2r

=
n

∑
i,j=1
i<j

∫
Σi,j

Φ ·
[
n×

(
µ−1 curl E

)]
Σ

d2r

=
n

∑
i,j=1
i<j

∫
Σi,j

Φ ·
(
iωj f

)
d2r (2.24)

where [·] again denotes the jump across the interface. The last equality follows from the continuity
condition (2.12c). Second, the outer boundary integrals

n

∑
i=1

∫
Γi

Φ ·
(

n×
(

µ−1 curl E
))

d2r = −
n

∑
i=1

∫
Γi

(
n×Φ

)
·
(

µ−1 curl E
)

d2r (2.25)

are transformed using the boundary conditions. For Γi ∩ Γe the Dirichlet boundary condition
in terms of the electric field n× E = n× E0 will be enforced explicitly as an essential boundary
condition. Therefore, the test function has to be chosen such that n×Φ = 0 and the corresponding
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Chapter 2 Boundary value problems

boundary integral vanishes. For Γi ∩ Γh the boundary condition (2.12e) enters the integrals as a
natural boundary condition. This leaves

n

∑
i=1

∫
Γi

Φ ·
(

n×
(

µ−1 curl E
))

d2r

= iω
∫
Γh

(
n×Φ

)
· (λ (n× E)) d2r + iω

∫
Γh

Φ ·
(

j f + n× H0
)

d2r. (2.26)

Finally, the sum of subdomain integrals in equations (2.22) and (2.23) can be collected into a single
integral over the whole domain. Choosing the trial and test functions from appropriate spaces such
that all integrals are well-defined the weak form of the boundary value problem reads:

Search E ∈ U such that∫
Ω

curl Φ ·
(

µ−1 curl E
)

d3r− iω
∫
Ω

Φ · ((σ − iωε)E) d3r + iω
∫
Γh

(
n×Φ

)
· (λ (n× E)) d2r

= iω
∫
Ω

Φ · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φ · j f d2r− iω
∫
Γh

Φ ·
(

j f + n× H0
)

d2r (2.27a)

for all Φ ∈ U0. The spaces of test and trial functions are defined by

U0 = {Φ ∈ Hcurl(Ω) : n×Φ = 0 on Γe} (2.27b)

U = {E ∈ Hcurl(Ω) : n× E = n× E0 on Γe} (2.27c)

where

Hcurl(Ω) =
{

E ∈ (L2(Ω))3 : curl E ∈ (L2(Ω))3} (2.27d)

is the space of functions with a well-defined curl.

Note that this choice of function spaces justifies the merging of the subdomain integrals above.
Furthermore, this choice enforces the continuity condition (2.12b) which has not been used when
deriving the weak form of boundary value problem (2.12). One can show that vector functions
with well-defined curl must have continuous tangential components (Nédélec, 1980).

The E-V formulation

The derivation of the weak form of the mixed boundary value problem (2.18) proceeds in a similar
way. Application of a vector test function Φ to the vector Helmholtz equation (2.18a) now produces
additional integrals involving grad V,∫

Ω

Φ · ((σ − iωε) grad V) d3r and −
∫
Γh

(
n×Φ

)
· (λ (n× grad V)) d2r.
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2.3 The weak form

In addition to the vector test function Φ a scalar test function φ is introduced in order to form the
inner product with the continuity equation (2.18b) on Ω,

−
n

∑
i=1

∫
Ωi

φ div (σ − iωε)E d3r−
n

∑
i=1

∫
Ωi

φγV d3r =
n

∑
i=1

∫
Ωi

φ div js d3r. (2.28)

Another Green’s theorem (A.2) is now applied to shift the differential operator to the test function.

−
∫
Ωi

φ div (js + (σ − iωε)E) d3r

=
∫
Ωi

grad φ · (js + (σ − iωε)E) d3r−
∫

∂Ωi

φ n · (js + (σ − iωε)E) d2r. (2.29)

Splitting the surface integrals into subdomain interface and boundary contributions, and applying
the interface and boundary conditions for all subdomains, the surface integrals are transformed
according to

−
n

∑
i=1

∫
∂Ωi

φ n · (js + (σ − iωε)E) d2r

= −
n

∑
i=1

∫
Γi

φ n · (js + (σ − iωε)E) d2r−
n

∑
i,j=1
i<j

∫
Σi,j

φ [n · (js + (σ − iωε)E)]Σ d2r

= −
∫
Γh

φ n · curl (H0 − λ (n× E)) d2r

= −
∫
Γh

grad φ · (n× (H0 − λ(n× E))) d2r−
∫

∂Γh

φ τ · (H0 − λ (n× E)) dr

= −
∫
Γh

grad φ · (n× H0) d2r−
∫
Γh

(
n× grad φ

)
· (λ (n× E)) d2r. (2.30)

In order to make the boundary integrals vanish on Γe, the test functions have to satisfy φ = 0 on Γe.
The last but one step follows from a form of Stoke’s theorem for surface integrals (A.4). Here, τ is
defined by τ = n× ν as the unit tangential vector on ∂Γh and ν as the unit outer normal vector on
∂Γh. The contour integral vanishes if Γh is empty or if it consists of closed surfaces only, i. e., if ∂Γh

is empty. If Γh contains open surfaces its boundary ∂Γh coincides with ∂Γe. In this case, the contour
integral vanishes because φ = 0 on Γe.

Collecting everything and combining the subdomain integrals yields the weak form of the mixed
boundary value problem:
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Chapter 2 Boundary value problems

Search E ∈ U and V ∈ V such that∫
Ω

curl Φ ·
(

µ−1 curl E
)

d3r− iω
∫
Ω

Φ · ((σ − iωε)E) d3r +
∫
Ω

Φ · ((σ − iωε) grad V) d3r

+ iω
∫
Γh

(
n×Φ

)
· (λ (n× E)) d2r−

∫
Γh

(
n×Φ

)
· (λ (n× grad V)) d2r

= iω
∫
Ω

Φ · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φ · j f d2r− iω
∫
Γh

Φ ·
(

j f + n× H0
)

d2r (2.31a)

for all Φ ∈ U0 and∫
Ω

grad φ · ((σ − iωε)E) d3r−
∫
Ω

φγV d3r−
∫
Γh

(
n× grad φ

)
· (λ (n× E)) d2r

= −
∫
Ω

grad φ · js d3r +
∫
Γh

grad φ · (n× H0) d2r (2.31b)

for all φ ∈ V0. The spaces of test and trial functions are defined by

U0 =
{

Φ ∈ Hcurl(Ω) : n×Φ = 0 on Γe
}

, (2.31c)

U =
{

E ∈ Hcurl(Ω) : n× E = n× E0 on Γe
}

, (2.31d)

V0 =
{

φ ∈ H1(Ω) : φ = 0 on Γe
}

, (2.31e)

V = V0 (2.31f)

where

Hcurl(Ω) =
{

E ∈ (L2(Ω))3 : curl E ∈ (L2(Ω))3}, (2.31g)

H1(Ω) =
{

V ∈ L2(Ω) : grad V ∈ L2(Ω)
}

(2.31h)

are the spaces of functions with a well-defined curl and gradient, respectively.

V and V0 are only identical because V is assumed zero on Γe. In general, these spaces would differ
by inhomogeneous Dirichlet boundary values for V.

In the classical formulation the boundary value problem that V implicitly satisfies had been
derived by taking the divergence of the augmented vector Helmholtz equation. The equivalent
procedure for the weak form consists of choosing particular test functions Φ = grad φ, φ ∈ V0.
This choice is valid since grad φ ∈ U0. Combining the variational integrals (2.31a) with Φ = grad φ

and (2.31b) results in the following boundary value problem:

Search V ∈ V such that∫
Ω

grad φ · ((σ − iωε) grad V) d3r− iω
∫
Ω

φγV d3r

−
∫
Γh

(
n× grad φ

)
· (λ (n× grad V)) d2r = 0 (2.32)

for all φ ∈ V0.
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2.4 A change of coordinates

The integrals
∫

Σi,j
grad φ · j f d2r and

∫
Γh

grad φ · j f d2r which constitute potential source terms have
been dropped because they express the weak form of the surface divergence which vanishes
by assumption on j f , namely, n · j f and divΓh j f = 0. The variational integral (2.32) is the weak
equivalent of boundary value problem (2.19). This could be shown by partial integration using
Green’s theorem (A.2).

As pointed out in the previous section, the mixed boundary value problem has been devised
such that it produces a symmetric pattern. This pattern can be observed from the variational
form (2.31a), (2.31b). For the integrals involving pairs of vector or scalar functions, (Φ, E) and
(φ, V), symmetry means that Φ can be interchanged with E and φ with V without changing the
integral. This holds except for complex conjugation if the constitutive parameter tensors are
symmetric. Similarly, all integrals involving the mixed pair (Φ, grad V) in (2.31a) have, except for
complex conjugation, identical counterparts in (2.31b) which involve the mixed pair (grad φ, E).

2.4 A change of coordinates

Not least seen from an æsthetic point of view the natural choice of time as the fourth coordinate
is not very satisfactory. Space and time coordinates have different physical dimensions, the SI
units meter and second (Bureau international des poids et mesures (BIPM), 2006). Along with this
difference, the numerical values of the coordinates involved may differ by orders of magnitude.
This can be expressed by the fundamental relationship between space and time x = ct of a wave
travelling with speed c which is in the order of 3× 108 m/s. The numerical values can be made
more equal and the physical units identical if vacuum wavelength is used a the fourth coordinate
instead of time. Maxwell’s equations are rewritten using the following transform

t 7→ λ = ct (2.33)

where c = 299 792 458 m/s is the vacuum speed of light. A list of corresponding physical quantities
is given in Table 2.2. This coordinate transform preserves the electric and magnetic field, current
density and electric conductivity. All other quantities change both their magnitude and their unit.
Working with either set is theoretically equivalent. From the numerical perspective the wavelength
set might be advantageous as it scales all four coordinates to the same level.

As an example consider the two governing partial differential equations of this work with
vacuum constitutive parameters

curl
(
µ−1

0 curl E
)
−ω2ε0E = 0, (2.34a)

iω div ε0E = 0 (2.34b)

and their plane wave solution E ∝ exp(ik · r) where |k|2 = ω2µ0ε0 = k2
0. Analyzing the magnitude

of the terms of the partial differential equations reveals that∣∣curl
(
µ−1

0 curl E
)∣∣ = k2

0/µ0 = ω2ε0, (2.35a)∣∣ω2ε0E
∣∣ = ω2ε0 and (2.35b)
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Chapter 2 Boundary value problems

time wavelength
quantity unit quantity unit

t s λ = ct m
ω 1/s k0 = ω/c 1/m
µ0 Vs/Am Z0 = cµ0 V/A
ε0 = 1/(c2µ0) As/Vm Y0 = cε0 = 1/Z0 A/V

ε = ε0εr As/Vm ε̃ = cε = Y0εr A/V
µ = µ0µr Vs/Am µ̃ = cµ = Z0µr V/A
σ A/Vm σ̃ = σ A/Vm

E V/m Ẽ = E V/m
H A/m H̃ = H A/m
D As/m2 D̃ = cD A/m
B Vs/m2 B̃ = cB V/m
j A/m2 j̃ = j A/m2

ρ As/m3 ρ̃ = cρ A/m2

Table 2.2: Equivalent physical quantities for Maxwell’s equations using time or wavelength as the
fourth coordinate.

∣∣iω div ε0E
∣∣ = ωk0ε0, (2.35c)

i. e., the first and second partial differential equation differ by a factor of ω/k0 = c. This potentially
leads to problems if the system of partial differential equations is discretized and the resulting
system of linear equations is solved numerically. If, however, the wavelength set of equations is
used, the partial differential equations appear in the same order of magnitude. The three terms of

curl
(
Z−1

0 curl E
)
− k2

0Y0E = 0 and (2.36a)

ik0 div Y0E = 0 (2.36b)

evaluate to the same value,∣∣curl
(
Z−1

0 curl E
)∣∣ = k2

0/Z0 = k2
0Y0, (2.37a)∣∣k2

0Y0E
∣∣ = k2

0Y0 and (2.37b)∣∣ik0 div Y0E
∣∣ = k2

0Y0. (2.37c)

2.5 Anisotropy

In Chapter 4 the system of Maxwell’s equations will be extended to the so-called perfectly matched
layer (PML) equations with anisotropic constitutive parameters. Therefore, it is instructive to make
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2.5 Anisotropy

a couple of remarks on anisotropic media. It is well known (Landau and Lifschitz, 1980) that a
beam of light that traverses optically anisotropic crystals, such as quartz or calcite, is split into two
polarizations with different refractive indices/phase velocities (birefringence). The ordinary ray
is polarized perpendicular to the axis of anisotropy, the extraordinary ray parallel. Let µ, ε and σ

be symmetric tensors of full rank, homogeneous in R3. A plane wave is a solution of source free
Maxwell’s equations

curl
(

µ−1 curl E
)

+ iω(σ − iωε)E = 0, (2.38a)

div(σ − iωε)E = 0 (2.38b)

which can be expressed by

E = Ê eikn·r (2.39)

where the unit vector n = (nx, ny, nz) defines the propagation direction. Insertion of the plane wave
solution (2.39) into Maxwell’s equations reduces the differential operators to vector products,

curl E = ikn× E, (2.40a)

div(σ − iωε)E = n · (σ − iωε)E (2.40b)

where, of course, σ and ε have to be assumed constant. Equations (2.40b) and (2.38b) reveal that the
electric current density and the electric flux density are polarized perpendicular to the propagation
direction. The same holds for the magnetic flux density which can be shown by taking the dot
product of n with equation (2.40a),

n · B = iωn · curl E = −ωkn× E = 0 (2.41)

The magnetic field can be derived by combining Faraday’s law and equation (2.40a),

H = (iωµ)−1 curl E = k (ωµ)−1 n× E. (2.42)

This relation forms the basis of the absorbing boundary condition (2.10c) introduced in section 2.1
which is just the cross product of n with equation (2.42).

In order to determine the parameters Ê and k in equation (2.39) it is useful to write the vector
cross product as a matrix-vector product

n× E = NE (2.43a)

where

N =

 0 −nz ny

nz 0 −nx

−ny nx 0

 . (2.43b)
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Figure 2.4: Projection of the wavenumbers of an arbitrary anisotropic medium on the unit sphere
as a function of the direction of propagation.

The matrix N is skew symmetric, its rank is 2 and its null space is spanned by n, i. e., Nn = 0 and
nT N = 0. Now, inserting the plane wave solution (2.39) into equation (2.38a) yields an eigenvalue
problem

AÊ = λÊ (2.44a)

in terms of eigenvectors Ê and eigenvalues λ = iω/k2 where

A = (σ − iωε)−1Nµ−1N. (2.44b)

Since An = 0, λ1 = 0 is an eigenvalue with a corresponding eigenvector Ê1 = αn where α ∈ C is
an arbitrary constant. Equation (2.38b) further requires that

nT(σ − iωε)Ê = 0. (2.45)

This leads to α = 0, i. e., the eigenpair (λ1, Ê1) is trivial. The other two eigenvalues λ2 and λ3

are non-trivial. Their corresponding eigenvectors can be shown to satisfy equation (2.45) by
left-multiplying equation (2.44a) with nT(σ − iωε):

λnT(σ − iωε)Ê = nT(σ − iωε)AÊ

= nT(σ − iωε)(σ − iωε)−1Nµ−1NÊ

= nT Nµ−1NÊ

= 0. (2.46)

In general, λ2 and λ3 need not be equal and depend on the propagation direction n (Figure 2.4).
All eigenvalues can be obtained from equation (2.44a) by setting the determinant of A− λI equal
to zero. This yields a cubic polynomial in λ. The first root λ1 = 0 separates; λ2 and λ3 are the
solutions of a quadratic equation. If λ2 6= λ3, two distinct plane wave solutions exist that have
different linear polarizations defined by the two corresponding eigenvectors Ê2 and Ê3. If λ2 = λ3,
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2.5 Anisotropy

any linear combination of Ê2 and Ê3 is a plane wave solution where the polarization can be linear
in an arbitrary direction or elliptical.

As a special case consider constitutive parameters that follow the same anisotropy pattern. Let
µ = µM−1, ε = εM−1 and σ = σM−1 where M ∈ C3×3 is a symmetric tensor of full rank. Then the
matrix A reads

A =
1

µ(σ− iωε)
MN MN (2.47)

In order to analyze its eigenvalues it is sufficient to consider an arbitrary tensor M and a particular
direction of propagation n or the corresponding matrix N. Let n = (0, 0, 1)T. Then a straightforward
calculation yields

det(A− λI) =
1

µ3(σ− iωε)3 det(MN MN − λ∗ I)

= −λ∗
(
λ∗ + m11m22 −m2

12
)2

= 0 (2.48)

where λ∗ = λµ(σ− iωε). Therefore, A has one trivial eigenvalue

λ1 = 0 (2.49a)

and a duplicate eigenvalue

λ2 = λ3 =
m2

12 −m11m22

µ(σ− iωε)
. (2.49b)

This means that a plane wave travels within this special medium with speed and damping irre-
spective of its polarization. However, the wavenumber depends on the direction of propagation as
for another n = (1, 0, 0)T the duplicate eigenvalue is

λ2 = λ3 =
m2

23 −m22m33

µ(σ− iωε)
. (2.49b*)
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Chapter 3

The finite element method for electromagnetic wave
propagation – The discrete problem

The boundary value problems of electromagnetic wave propagation which have been described in
the previous chapter can be solved analytically only in very simple cases. In general, numerical
methods are required to compute an approximate solution, preferably to a desired accuracy. Like
other numerical methods the finite element method reduces the boundary value problem to a
system of linear equations. Its solution gives an approximate solution to the original boundary
value problem. The quality of the numerical solution ought to be checked by quantifying the
discretization and solution errors in order to iteratively improve the approximation until an desired
accuracy is obtained.

The finite element method approximates the function space from which the solution is taken.
Therefore, the first section of this chapter will introduce the particular finite element spaces
and types which are used to discretize the physical quantities occurring in Maxwell’s equations.
The second section describes the steps involved in reducing the boundary value problems from
Chapter 2, the continuous case, to a system of linear equations, the discrete problem. An a posteriori
error estimator is briefly summarized in section 3.3. Implementation issues of the finite element
solver are outlined in section 3.4. Finally, the properties of the coefficient matrix of the system of
linear equations are examined in section 3.5. In particular, the effect of the E-field and the E-V
formulations on the matrix condition number for varying frequencies will be shown.

The finite element method with all its technical details is a too vast subject to be described in full
length here. For a comprehensive description the reader is referred to standard textbooks (Ciarlet,
1978; Girault and Raviart, 1986; Jin, 1993; Monk, 2003). Moreover, an existing finite element library
has served as a basis for further software development (section 3.4). Therefore, implementation
details of particular finite element types are only of marginal concern and will be skipped. This
chapter will consequently give but a brief overview over the main ingredients of the finite element
method with particular emphasis on the application to Maxwell’s equations.

3.1 Finite elements for Maxwell’s equations

One, if not the, characteristic feature of the finite element method is the fact that it approximates
function spaces. Two of these function spaces have been introduced in Chapter 2 where the electric
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Chapter 3 The finite element method

u H·(Ω) χi P·(Ω) uh

V H1(Ω) φi P1(Ω) Vh

E, H Hcurl(Ω) Φi Pcurl(Ω) Eh, Hh

B, D, j Hdiv(Ω) Ψi Pdiv(Ω) Bh, Dh, jh
ρ H0(Ω) ψi P0(Ω) ρh

Table 3.1: Summary of symbols used to denote the electromagnetic fields, the function spaces they
are chosen from and their corresponding finite element basis functions. The symbols in the head
line are used as a shorthand notation for the symbols in either of the lines below.

field was chosen from the space of functions with well-defined curl and the auxiliary scalar field
from the space of functions with well-defined gradient. The rationale behind this choice was the
objective to make the integrals of the variational problems well-defined. As a nice byproduct
of interpreting the differential equations in the weak sense the continuity conditions have been
absorbed into the function spaces. Elements of Hcurl(Ω) have continuous tangential components
and elements of H1(Ω) are globally continuous.

There is a pattern hidden behind this choice of function spaces which can be extended to the
other electromagnetic field quantities. For Maxwell’s equations to be well-defined in the weak
sense the fields are chosen according to

V ∈ H1(Ω), H1(Ω) =
{

u ∈ L2(Ω) : grad u ∈ L2(Ω)
}

, (3.1a)

E, H ∈ Hcurl(Ω), Hcurl(Ω) =
{

u ∈ (L2(Ω))3 : curl u ∈ (L2(Ω))3}, (3.1b)

B, D, j ∈ Hdiv(Ω), Hdiv(Ω) =
{

u ∈ (L2(Ω))3 : div u ∈ (L2(Ω))3}, (3.1c)

ρ ∈ H0(Ω), H0(Ω) =
{

u ∈ L2(Ω)
}

. (3.1d)

Two additional function spaces have been introduced: The space of functions with well-defined
divergence Hdiv(Ω) is used to describe flux densities. H0(Ω) ≡ L2(Ω) describes discontinuous
scalar fields. While elements of Hdiv(Ω) have a continuous normal component, elements of H0(Ω)
are not subject to any continuity conditions.

For brevity, the short hand notation H·(Ω) will be used in the following to denote one of the
spaces H1(Ω), Hcurl(Ω), Hdiv(Ω) and H0(Ω). Similarly, the corresponding fields will be denoted
by u, irrespective of u representing a scalar or a vector. This is summarized in the first two columns
of Table 3.1.

The four function spaces are complex Hilbert spaces. As such they are equipped with the inner
products

(u, v)H1(Ω) =
∫
Ω

u v d3r +
∫
Ω

grad u · grad v d3r, (3.1e)
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V
grad−−−→ E, H curl−−−→ B, D, j div−−−→ ρ

∈ ∈ ∈ ∈

H1(Ω)
grad−−−→ Hcurl(Ω) curl−−−→ Hdiv(Ω) div−−−→ H0(Ω)

⊂ ⊂ ⊂ ⊂

P1(Ω)
grad−−−→ Pcurl(Ω) curl−−−→ Pdiv(Ω) div−−−→ P0(Ω)

∈ ∈ ∈ ∈

Vh
grad−−−→ Eh, Hh

curl−−−→ Bh, Dh, jh
div−−−→ ρh

Figure 3.1: Framework of function spaces and physical fields for Maxwell’s equations excluding
boundary conditions.

(u, v)Hcurl(Ω) =
∫
Ω

u · v d3r +
∫
Ω

curl u · curl v d3r, (3.1f)

(u, v)Hdiv(Ω) =
∫
Ω

u · v d3r +
∫
Ω

div u div v d3r, (3.1g)

(u, v)H0(Ω) =
∫
Ω

u v d3r (3.1h)

and norms

‖u‖H·(Ω) =
(
(u, u)H·(Ω)

)1/2
. (3.1i)

Recalling the variational problems of Chapter 2 the fields were actually chosen from subspaces of
H·(Ω) which additionally take into account the essential boundary conditions. In order to illustrate
the general concept of the finite element method it is sufficient to consider just the spaces H·(Ω).
The following discussion thus strictly applies only to the case of an infinite domain Ω or a finite
domain with natural boundary conditions. The technical details involved in treating essential
boundary conditions are left to more comprehensive mathematical works on the finite element
method.

The four classes of fields (3.1a) to (3.1d) can be logically arranged in a sequence such that its
entries are connected by the three differential operators gradient, curl and divergence apart from a
factor of ±iω. This is schematically depicted in the topmost line of Figure 3.1. The next line shows
the sequence of the corresponding function spaces which are also linked by the three differential
operators. Their operation is at first interpreted just as a mapping from one space to the other.
At a closer look, the sequence turns out to be a so-called exact sequence. In an exact sequence the
image of one operator equals the kernel of the following operator. This translates in particular
to the well-known vector identities curl grad u ≡ 0 for all u ∈ H1(Ω) and div curl u ≡ 0 for all
u ∈ Hcurl(Ω).
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Chapter 3 The finite element method

The transition from the upper half of Figure 3.1 to the lower half is the step that the finite
element method takes. The infinite dimensional function spaces H·(Ω) are approximated by
finite dimensional subspaces which will be denoted by P·(Ω). While an infinite dimensional
function space is intractable to numerical computation the finite element spaces P·(Ω) provide the
framework within which a numerical approximation to the solution of the variational problems
of Chapter 2 can practically be computed. In particular, the finite element space is spanned by a
finite number of basis functions. The basis functions of P1(Ω), Pcurl(Ω), Pdiv(Ω) and P0(Ω) will
respectively be denoted by the symbols φi, Φi, Ψi and ψi (Table 3.1).

Members of the finite element spaces P·(Ω) are equipped with a subscript indicating the depen-
dency on some discretization parameter h. h for example denotes the smallest edge length or the
diameter of the inscribed sphere of the smallest element of the geometric decomposition of Ω into
elements, shortly the mesh.

The finite element spaces P·(Ω) are constructed such that (a) they are subspaces of H·(Ω), i. e.,
they satisfy the same continuity conditions, (b) their members are piecewise polynomial (hence
symbol P), (c) their basis functions have a small support, and (d) they form an exact sequence.
Conditions (a) and (b) give rise to the following definition:

P1(Ω) =
{

uh ∈ H1(Ω) : uh|K polynomial of degree p < ∞
}

(3.2a)

Pcurl(Ω) =
{

uh ∈ Hcurl(Ω) : uh|K polynomial of degree p < ∞
}

(3.2b)

Pdiv(Ω) =
{

uh ∈ Hdiv(Ω) : uh|K polynomial of degree p < ∞
}

(3.2c)

P0(Ω) =
{

uh ∈ H0(Ω) : uh|K polynomial of degree p < ∞
}

(3.2d)

The shorthand notation uh|K denotes the restriction of uh onto element K. The notion of an element
needs to be made more precise.

As the name of the method suggests, the function spaces P·(Ω) are constructed from building
blocks which are called finite elements. According to Ciarlet (1978), a finite element can be defined
as the triple (K, P·(K), A) which consists of

• a geometric domain K, e. g., a tetrahedron or a hexahedron,

• a space of functions P·(K) on K, e. g., polynomials in the three spatial variables x, y, z of
degree 1, 2, etc., and

• a set of linear functionals {Ai}n
i=1 which are called degrees of freedom.

If the element is unisolvent, any function uh ∈ P·(K) can be written as

uh(r) =
n

∑
i=1
Ai(u) χi(r) (3.3)

for r ∈ K where {χi}n
i=1 is a basis of P·(K) and n = dimP·(K). The degrees of freedom are the

linear coefficients of the basis function expansion of uh in P·(K). While the elements uh of the
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P1(Ω) × × × ×
Pcurl(Ω) × × ×
Pdiv(Ω) × ×
P0(Ω) ×

Table 3.2: Depending on the continuity requirements of the func-
tion space the degrees of freedom are associated with different
parts of an element. For example, the degrees of freedom of a
curl-conforming finite element are associated with either edges,
faces or volume, but not with vertices.

polynomial space P·(K) can be scalar or vector valued, the degrees of freedom are scalars in any
case. Note that unisolvence implies

Ai(χj) = δi,j (3.4)

for i, j = 1, . . . , n. The degrees of freedom are typically associated with one of the geometric
entities of an element, with either a vertex, an edge, a face or the volume. Depending on which
function space is considered, some entities cannot be used in order to define the degrees of freedom
unambiguously. This is summarized in Table 3.2.

Two major classes of degrees of freedom are commonly used. They realize the mapping of a
function uh ∈ P·(K) onto the set of complex numbers C either by evaluating uh pointwise or by
computing a weighted integral of uh over the geometric entity. The second choice involves one-,
two-, or three-dimensional integrals performed along an edge, across the face or over the volume
of the element. The degree of freedom thus defined is sometimes called a moment (Nédélec, 1980).

The degrees of freedom of the vector finite element space Pcurl(K) reduce the vector field uh to
a scalar value by taking the dot product with the tangential vector along an edge or with one of
the two tangential vectors of a face. Similarly, the dot product of uh with the face normal vector
is formed for uh ∈ Pdiv(K). Interior degrees of freedom, i. e., those associated with the volume,
reduce the vector field uh to a scalar by computing the dot product with one of the three linearly
independent vectors spanning the R3.

The global function space P·(Ω) is basically constructed by patching together finite elements and
respecting global continuity conditions. Therefore, the domain Ω is subdivided into ne elements
such that

⋃ne
k=1 Kk = Ω and

⋂ne
k=1 Kk = ∅. Denote the basis functions and degrees of freedom local

to element Kk by {χk
ik
}nk

ik=1 and {Ak
ik
}nk

ik=1 and the global counterparts by {χi}n
i=1 and {Ai}n

i=1. Now,
the crucial step is the design of a discrete mapping between local indices ik = 1, . . . , nk and global
indices i = i(k, ik) = 1, . . . , n such that

• the local basis function χk
ik

forms part of the global basis function χi, i. e., χi(r) = χk
ik
(r) for

r ∈ Kk, k = 1, . . . , ne,

• the global basis functions satisfy the global continuity conditions, and

• Ai = Ak
ik

.
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The mapping (ik, k) 7→ i is surjective and, in general, not bijective. If more than one element
contribute to a global basis function there are several local indices ik1 , ik2 , . . . which map to the
same global index i. This property has an important consequence: If the global degrees of freedom
are to be defined unambiguously, the local degrees of freedom which are mapped to the same
global degree of freedom need to evaluate to the same value. For this reason, they cannot be defined
on all geometric entities of an element as shown in Table 3.2.

Assuming that the elements are unisolvent and the degrees of freedom have been defined
unambiguously, any function uh ∈ P·(Ω) can be expressed by

uh(r) =
n

∑
i=1
Ai(uh) χi(r) (3.3*)

for all r ∈ Ω where, now, {χi}n
i=1 is the basis of P·(Ω) and n = dimP·(Ω). uh and χi can be scalar

or vector valued functions according to Table 3.1.
The linear functionals Ai are not restricted to functions from P·(Ω) but can also be applied to

any function u ∈ H·(Ω). Then,

uh(r) =
n

∑
i=1
Ai(u) χi(r) (3.3†)

defines an interpolant of u ∈ H·(Ω) in P·(Ω), i. e., u is sampled by the n degrees of freedom Ai,
i = 1, . . . , n, and interpolated by piecewise polynomial functions χi. Equation (3.3†) can alterna-
tively be interpreted as a projection of function u from H·(Ω) onto its subspace P·(Ω). The inter-
polant uh is more regular than the original u because uh is piecewise polynomial, uh|K ∈ C∞(K).

The last design criterion which needs to be discussed is the exact sequence property. As an
example, consider the mixed problem of Chapter 2 and the approximation of Vh ∈ P1(Ω) and
Eh ∈ Pcurl(Ω). On the one hand, P1(Ω) has to be chosen large enough such that its gradient
contains the kernel of the curl-operator in Pcurl(Ω). On the other hand, P1(Ω) has to be chosen
small enough such that its gradient is contained in the kernel of the curl-operator in Pcurl(Ω). This
property will be demonstrated by an example in section 3.4.

The nature of the vector finite element spaces Pcurl(Ω) and Pdiv(Ω) reveals a strange and
unexpected behavior which deserves some extra comments. Due to the exact sequence property of
those two function spaces the magnetic flux Bh computed from a finite element approximation of
Eh ∈ Pcurl(Ω) by Bh = (iω)−1 curl Eh is an element of Pdiv(Ω), i. e., Bh satisfies the correct physical
continuity conditions. In contrast to that, the complex electric current density j̃h = (σ + iωε)Eh

is not guaranteed to possess continuous normal components, i. e., j̃h 6∈ Pdiv(Ω). This is even
and especially true for the case of homogeneous and isotropic constitutive parameters when
j̃h = (σ + iωε)Eh ∈ Pcurl(Ω) [sic]. Similarly, the magnetic field computed by Hh = (iωµ)−1 curl Eh

6∈ Pcurl(Ω). In order to obtain j̃h ∈ Pdiv(Ω) and Hh ∈ Pcurl(Ω) either a variational formulation in
terms of the magnetic field analogous to those given in Chapter 2 has to be solved or the quantities
computed using the constitutive laws have to be projected onto the desired function spaces. The
second way has been used by Beck and Hiptmair (1999) to devise an error indicator (section 3.3).
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3.1 Finite elements for Maxwell’s equations

0

1φi

Figure 3.2: Part of a tetrahedral mesh and a
piecewise linear basis function φi with well-
defined gradient which is associated with the
common vertex of the eight tetrahedra. The
support of φi only consists of the eight tetra-
hedra shown.

Before turning to the finite element solution of the variational problems of Chapter 2, basis
functions for P1(Ω), Pcurl(Ω), Pdiv(Ω) and P0(Ω) need to be exemplified and their interpolation
properties be discussed.

The Lagrange element is the standard finite element type which is used to approximate functions
from H1(Ω), i. e., scalar functions which are globally continuous. Its name is due to the fact that the
projection of a function u ∈ H1(Ω) onto P1(K) is exactly the Lagrange interpolating polynomial of
u on K. In the case of the linear Lagrange element, the basis functions of P1(Ω) can be associated
with the vertices of the mesh. An example is shown in Figure 3.2. φi varies linearly between one at
the vertex shared by all the eight tetrahedra shown and zero at the opposite faces. φi is continuous
at the interfaces between the elements and vanishes on all other than the eight tetrahedra shown.
The degree of freedomAi corresponding to basis function φi just evaluates the function it is applied
to at vertex i.

Vector finite elements have been invented in order to meet the peculiar continuity requirements
of vector fields from Hcurl(Ω) and Hdiv(Ω). They are known as Nédélec elements (Nédélec, 1980,
1986), edge or Whitney elements (Bossavit, 1998). The denomination edge element strictly applies
only to the linear curl-conforming vector element whose degrees of freedoms are the tangential
component of the field along each edge of the element. Application of differential geometry
arguments to physical problems by Whitney (1957) lead to the name Whitney element. The
mathematical foundation for the families of curl- and divergence-conforming finite elements used
today was laid by Nédélec in 1980. The practical problem of constructing sets of higher order
polynomials in Pcurl(K) and Pdiv(K) have been addressed in a number of later works (Graglia,
Wilton, and Peterson, 1997; Amrouche, Bernardi, Dauge, and Girault, 1998; Andersen and Volakis,
1998; Webb, 1999; Hiptmair, 2001, 2002).

Examples of basis functions from the lowest order curl- and divergence-conforming elements are
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shown in Figures 3.3 and 3.5. In this case of a linear polynomial, the basis functions can respectively
be associated with the common edge and face of neighboring elements. The corresponding degrees
of freedom reduce to the tangential field component along the edge midpoint and the normal
field component at the face center, respectively, which are multiplied by the edge length and face
area if the degrees of freedom are defined as moments. Figures 3.4 and 3.6 illustrate that only
the tangential or normal component is continuous at element interfaces, as required by the global
continuity conditions. The other vector component is not forced to be continuous and will, except
for special cases, be discontinuous. As a consequence, any function uh ∈ Pcurl(Ω) is multi-valued if
evaluated on vertices or edges shared by more than one element because its normal component
depends on the element the field is actually evaluated on. Similarly, any function uh ∈ Pdiv(Ω) is
multi-valued if evaluated on vertices, edges or faces shared by more than one element because its
tangential components depend on the element the field is actually evaluated on.

From a practical point of view the field and, possibly, derived quantities like its derivate are
often to be evaluated at special points of interest within Ω. Then, the question naturally turns
up if it is advisable to place these points in the interior of elements in order to circumvent the
problem of multi-valued fields at element interfaces. Because the field components are distributed
over the element interpolation is always required to compute the complete field vector. The effect
of this interpolation procedure is demonstrated in Figures 3.7 and 3.8. Two instances of a vector
field are projected onto the finite element spaces Pcurl(Ω) and Pdiv(Ω) according to equation (3.3†).
The finite element spaces are built from four hexahedral elements with piecewise linear basis
functions. In order to simplify visualization only a horizontal slice is shown where the vertical field
components are assumed to be zero. The degree of freedom Ai evaluates u at point ri. Therefore,
they are best characterized by the product of Ai{u} with the corresponding basis function Φi or Ψi

evaluated just at ri. The interpolant uh can then be constructed by linear interpolation between the
field components on parallel edges and superposition of orthogonal field components.

For the examples shown, the interpolation error is smaller at the midpoint of each cell than at the
points on the element boundaries. Note that at point ri where the degree of freedom Ai is defined
the error is by construction orthogonal to the basis function Φi(ri) or Ψi(ri).

Comparison with the Yee-cell

If hexahedral elements of lowest degree, a piecewise linear approximation of the electric field
Eh ∈ Pcurl(Ω) and of the magnetic flux density Bh ∈ Pdiv(Ω) is used, the corresponding degrees
of freedom show a remarkable similarity with the famous Yee cell (Yee, 1966). The Yee cell is
a particular staggered grid arrangement of field components which is used to derive a finite
difference discretization of Maxwell’s equations. The electric field and magnetic flux density vector
components are not considered at one single point but distributed over the edges and faces of
the cell as shown in Figure 3.9. Placing the tangential electric field components at the midpoints
of edges and the normal magnetic flux density components at the centers of faces adequately
reproduces the correct physical continuity conditions. At the same time, the finite difference
discretization of the curl-operator is easily derived. If the degrees of freedom of the finite element
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approximation of lowest order are defined pointwise, they coincide with the same components of
the fields at exactly the same locations within the cell. Unlike the finite difference method where
the computation of field values at arbitrary points r ∈ Ω requires the ad hoc definition of a suitable
interpolation operator, the finite element method provides this interpolation per construction. The
i-th degree of freedom/field component associated with the common edge or face of adjacent
elements contributes to the interpolated field with a weight defined by the corresponding i-th finite
element basis function. Two example basis functions which would be used for a staggered grid like
in Figure 3.9 are shown in Figures 3.10 and 3.11. Φi is the basis/weight function for the tangential
electric field component defined on the common edge of the four hexahedra in Figure 3.10; Ψi is
the basis/weight function for the normal magnetic flux density component defined on the common
face of the two hexahedra in Figure 3.11.

A discontinuous element is required to approximate scalar functions from H0(Ω). The lowest
order basis consists of ne functions where ne is the number of elements and ψi(r) = δi,j for r ∈ Kj,
i, j = 1, . . . , ne. Note that the lowest order basis functions of the previous types had been piecewise
linear. The discontinuous element only allows for degrees of freedom associated with the element
volume. This element is not of further interest and only mentioned here to complete the description
of the function space and finite element complex for the Maxwell system.
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Φi

Figure 3.3: Part of a tetrahedral mesh and a
piecewise linear, curl-conforming basis func-
tion Φi which is associated with the common
edge of the four tetrahedra. The support of
Φi only consists of the four tetrahedra shown.

(t ·Φi) t

Figure 3.4: Tangential component of Φi with
respect to the edge it is associated to. The
tangential component is continuous and con-
stant along the edge for a piecewise linear,
curl-conforming basis function. t denotes the
unit edge tangential vector.

Ψi

Figure 3.5: Part of a tetrahedral mesh and a
piecewise linear, div-conforming basis func-
tion Ψi which is associated with the common
face between the two tetrahedra. The sup-
port of Ψi only consists of the two tetrahedra
shown.

(n ·Ψi) n

Figure 3.6: Normal component of Ψi with re-
spect to the face it is associated to. The
normal component is continuous and con-
stant on the face for a piecewise linear, div-
conforming basis function. n denotes the unit
face normal vector.
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(a) u ∈ Hcurl(Ω) (b) Ai(u) Φi(ri) (c) uh ∈ Pcurl(Ω) (d) u− uh

Figure 3.7: Projection of two instances of a vector field u ∈ Hcurl(Ω) (a), first and second line, onto
a curl-conforming finite element space Pcurl(Ω) with linear vector elements. (b) Degrees of
freedom Ai(u) Φi(ri). (c) Interpolant uh(r) = ∑iAi(u)Φi(r) (blue) and original vector field u
(green). (d) Interpolation error u− uh. The arrows of each subplot are scaled individually.
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(a) u ∈ Hdiv(Ω) (b) Ai(u) Ψi(ri) (c) uh ∈ Pdiv(Ω) (d) u− uh

Figure 3.8: Projection of two instances of a vector field u ∈ Hdiv(Ω) (a), first and second line, onto
a divergence-conforming finite element space Pdiv(Ω) with linear vector elements. (b) Degrees
of freedom Ai(u) Ψi(ri). (c) Interpolant uh(r) = ∑iAi(u)Ψi(r) (blue) and original vector field u
(green). (d) Interpolation error u− uh. The arrows of each subplot are scaled individually.
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Figure 3.9: Location of field components within a Yee
cell. If degrees of freedom of the linear curl/divergence-
conforming finite element are defined pointwise, they re-
duce to exactly the same values.

Figure 3.10: Part of a hexahedral mesh and a piecewise linear,
curl-conforming basis function Φi which is associated with
the common edge of the four hexahedra. The support of Φi

only consists of the four hexahedra shown.

Figure 3.11: Part of a hexahedral mesh and a piece-
wise linear, div-conforming basis function Ψi

which is associated with the common face be-
tween the two hexahedra. The support of Ψi

only consists of the two hexahedra shown.

43



Chapter 3 The finite element method

3.2 Derivation of the system of linear equations

A numerical approximation of the solution of the variational problems (2.27) and (2.31) or, equiva-
lently, of the classical boundary value problems (2.12) and (2.18) is obtained by the method of finite
elements. The finite element method reduces the boundary value problem to a system of linear
equations. Its derivation can be logically subdivided into four steps which are described separately
in the following four subsections.

3.2.1 Geometric decomposition

The domain Ω is decomposed into simple geometrical elements, e. g., tetrahedra or hexahedra.
If Ω consists of several subdomains the elemental decomposition has to respect the subdomain
interfaces. Standard mesh generators create tetrahedral or hexahedral meshes with planar (linear)
elements. Curved interfaces or boundaries are then approximated by piecewise linear faces. This
geometrical approximation will introduce errors to the numerical solution which can be reduced
by refining the mesh at curved features. Another possibility is the use of curved elements which
approximate a curved geometry by a quadratic polynomial.

In general, the geometric decomposition produces subdomains Ωi;h, boundaries Γe;h and Γh;h as
well as interfaces Σi,j;h which depend on the grid size h and do not necessarily coincide with the
original domains, boundaries and interfaces. For ease of notation the symbols of the continuous
case will be used for the discrete case throughout the remainder of this chapter. It should be kept in
mind that this is only valid for polyhedral subdomains, i. e., subdomains bounded by planar faces.

3.2.2 Finite dimensional function spaces

The trial and test functions of the continuous boundary value problems (2.27) and (2.31) are chosen
from subspaces of the two function spaces Hcurl(Ω) and H1(Ω). The fundamental step of the finite
element method is to approximate these infinite dimensional function spaces by finite dimensional
function spaces Pcurl(Ω) and P1(Ω) of elementwise polynomial functions. Consequently, the
spaces of trial and test functions U , V and U0, V0 also become finite dimensional and will be
supplied by a subscript h. Now, the variational problem is stated in terms of functions from Uh, Vh

and Uh,0, Vh,0.

The E-field formulation

Search Eh ∈ Uh such that∫
Ω

curl Φh ·
(

µ−1 curl Eh

)
d3r− iω

∫
Ω

Φh · ((σ − iωε) Eh) d3r

+ iω
∫
Γh

(
n×Φh

)
· (λ (n× Eh)) d2r
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= iω
∫
Ω

Φh · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φh · j f d2r− iω
∫
Γh

Φh ·
(

j f + n× H0
)

d2r (3.5a)

for all Φh ∈ Uh,0. The spaces of test and trial functions are defined by

Uh,0 = {Φh ∈ Pcurl(Ω) : n×Φh = 0 on Γe} , (3.5b)

Uh = {Eh ∈ Pcurl(Ω) : n× Eh = n× E0 on Γe} (3.5c)

where

Pcurl(Ω) =
{

Eh ∈ (L2(Ω))3 : curl Eh ∈ (L2(Ω))3, Eh|K polynomial
}

(3.5d)

is the space of elementwise polynomial functions with a well-defined curl.

The E-V formulation

Search Eh ∈ Uh and Vh ∈ Vh such that∫
Ω

curl Φh ·
(

µ−1 curl Eh

)
d3r− iω

∫
Ω

Φh · ((σ − iωε) Eh) d3r

+
∫
Ω

Φh · ((σ − iωε) grad Vh) d3r + iω
∫
Γh

(
n×Φh

)
· (λ (n× Eh)) d2r

−
∫
Γh

(
n×Φh

)
· (λ (n× grad Vh)) d2r

= iω
∫
Ω

Φh · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φh · j f d2r− iω
∫
Γh

Φh ·
(

j f + n× H0
)

d2r (3.6a)

for all Φh ∈ Uh,0 and∫
Ω

grad φh · ((σ − iωε)Eh) d3r−
∫
Ω

φhγVh d3r−
∫
Γh

(
n× grad φh

)
· (λ(n× Eh)) d2r

= −
∫
Ω

grad φh · js d3r +
∫
Γh

grad φh · (n× H0) d2r (3.6b)

for all φh ∈ Vh,0. The spaces of test and trial functions are defined by

Uh,0 =
{

Φh ∈ Pcurl(Ω) : n×Φh = 0 on Γe
}

, (3.6c)

Uh =
{

Eh ∈ Pcurl(Ω) : n× Eh = n× E0 on Γe
}

, (3.6d)

Vh,0 =
{

Vh ∈ P1(Ω) : Vh = 0 on Γe
}

, (3.6e)

Vh = Vh,0 (3.6f)

where

Pcurl(Ω) =
{

Eh ∈ (L2(Ω))3 : curl Eh ∈ (L2(Ω))3, Eh|K polynomial
}

, (3.6g)
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P1(Ω) =
{

Vh ∈ L2(Ω) : grad Vh ∈ L2(Ω), Vh|K polynomial
}

(3.6h)

are the spaces of elementwise polynomial functions with a well-defined curl and gradient, respectively.

3.2.3 Trial functions

A set of basis functions {Φi}N
i=1 is constructed for Pcurl(Ω). The electric field can then be expanded

as a linear combination of these basis functions,

Eh(r) =
N

∑
i=1

Ei Φi(r) . (3.7)

The basis functions are sorted such that the set {Φi}n
i=1, n ≤ N, forms a basis of Uh,0. Since

Pcurl(Ω) is finite dimensional, n ≤ N < ∞. The coefficients Ei of the remaining basis functions Φi,
i = n + 1, . . . , N, have to be fixed in order to ensure Eh ∈ Uh, i. e., to enforce the inhomogeneous
Dirichlet boundary conditions by choosing

Ei = Ai{E0} . (3.8)

Ai acts as a linear operator which maps the vector field E0(r) onto the scalar valued degrees of
freedom Ei, i = n + 1, . . . , N.

Similarly, a set of basis functions {φi}M
i=1 is constructed for P1(Ω). The scalar field can then be

expanded as a linear combination of these basis functions,

Vh(r) =
M

∑
i=1

Vi φi(r) . (3.9)

The basis functions are sorted such that the set {φi}m
i=1, m ≤ M, forms a basis of Vh,0, i. e., φi = 0

on Γe for i = 1, . . . , m. Since P1(Ω) is finite dimensional, m ≤ M < ∞. The coefficients Vi of the
remaining basis functions φi, i = m + 1, . . . , M, for which φi 6= 0 on Γe holds, have to be fixed in
order to ensure Vh ∈ Vh, i. e., to enforce the Dirichlet boundary condition. Vh = 0 on Γe requires
that Vi = 0, i = m + 1, . . . , M.

3.2.4 Test functions

The variational integrals (3.5a) and (3.6a) have to be tested against all functions Φh ∈ Uh,0, the
variational integrals (3.6b) against all functions φh ∈ Vh,0. This is equivalent to testing against all
basis functions Φj, j = 1, . . . , n and φj, j = 1, . . . , m, respectively, because {Φi}n

i=1 forms a basis of
Uh,0 and {φi}m

i=1 forms a basis of Vh,0.

The E-field formulation

Inserting the trial function (3.7) into the variational form (3.5a) and taking the j-th basis function Φj

as the test function produces the j-th row of a system of linear equations in terms of the unknown
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linear coefficients Ei,

n

∑
i=1

aj,i Ei = f j , j = 1, . . . , n , (3.10a)

where

aj,i =
∫
Ω

curl Φj ·
(

µ−1 curl Φi

)
d3r− iω

∫
Ω

Φj · ((σ − iωε) Φi) d3r

+ iω
∫
Γh

(
n×Φj

)
· (λ (n×Φi)) d2r , (3.10b)

f j = iω
∫
Ω

Φj · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φj · j f d2r− iω
∫
Γh

Φj ·
(

j f + n× H0
)

d2r

−
N

∑
i=n+1

aj,iEi . (3.10c)

The complete system of linear equations reads in matrix notation as follows
a1,1 . . . a1,n

...
...

an,1 . . . an,n




E1
...

En

 =


f1
...
fn

 (3.10d)

or, even shorter,

AE = f (3.10e)

with coefficient matrix A ∈ Cn×n and column vectors E, f ∈ Cn.
If the basis functions Φi, i = 1, . . . , n, are real valued and if the tensors µ, σ and ε are symmet-

ric, aj,i = ai,j holds for all i, j = 1, . . . , n, i. e., A = AT. Therefore, the coefficient matrix in (3.10d)
or (3.10e) is quadratic, complex and symmetric, but not Hermitian.

The E-V formulation

Inserting the trial functions (3.7) and (3.9) into the variational forms (3.6a) and (3.6b), and taking
the j-th basis function Φj and φj, respectively, as the test function produces the j-th row of a system
of linear equations in terms of the unknown linear coefficients Ei and Vi,

n

∑
i=1

a(Φ,Φ)
j,i Ei +

m

∑
i=1

a(Φ,φ)
j,i Vi = f (Φ)

j , j = 1, . . . , n , (3.11a)

n

∑
i=1

a(φ,Φ)
j,i Ei +

m

∑
i=1

a(φ,φ)
j,i Vi = f (φ)

j , j = 1, . . . , m , (3.11b)
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where

a(Φ,Φ)
j,i =

∫
Ω

curl Φj ·
(

µ−1 curl Φi

)
d3r− iω

∫
Ω

Φj · ((σ − iωε) Φi) d3r

+ iω
∫
Γh

(
n×Φj

)
· (λ (n×Φi)) d2r, (3.11c)

a(Φ,φ)
j,i =

∫
Ω

Φj · ((σ − iωε) grad φi) d3r−
∫
Γh

(
n×Φj

)
· (λ (n× grad φi)) d2r, (3.11d)

a(φ,Φ)
j,i =

∫
Ω

grad φj · ((σ − iωε) Φi) d3r−
∫
Γh

(
n× grad φj

)
· (λ (n×Φi)) d2r, (3.11e)

a(φ,φ)
j,i = −

∫
Ω

φjγφi d3r (3.11f)

and

f (Φ)
j = iω

∫
Ω

Φj · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φj · j f d2r− iω
∫
Γh

Φj ·
(

j f + n× H0
)

d2r

−
N

∑
i=n+1

a(Φ,Φ)
j,i Ei −

M

∑
i=m+1

a(Φ,φ)
j,i Vi, (3.11g)

f (φ)
j = −

∫
Ω

grad φj · js d3r +
∫
Γh

grad φj · (n× H0) d2r

−
N

∑
i=n+1

a(φ,Φ)
j,i Ei −

M

∑
i=m+1

a(φ,φ)
j,i Vi (3.11h)

The complete system of linear equation reads in matrix notation as follows

a(Φ,Φ)
1,1 . . . a(Φ,Φ)

1,n a(Φ,φ)
1,1 . . . a(Φ,φ)

1,m
...

...
...

...

a(Φ,Φ)
n,1 . . . a(Φ,Φ)

n,n a(Φ,φ)
n,1 . . . a(Φ,φ)

n,m

a(φ,Φ)
1,1 . . . a(φ,Φ)

1,n a(φ,φ)
1,1 . . . a(φ,φ)

1,m
...

...
...

...

a(φ,Φ)
m,1 . . . a(φ,Φ)

m,n a(φ,φ)
m,1 . . . a(φ,φ)

m,m





E1
...

En

V1
...

Vm


=



f (Φ)
1
...

f (Φ)
n

f (φ)
1
...

f (φ)
m


, (3.11i)

or, even shorter,(
A(Φ,Φ) A(Φ,φ)

A(φ,Φ) A(φ,φ)

)(
E
V

)
=

(
f (Φ)

f (φ)

)
(3.11j)

with submatrices A(Φ,Φ) ∈ Cn×n, A(Φ,φ) ∈ Cn×m, A(φ,Φ) ∈ Cm×n, A(φ,φ) ∈ Cm×m and column vec-
tors E, f (Φ) ∈ Cn, V, f (φ) ∈ Cm. A(Φ,Φ) is identical with the coefficient matrix A of the E-field
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formulation (3.10e) and represents the operator curl µ−1 curl − iω (σ − iωε) (plus boundary con-
ditions). The rectangular matrices A(φ,Φ) and A(Φ,φ) are respectively the discrete version of the
operator div (σ − iωε) and of the gradient multiplied by the complex conductivity, (σ − iωε) grad .
A(φ,φ) is a γ-weighted mass matrix.

If the basis functions Φi, i = 1, . . . , n, and φi, i = 1, . . . , m, are real valued and if the tensors
µ, σ and ε are symmetric, a(Φ,Φ)

j,i = a(Φ,Φ)
i,j holds for all i, j = 1, . . . , n and a(φ,φ)

j,i = a(φ,φ)
i,j for all

i, j = 1, . . . , m, i. e., A(Φ,Φ) = (A(Φ,Φ))T and A(φ,φ) = (A(φ,φ))T. In addition, the mixed form ma-
trix subblocks satisfy a(Φ,φ)

j,i = a(φ,Φ)
i,j for all i = 1, . . . , n and j = 1, . . . , m, i. e., A(Φ,φ) = (A(φ,Φ))T.

Therefore, the coefficient matrix in (3.11i) or (3.11j) is quadratic, complex and symmetric, but not
Hermitian.

Symmetry had been a design criterion while constructing the low-frequency stabilized boundary
value problem. The final coefficient matrix of the E-V formulation now proves to have the same
symmetry property like that of the E-field formulation. The motivation for preserving this feature
is that only the upper or lower triangular part of symmetric matrices needs to be stored in memory.
This saves half of the resources which would be required to store a non-symmetric matrix in
memory. Moreover, a matrix factorization can be performed with less operational costs and
requires considerably less storage as well.

3.3 An a posteriori error indicator

Careful numerical treatment of any boundary value problem completes the computation of the
actual solution by a suitable error estimation. Error estimators for Maxwell’s equation are non-
trivial and the topic of active research (Demkowicz, 2003; Monk, 2003; Nicaise and Creusé, 2003;
Braess and Schöberl, 2008; Izsák, Harutyunyan, and Vegt, 2008). A large class of error estimators
rely on the solution of the same boundary value problem on meshes of different coarseness or using
different sets of polynomial basis functions (Verfürth, 1996; Ainsworth and Oden, 2000). Another
approach has been followed here. The local error indicator of Beck and Hiptmair (1999) was
chosen as a pragmatic solution. It was most easily implemented using the available software tools.
However, it is emphasized that this choice does not claim to be the best, most accurate or fastest.
On the contrary, computation of this error indicator is rather expensive as it involves assembly and
solution of a global system of linear equations of the same size like the original boundary value
problem, yet with a real coefficient matrix. Therefore, the error estimator is calculated faster than
the boundary value problem solution but only by a factor of two to three. Using an error indicator
instead of a more rigorous error estimator is sufficient if the estimated error is ‘only’ used to guide
iterative mesh refinement.

The concept of the local error indicator of Beck and Hiptmair (1999) relies on the approximation
of the magnetic field in different function spaces. If the electric field is calculated such that
Eh ∈ Pcurl(Ω), its curl is well-defined and (iω)−1 curl Eh = Bh ∈ Pdiv(Ω). Since µ ∈ (L2(Ω))(3×3),
the magnetic field Hh = µ−1Bh ∈ (L2(Ω))3 has in general neither continuous tangential nor normal
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components. Evidently, Hh 6∈ Pcurl(Ω). To this end,

Eh =
N

∑
i=1

Ei Φi , (3.12a)

Hh = (iωµ)−1
N

∑
i=1

Ei curl Φi . (3.12b)

Equation (3.12b) expresses the magnetic field by the classical form of Faraday’s law. Its weak form
reads:

Search Ĥh ∈ Pcurl(Ω) such that

iω
∫
Ω

Φ · Ĥh d3r =
∫
Ω

Φ ·
(

µ−1 curl Eh

)
d3r (3.13)

holds for all Φ ∈ Pcurl(Ω).
Insertion of equation (3.12a) and

Ĥh =
N

∑
i=1

Ĥi Φi (3.14)

yields a system of linear equations

N

∑
i=1

âj,i Ĥi = f̂ j (3.15a)

where

âj,i = iω
∫
Ω

Φj ·Φi d3r, (3.15b)

f̂ j =
n

∑
i=1

Ei

∫
Ω

Φj ·
(

µ−1 curl Φi

)
d3r. (3.15c)

Since the basis functions are real valued the coefficient matrix is real, symmetric and independent
of constitutive parameters and frequency. Additionally, one can show that the matrix is positive
definite. The solution of the system of linear equations with a complex right hand side can be
carried out independently for the real and the imaginary part in real arithmetic.

Using the two magnetic field approximations Hh ∈ (L2(Ω))3 and Ĥh ∈ Pcurl(Ω), a local error
estimator is defined for each element K by

ηK =
∫
K

(
Ĥh − Hh

)
·
(
µ
(

Ĥh − Hh
))

d3r. (3.16)
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This can be written in more explicit form as

ηK =
N

∑
i,j=1

Ĥj

(∫
K

Φj · (µ Φi) d3r
)

Ĥi

+
1

iω

N

∑
i,j=1

Ĥj

(∫
K

Φj · curl Φi d3r
)

Ei

− 1
iω

N

∑
i,j=1

Ej

(∫
K

(
µ−1 curl Φj

)
· (µ Φi) d3r

)
Ĥi

+
1

ω2

N

∑
i,j=1

Ej

(∫
K

(
µ−1 curl Φj

)
· curl Φi d3r

)
Ei.

(3.16*)

The first summand is a finite element approximation of the magnetic field energy within element K,

MK =
∫
K

Ĥh ·
(
µĤh

)
d3r. (3.17)

This fact motivates the introduction of µ in definition (3.16). The third integral in (3.16*) reduces to∫
K curl Φj ·Φi d3r if µ is real valued. For each element K the summation has to be carried out only

over the degrees of freedom Ei and Ĥi local to element K.
ηK strongly depends on the element size as well as on the field energy pertaining to element K.

Therefore, the normalized local error estimator

η̊K =
ηK

MK
(3.18)

is introduced as an alternative to ηK. Application of either ηK or η̊K as a guide for mesh refinement
will lead to different meshes. If the field energy varies by orders of magnitude within the com-
putational domain η̊K will potentially be large where the energy is small while ηK will be large
where the energy is large as well. Computational examples illustrating the application of the error
indicator are given in Chapter 5.

3.4 Implementation

In order to perform actual computations, the systems of linear equations presented in sections 3.2
and 3.3 need to be assembled and solved using suitable software. This section will give an overview
over the tools which have been implemented as the practical part of this thesis’ work.

There are a couple of commercial software products available which can solve frequency domain
Maxwell’s equations, such as ANSYS Multiphysics®,1, COMSOL Multiphysics®,2, CST Studio

1http://www.ansys.com; last visited on March 31, 2009
2http://comsol.com; last visited on March 31, 2009
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Suite™,3 or SuperNEC™,4. Apart from being commercial products they suffer from at least two
other inconveniences: First, provided as a black box solver their source code is not available.
Experimental research is restricted to the use of available interfaces. Mathematical and structural
details, which may be of interest to the research user, are not always documented sufficiently.
Second, portability to larger machines is scarcely given but unavoidable if three-dimensional, real
world problems are to be tackled. However, commercial products have one important advantage.
A graphical user interface as well as convenient post-processing tools are included as a standard
and make the software ready and easy to use. This advantage is not considered to balance the
disadvantages. For a maximum of transparency and flexibility an approach has been followed
that makes use of libraries which are either open source or freely available for academic research
purposes.

3.4.1 The finite element kernel

The kernel of the ensued finite element software suite is provided by the finite element library
FEMSTER5 (Rieben, 2004; Castillo, Rieben, and White, 2005). The version dated from June 11, 2003,
has been downloaded, extended and tailored to the demands of the thesis’ work. In the meantime,
FEMSTER has undergone rework at the Lawrence Livermore National Laboratory, has become part
of the project EMSolve6 and is not available for download anymore.

Since FEMSTER is written in C++ (Stroustrup, 1997) all further software development has been
carried out using the same programming language. Major changes of FEMSTER involved complex
number support and the extension by interfaces for mesh input, linear equation solvers and
function classes which handle constitutive parameters, source terms and boundary values.

The assembly of the system of linear equations is the central task of a finite element software.
Given the mesh, constitutive parameters, source terms, boundary values, a set of basis functions and
degrees of freedom, the integrals defining the matrix coefficients and right hand side contributions
of equations (3.10) or (3.11) need to be evaluated. This task is performed by the interaction between
a number of C++ classes. Figure 3.12 gives a graphical overview of the most important classes
involved. They are mostly abstract base classes which provide uniform interfaces and hide the
implementation of, e. g., particular basis functions or element types. Classes provided by FEMSTER
are enclosed by the green box. All the classes can be arranged hierarchically. The lines connecting
the classes do not indicate inheritance but the relation that the higher level class makes use of the
lower level class.

Level 1 comprises the building blocks which hold all information needed to evaluate the integrals
for an individual element. Class Element3D describes the geometry of a tetrahedral, hexahedral

3http://www.cst.com; last visited on March 31, 2009
4http://www.supernec.com; last visited on March 31, 2009
5http://www.llnl.gov/casc/femster; retrieved on February 17, 2005; last visited on April 2, 2007
6https://www-eng.llnl.gov/emsolve/emsolve_home.html; last visited on March 31, 2009
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Level 1 function Element3D IntRules pFormBase

Level 2 PermutationBilinearXForm

Level 3 maxwell mesh3D femsterXForm linearEquation

Level 4 main

Figure 3.12: Overview of the main C++ classes hierarchy. The original FEMSTER classes are
enclosed in the green box.

or prismatic element. It performs the transformation between the global and local coordinate
system. The Jacobian of this coordinate transform is required because integration is performed on
the reference tetrahedron, hexahedron or prism. Numerical integration rules are implemented for
each reference element in class IntRules. They are further subdivided into one-, two-, or three-
dimensional rules, according to integration along an edge, across a face or over a volume. Class
pFormBase contains the sets of polynomial basis functions and degrees of freedom. It implements
the four finite element spaces P1(K), Pcurl(K), Pdiv(K) and P0(K) introduced in section 3.1 where
K is either a hexahedron, a tetrahedron or a prism. The degrees of freedom associated to each
set of polynomials is defined pointwise in order to compute degrees of freedom quickly. This
deviates from the classical definition of degrees of freedom as moments, i. e., weighted integrals
as introduced by Nédélec (1980) for vector finite elements. The last building block function

provides a unified interface to scalar, vector or tensor valued functions on Ω, i. e., the mapping of
r ∈ R3 onto R, C, R3, C3, R3 ×R3 or C3 ×C3. Constitutive parameters, source terms and boundary
values are represented by objects of classes derived from function.

Level 2 class BilinearXForm combines all information from the four Level 1 classes and evalu-
ates the integrals. It subsumes implementations involving the different polynomial basis function
types from P1(K), Pcurl(K), Pdiv(K) and P0(K) as well as mixed forms and surface integrals. They
are summarized in Table 3.3. The resulting element matrices and vectors are computed with respect
to a local coordinate system. This fact needs to be considered for vector finite elements where
the basis functions are vector-valued. The basis function associated with the common face of two
elements is constructed from a vector-valued polynomial on each element such that the normal or
tangential component is continuous. Within the local coordinate system of each element, i. e., using
a local numbering of nodes, edges and faces, the normal or tangential vectors of the face are not
guaranteed to match. Therefore, a global numbering is required which allows for the definition
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Bilinear0Form
∫

K φj η φi d3r
∫

K grad φj · (η grad φi) d3r

Bilinear1Form
∫

K Φj · (η Φi) d3r
∫

K curl Φj · (η curl Φi) d3r

Bilinear2Form
∫

K Ψj · (η Ψi) d3r
∫

K div Ψj (η div Ψi) d3r

Bilinear3Form
∫

K ψj η ψi d3r

Bilinear01Form
∫

K grad φj · (η Φi) d3r

Bilinear12Form
∫

K curl Φj · (η Ψi) d3r

Bilinear23Form
∫

K div Ψj (η ψi) d3r

SurfaceBilinear0Form
∫

F φj η φi d2r

SurfaceBilinear1Form
∫

F

(
n×Φj

)
· (η (n×Φi)) d2r

SurfaceBilinear2Form
∫

F

(
n ·Φj

)
(η (n ·Φi)) d2r

Table 3.3: Summary of the integrals implemented in the classes subsumed under BilinearXForm.
η and η are used as placeholders which denote a scalar or tensor function of space. K is an
element volume and F one of the element’s faces.

of unique face normal and edge tangential vectors. Class Permutation provides a mapping
between the local and the global numbering. This mapping is used to permute the local matrices
and vectors including possible changes of sign if the orientation has to be switched. Furthermore,
the definition of unique face normal and edge tangential vectors guarantees that the degrees of
freedom associated with edges or faces are uniquely defined and do not depend on the element
they are evaluated on.

Level 3 class femsterXForm is basically a wrapper around the Level 2 classes BilinearXForm
and Permutation. It provides the element matrices and vectors ready for insertion into the global
system matrix and right hand side vectors. Some technical details which are connected with the
different types of functions derived from class function are implemented in femsterXForm in
order to hide them from the user level Level 4.

Class maxwell is a container which collects all physics parameters defined in the physics input
file and stores them internally as objects of class function. Constitutive parameters, source terms
and boundary values are associated with volumes, faces, edges and vertices using an integer
attribute ID. This ID corresponds to the ID which is attributed to each volume, face, edge or vertex
in the mesh handler class mesh3D. These two classes supply the actual data for the solution of a
particular boundary value problem.

The system of linear equations is stored and solved using class linearEquation. Given an
element matrix or vector and a local to global mapping of degrees of freedom, the coefficients are

54



3.4 Implementation

summed at their respective places within the global system matrix and vector during assembly
stage. Subsequently, the system can be solved using one of the solver methods which is interfaced
or implemented.

• PARDISO7 (Schenk, Gärtner, and Fichtner, 2000; Schenk and Gärtner, 2004, 2006) is a direct
solver which is available as a dynamic link library, free for academic research purposes.
PARDISO is designed for shared memory architectures and parallelized using OpenMP™

(OpenMP Architecture Review Board, 2008).

• MUMPS8 (Amestoy, Duff, and L’Excellent, 2000; Amestoy, Duff, Koster, and L’Excellent, 2001;
Amestoy, Guermouche, L’Excellent, and Pralet, 2006) is a public domain direct solver package
which is available as a bundle of source code files. MUMPS is designed for distributed
memory architectures and parallelized using the MPI (Message Passing Interface Forum,
2008).

• An implementation of the coupled two-term quasi-minimum residual (QMR) method of
Freund and Nachtigal (1994) is built into the software package. This iterative solver is
currently implemented only in a sequential version. Optionally, a Jacobi preconditioner can
be applied.

All three implementations rely on storing the matrix in compressed sparse row (CSR) format
(Dongarra, 2000).

Level 4 contains main as a placeholder for a number of executables. They comprise the different
tasks arising during the solution of a boundary value problem.

mesh2bin converts meshes from ASCII to binary format.

femSolve computes the finite element solution of the boundary value problem.

errorEst computes an a posteriori error indicator.

meshMark marks elements for mesh refinement given the error indicator.

postEval evaluates the computed finite element approximation at given points r ∈ Ω and com-
putes derived quantities if requested.

While all of them need access to the mesh through class mesh3D, the classes maxwell and
femsterXForm are only needed by femSolve, errorEst and postEval. Systems of linear
equations are solved only with femSolve and errorEst. These five programs form the computa-
tional core of the finite element software suite whose remaining components are described in the
following section.

7http://www.pardiso-project.org; last visited on March 31, 2009
8http://graal.ens-lyon.fr/MUMPS; last visited on March 31, 2009
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geometry definition

geometry.geo,

geometry.poly

mesh generation

NETGEN; TETGEN

mesh.ng; mesh.node,

mesh.face, mesh.ele

ASCII to binary

mesh2bin

mesh.bin

physics definition

parameters.xml

control parameters

input.xml

FE solution
femSolve

electric_field_1.bin

post-processing

postEval

intervalues.bin

visualisation
MATLAB, posteval.m

interpoints.bin

error estimation
errorEst

error_indicator.bin

refinement selection
meshMark

mesh.vol

IDs

Figure 3.13: Flowchart of the finite element software suite. Green boxes indicate user defined input
data, blue boxes actions of one of the software tools. Input files required by the actual finite
element programs are enclosed in a grey box.

3.4.2 The finite element software suite

Figure 3.13 gives an overview of all components of the finite element software suite in form
of a flowchart. Each of the programs executes one of the steps into which the solution of a
boundary value problem can be subdivided. The computation of the finite element solution
involves generating a mesh, assembling the system of linear equations and solving the system.
Visualizing the solution, computing derived physical quantities and quantifying the solution error
are classified as post-processing tasks. Data exchange between the programs is performed by
storing the data in files.

Input/output files

The data of the boundary value problem consist of the geometry, physics settings and other control
parameters. They form the input required by the finite element solver in order to compute a
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finite element approximation to the boundary value problem solution. The three components are
separately stored in files.

The format of the geometry file is determined by the mesh generator. The geometry can be
logically subdivided into sets of vertices, edges, faces and volumes. The volumes coincide with the
subdomains of Ω, i. e., constitutive parameters are continuous within each volume/subdomain.
Moreover, Ω is decomposed such that each face as a part of the boundary ∂Ω is subject to one
well-defined boundary condition with smooth boundary values. Integer values (IDs) are associated
with each geometrical entity. They are transferred to the output files of the mesh generators and
create the link between geometry and physics settings during finite element matrix assembly and
post-processing.

Therefore, the geometric entity IDs are referred to in the physics parameter file. This file contains
the physics parameters definition, constitutive parameters for each volume and boundary face as
well as boundary condition data. Control parameters, such as the finite element base polynomial
degree, parameter file name, iterative solver parameters, etc. are stored in another control parameter
file. Since the physics settings can be formulated by a number of frequency independent quantities,
the frequency or frequency range for which the finite element solution is to be computed is also
part of the control parameter file.

The format of two parameter files has been decided to follow the Extensible Markup Language
(XML) Standard (Bray, Paoli, Sperberg-McQueen, Maler, and Yergeau, 2006). XML documents
are stored in ASCII format and can be edited using either standard text or special XML editors.
They follow a tree structure whose leaves can be given intuitive names. Therefore, the XML file
should be self-explanatory. In addition, comments can be provided virtually anywhere without
invalidating the data structure. These benefits are bought at the expense of using interface routines
from an external library to read or write XML files. Libxml2 (Veillard, 1999) is freely available
under the terms of the MIT License.

ASCII files are suitable for user generated input files storing a small or moderate amount of
information. The output files generated by the mesh generator and, in particular, by the finite
element solver and post-processing programs contain a considerably larger amount of data. They
are consequently stored in binary form. Communication between different tools of the finite
element software suite is based on binary files mainly for speed reasons. Binary files are not only
smaller than ASCII files storing the same data with the same precision. Input and output routines
for binary files are also considerably faster then those for ASCII files. However, transparency is
sacrificed for speed. The data stored within a binary file can only be accessed using executables or
functions which are tailored to read a particular binary file type.

Mesh generation

A mesh generator is used to divide the geometry, defined in the geometry file, into tetrahedral or
hexahedral elements. Given a previously generated mesh, the mesh generator is also required to
refine parts or all of the mesh. The finite element suite provides input routines for a number of
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mesh formats.
The mesh is handled within the finite element software by a C++ class mesh3D. It includes an

input method which reads tetrahedral or hexahedral meshes from an ASCII file. This file format
will be called native. Hexahedral meshes can be easily constructed for cuboidal domains from a
tensor product grid. A MATLAB® function fdgrid.m has been written which creates such a mesh
in the native mesh format.

Class mesh3D contains input methods for meshes stored in the native formats of NETGEN9

(Schöberl, 2008) and of TETGEN10 (Si, 2007). Both programs generate tetrahedral meshes and store
them in formatted ASCII files. NETGEN and TETGEN are provided as stand-alone programs
and as a collection of linkable interface routines. Following the stratagem of a modular software
structure the stand-alone programs are used to generate the mesh in a step separated from the
finite element tools.

All ASCII mesh formats can be converted to a binary file format using mesh2bin. This step
accelerates reading larger meshes during finite element assembly and post-processing, especially if
the mesh is to be read several times.

Finite element solution

The two programs femSolve and errorEst perform the central tasks of computing the finite
element solution of the boundary value problem as well as an elementwise error indicator. Given
the error estimation meshMark generates an input file for the mesh generator which in turn refines
the mesh locally.

Visualization

MATLAB® has been chosen as the visualization tool. It provides the required plotting facilities and
allows scripting the plot process. MATLAB® forms the only commercial component of the finite
element software suite. Lack of equivalent alternatives and widespread availability seem to justify
this choice.

Visualization of any physical field quantity requires interaction between MATLAB® as the
display front-end and postEval. postEval evaluates the computed finite element solution and
computes the requested field at a number of points given. Communication between MATLAB®

and postEval is again performed via binary files. A MEX interface has been discarded for
compatibility issues.

9http://www.hpfem.jku.at/netgen; retrieved on April 30, 2008; last visited on March 31, 2009
10http://tetgen.berlios.de; retrieved on October 7, 2008; last visited on March 31, 2009
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3.5 Numerical experiments

Using the finite element software tools of the previous section, a number of numerical experiments
has been carried out in order to investigate and illustrate the properties of the finite element matrix.
The first part of this section examines aspects related to the solution of the system of linear equations.
Second, the compatibility of polynomial spaces for the E-V formulation will be demonstrated.
Finally, empirical evidence for the stability considerations of Chapter 2 will be provided. Therefore,
the low frequency behavior of the solution of the different boundary value problem formulations is
examined by a comprehensive test suite. For all experiments, the matrix condition number has
been used as an experimental indicator which can point out possible problems when solving the
discrete boundary value problem.

3.5.1 Matrix condition number

The susceptibility of the solution of a linear equation system to errors in the data, introduced,
e. g., by inevitable rounding errors of computer arithmetics when computing the coefficients and
solving the system, is related to the condition number κ of the coefficient matrix A. It is defined by
κ = ‖A‖‖A−1‖ with an arbitrary matrix norm.

Computation of the 1-norm matrix condition number can be appended easily to the process of
solving the system of linear equations directly. By using a 1-norm estimator (Higham and Tisseur,
2000), direct computation of A−1 can be avoided. Only a number of additional linear equation
system solves are required which is computationally inexpensive once the matrix A has been
factorized.

3.5.2 A symmetric matrix scaling

The finite element matrix entries depend on the element size and the constitutive parameters. If
these quantities vary largely over the domain Ω, the columns and rows of A may have norms
differing by orders of magnitude. Low frequency simulations for models including both air and
earth, for example, lead to such badly scaled systems of linear equations.

Combination of different partial differential equations into one system leads to another scaling
issue. Consider the two partial differential equations

curl
(

µ−1 curl E
)
− iω(σ − iωε)E

+ α (σ − iωε) grad V = iωjs, (3.19a)

−α div (σ − iωε)E− α2 γV = α div js (3.19b)

which are identical to equations (2.18a) and (2.18b) except for the scaling parameter α ∈ C, α 6= 0.
The system of linear equations derived using the equation of continuity and the scalar field V both
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Figure 3.14: The 1-norm matrix condition number κ heavily depends on the parameter α which
scales the equation of continuity relatively to the vector Helmholtz equation. V solves (a)
Laplace’s (γ = 0), (b) Helmholtz’s equation (γ = σ− iωε).

scaled by α reads in block matrix notation as(
A(Φ,Φ) α A(Φ,φ)

α A(φ,Φ) α2 A(φ,φ)

)(
E
V

)
=

(
f (Φ)

α f (φ)

)
. (3.20)

The electric field degrees of freedom E are independent of α because the system is equivalent to
a symmetrically scaled system with a left and right block diagonal scaling matrix diag (1, 1/α).
The transformation αV 7→ V has no effect on E because V vanishes per construction. From the
numerical point of view, the solution of the system of linear equations very well depends on
the choice of α. Extreme values lead to a system which is even singular to working precision.
Figure 3.14 gives an example: The 1-norm matrix condition number κ is computed for a simple test
model. The domain Ω = [−1, 1]3 m3 is covered by a homogeneous medium with σ = 0.01 S/m,
εr = 8, µr = 1. A homogeneous Dirichlet boundary condition is posed on all boundary faces. Finite
element matrices are computed for the frequency range 5.18× 10−1 Hz to 5.18× 107 Hz. The upper
bound is the Nyquist frequency for the material and tensor product grid considered which consists
of 23 hexahedral elements of edge length 1 m. Base functions of polynomial degree 2 have been
used.

Figure 3.14 shows that the optimum value of α is in the order of unity and independent of
frequency. This is only true for the very simple test case of a homogeneous medium with the grid
size used. In general, the optimum choice of α is not evident, namely for highly heterogeneous
media and meshes.

In order to account for all these scaling issues, a preconditioner is applied to the system of linear
equations which preserves symmetry of the coefficient matrix. Ruiz (2001) proposes an iterative
scheme which calculates two diagonal matrices R and C such that Ã = RAC has unit column and
row norms. If A is symmetric, R = C. After computing the solution of the scaled system Ãx̃ = b̃,
where b̃ = Rb, the solution of the original system is obtained from x = C−1 x̃. The inverse of the
diagonal matrix C can be computed easily.

60



3.5 Numerical experiments

3.5.3 Iterative or direct solvers?

The matrix properties have great impact on how the system of linear equations can be solved. The
matrices defined by equations (3.10b) and (3.11c) to (3.11f) are sparse, complex valued, symmetric
and indefinite, i. e., they can have eigenvalues with positive and negative real parts. Regularity
has to be assumed, of course, and should be a consequence of (a) a well-posed boundary value
problem and (b) a well-designed finite element discretization.

Two different approaches for the solution of a system of linear equations can be distinguished,
direct and iterative methods. A direct solver computes the solution in a fixed number of operations
which is largely independent of the particular values of the nonzero entries of the matrix as long
as the matrix satisfies all assumptions on regularity, symmetry and definiteness. Direct solvers
first factorize the matrix into a lower and an upper triangular matrix. The solution is thus reduced
to the solution of two systems with triangular matrices and can be performed easily by forward
elimination and back-substitution. The direct solvers implemented in MUMPS and PARDISO both
exploit sparsity and symmetry of the matrix. Reordering algorithms are applied to the matrix prior
to the factorization in order to reduce fill-in, i. e., to minimize storage and floating point operations.
Once the factorization is computed the solution for a number of right hand sides can be obtained
rather cheaply. This advantage, compared to iterative solvers, goes at the expense of storing the
matrix factors.

If the problem is too large to be solved by direct methods iterative solvers can be considered as
an alternative. They only require computation of matrix-vector products involving the coefficient
matrix. Depending on the particular member chosen from the large family of Krylov-subspace
methods (Barret et al., 1994; Saad, 1996) a number of auxiliary vectors need to be stored. This
largely depends on the matrix properties. As the matrix is indefinite the most efficient conjugate
gradient (CG) method is not applicable. The generalized minimum residual (GMRES) method
is the most general Krylov-subspace algorithm which can be applied to any matrix. It requires
storage of as many vectors as iterations till convergence. This prohibitive storage requirement can
be relaxed by restarting the method. The quasi-minimum residual (QMR) method best meets the
matrix properties considered here. Only a couple of auxiliary vectors need to be stored. Matrix
symmetry can be exploited in order to reduce storage and operational costs. A symmetric QMR
variant with coupled two-term recurrences (Freund and Nachtigal, 1994) has been implemented.
This solver has previously shown good performance in context with the finite difference/finite
volume discretization of low-frequency electromagnetic problems (Weiss and Constable, 2006).

Unfortunately, the performance of the QMR algorithm with matrices arising from the finite
element discretization turns out to be poor. A satisfactory rate of convergence can only be obtained
if a suitable preconditioner is applied to the system of linear equations. The Jacobi preconditioner
as used by Weiss and Constable (2006) does not significantly accelerate convergence. An incomplete
Cholesky factorization of the symmetric positive definite mass matrix proved to give acceptable
results if partial fill-in is admitted in the matrix factors. However, computation of the factorization
is expensive and the need to store the matrix factors partially reduces the advantage of the iterative
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method to tackle larger problem sizes.
In order to investigate the different convergence rates of the QMR method for finite difference

or finite element discretized problems a small test case has been devised. The finite volume code
FDM3D11 (Weiss and Constable, 2006) has been used for the comparison. FDM3D is restricted
to tensor product grids with cellwise constant conductivity. For this reason, its coefficient matrix
is identical with the matrix which could be derived using the finite difference method. The
corresponding finite element matrix is obtained if the lowest order, curl-conforming hexahedral
elements and the E-field formulation are used.

The computational domain Ω = [−500, +500]3 m3 is filled with seawater of conductivity
σ1 = 3.3 S/m for z < 0 and with sediments, σ2 = 1 S/m, for z > 0. Furthermore, µr = 1 and εr = 0.
Neglecting displacement currents can be justified for the small frequency f = 1 Hz used. FDM3D
does not take displacement currents into account. The domain Ω is subdivided by a regular tensor
product grid into N3 hexahedral elements where N = (10, 20, 30, 40, 50). This equals a grid spacing
of h = (100, 50, 33, 25, 20) m. The resulting approximation of the electric field by piecewise linear
basis functions comprises 3N(N − 1)2 = (2 430, 21 660, 75 690, 182 520, 360 150) degrees of freedom
not including the vanishing boundary values.

For better comparison the coefficient matrix derived from FDM3D is divided by the volume
of one of the cells of the equidistant tensor product grid. The matrix is also replaced by its
complex conjugate since FDM3D and FEMSTER use different e±iωt-conventions. The matrix A can
easily be split into the stiffness and mass matrices because they form the real and imaginary part,
A = S + iM.

The matrix equation Ax = b is solved for a unit right hand side vector using the MATLAB® inbuilt
QMR routine with target relative residual ‖Ax− b‖/‖b‖ = 10−8. Three choices of preconditioners
are tested:

1. No preconditioner.

2. Jacobi preconditioner. A system with matrix A∗ = J−1A is solved where J = diag{A}.

3. Mass matrix incomplete Cholesky preconditioner with drop tolerance 10−8. A system with
matrix A◦ = D−T AD−1 is solved where only the (real) mass matrix part of A is factorized as
M = DTD.

While the mass matrix of the finite difference method is diagonal the finite element mass matrix is
not. This motivates the mass matrix incomplete Cholesky preconditioner which transforms both
matrices to the form A◦ = D−TSD−1 + iI where I is the identity matrix.

Figure 3.15 shows the numbers of QMR iterations that have been determined for the finite
difference and finite element coefficient matrices, and for the three choices of preconditioners. All
six combinations exhibit the same rate of convergence as a function of the mesh size. However, the
finite element matrices consistently require a larger number of iterations. This effect is reduced

11http://www.sandia.gov/comp-em-geop; retrieved on April 4, 2008
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Figure 3.15: Comparison of the number

of QMR iterations for finite difference
(FD) and finite element (FE) system ma-
trices using different preconditioners.

preconditioner finite difference finite element

none 148 (62) 737 (232)
Jacobi 148 (59) 737 (228)
Cholesky 145 (65) 401 (133)

Table 3.4: Spectral norm matrix condi-
tion number κ2 for the coarsest grid
(N = 10). The number of QMR itera-
tions is given in parentheses.

markedly by the mass matrix incomplete Cholesky preconditioner. The same preconditioner has
no significant effect for the finite difference matrices.

In order to examine further the convergence behavior of the QMR method, the spectra of the
coefficient matrices of the coarsest grid have been computed and plotted in Figure 3.16. The
eigenvalues are sorted according to their magnitude. The spectra of the unpreconditioned or Jacobi-
preconditioned finite element matrices are more scattered than the spectra of the finite difference
matrices. In particular the imaginary part of the unpreconditioned finite difference matrix only
takes a couple of discrete values.

The spectra of the mass matrix incomplete Cholesky preconditioned matrices look very similar.
By construction, the imaginary parts equal one in both cases. The real parts follow a comparable
pattern but differ by their range of values. While the finite difference matrix has a spectral radius
of 145 the finite element matrix has a spectral radius of 401. This indicates that the discrete
curl-operator derived by the finite element method has a higher frequency content than its finite
difference counterpart. The discrete curl-operator derived by the finite difference method may
consequently be seen as an averaged or low-pass filtered version of the finite element operator.

The spectra of the mass matrix incomplete Cholesky preconditioned matrices also reveal that the
kernel of the curl-operator, i. e., the rank deficit of the stiffness matrix is 729. Only the real part of
eigenvalues 730 to 2430 is non-zero.

The spectral norm matrix condition number is defined as the ratio of the largest and smallest
singular values. It is listed in Table 3.4 along with the number of QMR iterations. For this example,
the number of QMR iterations correlates fairly well with the matrix condition number.
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Figure 3.16: Eigenvalues of the unpreconditioned (top), Jacobi preconditioned (middle) and mass
matrix incomplete Cholesky preconditioned (bottom) finite difference (left) and finite element
(right) coefficient matrices. The eigenvalues are sorted by their absolute value.
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3.5.4 Compatible polynomial spaces for the E-V formulation

The weak form of the E-V formulation involves the two function spaces U ⊆ Hcurl(Ω) and
V ⊆ H1(Ω). Their finite dimensional approximation, the finite element spaces Uh ⊆ Pcurl(Ω)
and Vh ⊆ P1(Ω) have to be chosen such that the range of the gradient operating on functions from
Vh spans the kernel of the curl-operator in Uh. This compatibility condition basically reduces for the
finite element spaces implemented in FEMSTER to choosing the correct combination of polynomial
degrees for the spaces of finite element basis functions. The implication for the discrete problem
is that the finite element system matrix is singular if the spaces are incompatible. A numerical
example will illustrate this point.

The domain Ω = [−1, 1]3 m3 is discretized by a regular hexahedral grid with 23 elements, i. e.,
there is exactly one interior vertex. Ω is covered by a homogeneous medium of electrical conduc-
tivity σ = 0.01 S/m and relative magnetic permeability µr = 1. The relative electrical permittivity
is irrelevant because only frequency f = 0 is considered for this test problem. Vanishing tangential
electric field components are imposed as a homogeneous Dirichlet boundary condition on ∂Ω.

The electric field is approximated by piecewise quadratic basis functions (p = 2). This results
in 108 degrees of freedom for E, excluding the fixed boundary values. Figure 3.17(a) shows the
singular values of the finite element matrix resulting from the E-field formulation. The kernel
of the curl-operator creates a matrix rank deficit of 27. In order to remove this kernel the E-V
formulation is used. Figures 3.17(b) to (d) show the singular values of the finite element matrix
where V has been approximated by piecewise linear, quadratic or cubic basis functions (p = 1, 2, 3).
The system of linear equations is enlarged by respectively 1, 27, and 125 degrees of freedom for V
and equations representing the equation of continuity.

Only in case (c) of a matching basis with quadratic basis functions (p = 2) for V the finite element
matrix is regular. From an algebraic point of view, this agrees with the fact that a rank deficiency of
27 as observed for the matrix of Figure 3.17(a) can be remedied by taking additional 27 linearly
independent equations into account.

From the function space point of view, this behavior reflects the exact sequence property of the
underlying function spaces on the discrete level. If, on the one hand, V is chosen to be piecewise
linear (Figure 3.17(b)), the gradient of V is contained in the kernel of the curl but it does not span
the kernel completely. As E is constructed from piecewise quadratic polynomials, also the kernel
of the curl consists of piecewise polynomials of degree two. If, on the other hand, V is chosen to
be piecewise cubic (Figure 3.17(d)), the gradient of V is not contained in the kernel of the curl but
spans a larger function space. This again results in a singular matrix. Only if V is chosen to be
piecewise quadratic, in accordance with the approximation of E, the gradient of V is contained in
the kernel of the curl and spans the kernel completely.
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Figure 3.17: Singular values of the finite element system matrix A at frequency ω = 0 for the E-field
formulation (a) and the E-V formulation with V approximated by piecewise polynomials of
degree p = 1 (b), p = 2 (c), p = 3 (d). E is approximated by piecewise polynomials of degree
p = 2.
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3.5.5 Low frequency stability

The design of a frequency domain solver for Maxwell’s equations which is stable also for low
frequencies has been the central point of the previous theoretical considerations. Now, the theory
is going to be tested by a number of numerical examples. A test suite has been devised which
combines two instances of constitutive parameter distributions, two types of sought solutions, and
two different boundary condition type settings.

Test suite setup

The test problems are posed on the domain Ω = [−0.5, 0.5]3 m3 which is covered by

• a homogeneous fullspace with εr = 8, µr = 1, σ = 0.01 S/m or

• two homogeneous halfspaces with ε+
r = 8, µ+

r = 1, σ+ = 0.01 S/m for z > 0 (earth) and ε−r = 1,
µ−r = 1, σ− = 0 for z < 0 (air).

The air–earth interface is a difficult test case because the continuity of the (complex) normal current
flow through the earth’s surface implies a large jump in the normal electric field for low frequencies
(Figure 3.18). There, the ratio E−z /E+

z is proportional to f−1.
In order to be able to determine the solution accuracy, the source terms and boundary values are

chosen such that the numerical solution is an approximation to a known solution. Two different
analytical solutions are considered:

• The electric field corresponding to the constant current density j = (0, 0, 1) A/m2,

E =
1

σ− iωε
j (fullspace), (3.21a)

E =

 1
σ−−iωε− j z < 0

1
σ+−iωε+ j z > 0

(halfspaces), (3.21b)
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represents the special case that the solution of the continuous problem, the piecewise constant
electric field, is also contained in the finite element space. This test solution consequently
excludes errors introduced by approximating the infinite dimensional function space Hcurl(Ω)
by the finite dimensional function space Pcurl(Ω). The electric fields (3.21a) and (3.21b) are
curl-free. In order to satisfy the vector Helmholtz equation, the source current density in Ω
has to be chosen according to js = −j.

• A plane wave travelling in positive z-direction represents the typical setup of a one-dimensional
earth model in magnetotellurics. If the fields are normalized such that the horizontal magnetic
field at z = 0 has unit amplitude, the electric field is expressed by

E = Z
(

eikz, 0, 0
)

(fullspace), (3.21c)

E =

 Z−
1−R ( eik−z + R e−ik−z, 0, 0) z < 0

Z+ ( eik+z, 0, 0) z > 0
(halfspaces). (3.21d)

Z = ωµ
k denotes the complex wave impedance and R = Z+−Z−

Z++Z− the reflection coefficient. The
plane wave is the prototype of a solution of the source free Maxwell’s equations. Therefore,
js = 0 in Ω. As the fields approach the constant solution for low frequencies, the approxima-
tion error is expected to decrease with decreasing frequency.

Two sets of boundary conditions are chosen according to these known solutions:

• an inhomogeneous Dirichlet boundary condition is prescribed on Γ, i. e., the tangential electric
field n× E; or

• an inhomogeneous Neumann boundary condition is prescribed on Γ, i. e., the curl of the
electric field n× (µ−1 curl E) which is basically the tangential magnetic field.

Numerical solutions have been computed for both a tetrahedral and a hexahedral mesh with 729
vertices each (Figure 3.19). While the hexahedral mesh is a regular tensor product grid of 83 cells
the tetrahedral mesh is unstructured. Piecewise quadratic finite element basis functions (p = 2)
have been used in both cases. A frequency range from 10−4 to 108 Hz is examined. The maximum
element edge length 0.25 m implies a Nyquist frequency of 2.1× 108 Hz which is well above the
largest frequency used.

The system of linear equation was solved using MUMPS. A considerable number of cases involve
coefficient matrices which are singular to working precision. The implementation of MUMPS allows
for catching these cases even if the solver returns with an exit code, and continue the computation.
This has been impossible with PARDISO which caused an irrecoverable segmentation fault and
required program termination.

Matrix condition

Condition numbers measured in the 1-norm are shown as a function of frequency in Figures 3.20
and 3.21. The two figures differ by scaling the system of linear equations symmetrically prior to
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Figure 3.19: Hexahedral (a) and tetrahedral (b) meshes with 729 vertices each. Maximum edge
lengths are 0.125 m (a) and 0.25 m (b).

solving as described in section 3.5.2. Each subfigure contains the results for three choices of the
boundary value problem formulation:

• the E-field formulation;

• the E-V formulation with vanishing zeroth-order term for V, γ = 0, labelled ‘mixed, Laplace’;
and

• the E-V formulation with non-trivial zeroth-order term for V, γ = (σ− iωε)2, labelled ‘mixed,
Helmholtz’.

The two cases of the E-V formulation are named by the Laplace- and Helmholtz-like boundary
value problem that the dummy variable V implicitly satisfies.

Some curves appear to have no data at low frequencies. There, the condition number could not
be computed because the matrix is singular to working precision and the linear equations solver
returned a not-a-number solution. The condition number should be treated as infinity in these
cases.

Note that the condition number is independent of the two analytical solutions. The same grids
and constitutive parameters have been used in both cases. Only this part of the data has an impact
on the coefficient matrix and, therefore, on the condition number. The two different solutions
‘constant current density’, equations (3.21a/b), and ‘plane wave’, equations (3.21c/d), are solely
determined by differing boundary values which alter only the right hand side.

Figures 3.20 and 3.21 show that for the E-field formulation the matrix condition number increases
with decreasing frequency, irrespective of the matrix scaling. The growing condition number is the
numerical expression of the low frequency instability which has been predicted in Chapter 2. It has
its origin in the non-uniqueness of the solution of the non-stabilized boundary value problem at
frequency ω = 0 that is caused by the non-trivial kernel of the curl-operator.
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Figure 3.20: 1-norm matrix condition number for both test cases ‘constant current density’ and
‘plane wave’ with symmetric matrix scaling.
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Figure 3.21: 1-norm matrix condition number for both test cases ‘constant current density’ and
‘plane wave’ without symmetric matrix scaling.
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While the growth of κ ∝ ω−1 for the fullspace model, κ ∝ ω−2 for the halfspaces model. The
faster increase in the inhomogeneous case can be explained by superposition of the low frequency
instability observed also for the homogeneous case and the effect of an increasing parameter
contrast as shown in Figure 3.18. Figures 3.20 and 3.21 reveal that the low frequency behavior
can be improved for the fullspace model if the E-V formulation is used. The resulting matrix
condition number is constant for the lower frequency range. Since the auxiliary field V implicitly
satisfies a Laplace-like equation if γ = 0, it is not determined uniquely by the Neumann boundary
condition. This fact is reflected by the matrix condition number on a level with the reciprocal
machine precision of about 1016. Only a non-vanishing γ, which renders the boundary value
problem in terms of V Helmholtz-like, can stabilize the boundary value problem with an empty
Dirichlet boundary part for low frequencies.

For the fullspace model the symmetric matrix scaling has only a minor effect. The constant
level is obtained in both cases but the low frequency condition number of the scaled system is
smaller. This does not hold for the halfspaces model. Compared to the E-field formulation the
growth rate of the condition number of the E-V formulation is reduced by one for the unscaled
system (Figure 3.21). However, the effect of the increasing parameter contrast is still present in the
coefficient matrix. It can be removed if the symmetric matrix scaling is applied. As can be seen
from Figure 3.20 the matrix has been successfully stabilized also for the high parameter contrast
case.

A vital question is the particular choice of the parameter γ 6= 0 for the second variant of the E-V
formulation. It must be considered in context with the action of the symmetric matrix scaling. If
the coefficient matrix is subdivided into blocks according to equation (3.11j),

A =

(
A(Φ,Φ) A(Φ,φ)

A(φ,Φ) A(φ,φ)

)
, (3.22)

the blocks A(φ,Φ) and A(Φ,φ) scale like (σ− iωε) and the block A(φ,φ) like γ. The symmetric matrix
scaling algorithm left and right multiplies the matrix A by diagonal matrices whose lower diagonal
block, corresponding to the second block row and column of A, is in the order of (σ− iωε)−1. Since
A(φ,φ) is an on-diagonal block it gets scaled by (σ− iωε)−2. Therefore, the choice γ = (σ− iωε)2

produces the desired effect and eliminates the influence of the highly discontinuous complex
electric conductivity.

Solution error

The stability considerations discussed above relate to the matrix condition number. This quantity
provides a useful means to point out potential problems with the actual solution of the discrete
boundary value problem or system of linear equations. In order to gain confidence in this measure
and to provide numerical evidence for the conclusions drawn from the condition number, the
solution error for two instances of source and boundary data, according to equations (3.21a/b)
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Figure 3.22: Solution norms ‖E‖ and ‖ curl E‖ of the constant current density and the plane wave
test case.

and (3.21c/d), is examined. The relative solution error is defined by

δ {Eh} =
‖Eh − E‖
‖E‖ and (3.23a)

δ {curl Eh} =
‖ curl Eh − curl E‖

‖ curl E‖ (3.23b)

where ‖ · ‖ denotes the usual L2-norm on Ω. Since the curl of the constant current density electric
field vanishes, equation (3.23b) cannot be applied in this case. The true solution norms, which are
used to normalize the absolute solution error, are depicted in Figure 3.22. While the solution norm
of the constant current density case approaches a constant level at low frequencies for the fullspace
model, the norm is dominated by the air halfspace for the halfspaces model. This is in contrast to
the plane wave test case where the norms of the electric field and of its curl are dominated by the
earth halfspace. Therefore, the norms of the plane wave fullspace and halfspaces cases can only
be distinguished at the highest frequencies considered. For most of the spectrum ‖E‖ ∝ ω1/2 and
‖ curl E‖ ∝ ω.

Figures 3.23 and 3.25 respectively show the relative solution errors for the constant current
density and the plane wave test case where the symmetric matrix scaling has been used. The same
quantities are depicted in Figures 3.24 and 3.26 where no matrix scaling was performed prior to
calling the linear equations solver.

Comparison of Figures 3.20 and 3.23 reveals that for the constant current density solution the
relative error exhibits virtually the same behavior as the matrix condition number. The error
increases with decreasing frequency for the E-field formulation and lies in the order of the machine
precision for the two variants of the E-V formulation. This is due to the fact that the solution of the
continuous boundary value problem is piecewise constant and consequently does not suffer from
the finite element approximation by a piecewise polynomial function.
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Figure 3.23: Relative solution error for test case ‘constant current density’ with symmetric matrix
scaling.
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Figure 3.24: Relative solution error for test case ‘constant current density’ without symmetric matrix
scaling.
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Figure 3.25: Relative solution error for test case ‘plane wave’ with symmetric matrix scaling; piece-
wise quadratic approximation (p = 2).
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Figure 3.26: Relative solution error for test case ‘plane wave’ without symmetric matrix scaling;
piecewise quadratic approximation (p = 2).
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p = 1 p = 2
Dirichlet Neumann Dirichlet Neumann

hexahedron
fullspace 1.5/1.5 1.5/1.5 2.0/2.0 2.0/2.0
halfspace 1.5/1.5 1.5/1.5 2.0/2.0 2.0/2.0

tetrahedron
fullspace 1.0/1.5 1.0/1.5 1.5/1.5 1.5/2.0
halfspace 1.0/1.5 1.0/1.5 1.5/1.5 1.5/2.0

Table 3.5: The duplets m/n denote the frequency dependency of the absolute solution error ac-
cording to ‖Eh − E‖ ∝ ωm and ‖ curl Eh − curl E‖ ∝ ωn for the plane wave test case at higher
frequencies (compare the relative solution error in Figures 3.25 to 3.28).

The relative error of the plane wave test case (Figures 3.25 and 3.26) looks different but is mostly
consistent with the condition number of the scaled system. The differing frequency behavior
can be explained by the approximation error of the complex exponential function by a piecewise
polynomial which increases with increasing frequency. This effect can be observed in all instances
of the plane wave test case at least for the upper part of the spectrum. In order to investigate this
approximation property further, the relative solution error of a piecewise linear approximation is
provided for comparison in Figures 3.27 and 3.28.

Table 3.5 summarizes the results of a polynomial fit of the absolute solution errors ‖Eh − E‖
and ‖ curl Eh − curl E‖ as a function of frequency for the upwards sloping part of the curves in
Figures 3.25 to 3.28. For the case of the hexahedral mesh the absolute error only depends on the
polynomial degree irrespective of the boundary condition type or fullspace/halfspaces settings,
and is equal for the norms of the field and its curl. Consequently, the frequency behavior of the
relative errors (3.23a) and (3.23b) differ by a factor of ω1/2.

The absolute solution error for the tetrahedral mesh exhibits a less consistent frequency behavior.
Some settings have a different slope for the error of the field and the error of its curl, some have
the same. Those whose slopes differ in the absolute error have the same slope in the relative error.
If the relative solution error as a function of frequency is interpreted as a measure for the rate
of convergence of the finite element approximation, the electric field can be stated to converge
either by the same degree or faster than its curl. Compared to the hexahedral mesh, the rate
of convergence for the tetrahedral mesh is equal or lower. This effect may be an effect of the
unstructured mesh whose edges are not aligned parallel to the direction of the field vector as it is
the case with the hexahedral mesh.

Two features of the relative error plots obviously disagree with the prediction of the matrix
condition number. First, the matrix condition number of the ‘mixed, Laplace’ test cases with
Neumann boundary condition claims that the matrix is singular to working precision. However,
the relative errors prove to be comparable to those of the ‘mixed, Helmholtz’ case. This effect
is attributed to the robustness of the linear solver implemented in MUMPS. PARDISO produces
the same result. The singular behaviour of the ‘mixed, Laplace’ test cases has its origin in the
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Figure 3.27: Relative solution error for test case ‘plane wave’ with symmetric matrix scaling; piece-
wise linear approximation (p = 1).
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Figure 3.28: Relative solution error for test case ‘plane wave’ without symmetric matrix scaling;
piecewise linear approximation (p = 1).
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3.5 Numerical experiments

Laplace-like equation with a Neumann boundary condition which the scalar field V implicitly
satisfies. V is determined non-uniquely. However, the relative solution error (3.23) does not account
for V but only includes the electric field E which is determined uniquely.

Second, at low frequencies not only the relative errors of the E-field formulation increase with
decreasing frequency as expected but also the relative errors of the E-V formulation. In the case of
the halfspaces model and the Neumann boundary condition they even reach prohibitive values. At
the same time, the relative solution errors of the unscaled system are almost identical to those of
the scaled system. The symmetric scaling appears to have only an effect on the matrix condition
and no effect on the relative solution error. On the one hand, this observation recommends the
quality of the linear solver used. On the other hand, it questions the benefit of using the matrix
scaling and demands an explanation.

If the matrix A is scaled symmetrically according to Ã = SAS, inevitable errors in the solution
of the scaled system Ãx̃ = b̃ are amplified when the solution of the original problem x = S−1 x̃ is
finally computed. If the scaling matrix S contains very large and very small values, comparably
small elements of the solution vector x̃, which are prone to numerical errors, might be enlarged
and reduce the quality of the actual solution vector x. This amounts to the same effect as if the
unscaled matrix equation had been solved, provided the linear equations solver is able to deal with
the badly scaled matrix.

The origin of the numerical errors has to be sought in the data of the system of linear equations,
namely in its linear coefficients and in the right hand side. The fact that the increasing relative errors
are observed only for the plane wave test case points to the boundary values. They are subject
to integration errors when the right hand side integrals for the Neumann boundary condition or
the degrees of freedom fixed by the Dirichlet boundary condition are computed. The inferior low
frequency solution quality of the Neumann boundary condition test cases supports the assumption
of the boundary values being the origin of the errors. The norm of curl E decreases to zero faster
than the norm of E by a factor of |k| ∝ ω1/2. The Neumann boundary data therefore gets very small
at low frequencies compared to the Dirichlet boundary data of the same frequency and compared
to the field to be computed within the domain. Errors of these tiny numbers eventually beset the
solution quality.

Concluding, the matrix condition number has not proven to be the ultimate measure for solution
stability. Yet, it has served as a valuable indicator during the development of a numerical solution
strategy for Maxwell’s equations with improved stability properties. The E-V formulation consis-
tently gives more accurate results over a larger range of frequencies even for high contrast models.
However, the solution remains susceptible to approximation errors of the boundary value problem
input data.

For the examples and linear equations solvers considered, the symmetric matrix scaling has
turned out to be of no significance for the solution accuracy. The matrix condition numbers of the
scaled system and the halfspaces model are consistent only with the solution error of the constant
current density test case but neither completely inconsistent nor consistent with the solution error
of the plane wave test case.
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Chapter 4

Enhanced concepts

The boundary value problems presented in Chapter 2 and their finite element solution described in
Chapter 3 provide a straightforward approach to modelling electromagnetic phenomena in general
and geophysical problems in particular. Stability considerations concerning the solution behavior
with respect to low frequencies could be carried out within this framework without need for an
overly complex notation. This chapter now introduces enhanced concepts which refine the physical
modelling. The simple boundary value problems of Chapter 2 are extended in order to improve
the overall solution quality and tailor the software to the particular requirements of geophysical
model settings.

4.1 Scattered field problems

The electric field sought in the boundary value problems of Chapter 2 is caused by impressed
current or charge densities within the domain or on its boundary, or by given field values on the
boundary. This class of problems is termed total field problems in contrast to the problem class
of scattered fields. The total field is the physical field which is present at a point within space.
Exploiting linearity of Maxwell’s equations, the total field can be split into an incident field part
and a scattered field part. A scattered field problem now reduces the boundary value problem to
the solution for the scattered field Es only, given the incident field Ei.

From a numerical point of view this procedure is often advantageous because the known
part of the total field does not need to be approximated numerically and, therefore, does not
suffer approximation errors. The incident field magnitude is often significantly larger than the
scattered field magnitude. In addition, the scattered field can be made more amenable to numerical
approximation if the singular behavior of the electric field around point sources is exactly expressed
by the incident field. This technique is also known as singularity removal. The incident field is
sometimes called the primary or normal field and the scattered field the secondary or anomalous
field.

In order to cover the most general case and to save space at the same time, only the E-V
formulation is given in the following. The E-field formulation can easily be deduced by dropping
certain terms and equations.
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4.1.1 The boundary value problem

The total field is assumed to be a solution of boundary value problem (2.17) or its augmented
equivalent (2.18); the incident field Ei to be a solution of boundary value problem (2.17) with a
different set of constitutive parameters εi, µi and σi,

curl
(

µ−1
i curl Ei

)
− iω(σi − iωεi)Ei = iωjs on Ωi, (4.1a)

−div (σi − iωεi)Ei = div js on Ωi, (4.1b)

[n× Ei]Σ = 0 on Σi,j, (4.1c)[
n× (µi)

−1 curl Ei

]
Σ

= iωj f on Σi,j, (4.1d)

− [n · (σi − iωεi)Ei]Σ = [n · js]Σ on Σi,j, (4.1e)

n× Ei = n× E0 on Γe, (4.1f)

n× µ−1
i curl Ei + iωn× (λi (n× Ei)) = iωn× H0 + iωj f on Γh and (4.1g)

n · (σi − iωεi) E + n · curl (λi (n× Ei)) = n · curl H0 − n · js on Γh. (4.1h)

The source and exterior field terms of the total and the incident field problem are chosen to be
identical. The constitutive parameters are usually assumed to follow a very simple pattern such that
the incident field is analytically known. Since Ei is a given field only the set of Maxwell’s equations
is of interest which Ei satisfies. The additional terms and equations in the E-V formulation involving
the auxiliary scalar field V vanish by construction.

The scattered field problem is derived by inserting the split field approach

E = Ei + Es (4.2)

into the total field problem (2.18). Note that the augmented form of the E-V formulation is used
as the starting point because the final boundary value problem in terms of the scattered field will
have to be solved numerically. Therefore, the algebraically balanced form, including the auxiliary
scalar field V, is preferred. Finally, corresponding equations of boundary value problem (4.1) are
subtracted from the total field problem. Using the definitions

δε = εi − ε, (4.3a)

δλ = λi − λ, (4.3b)

δµ−1 = µ−1
i − µ−1 and (4.3c)

δσ = σi − σ (4.3d)

the scattered field Es is sought as a solution of the boundary value problem

curl
(
µ−1 curl Es

)
− iω

(
σ − iωε

)
Es

+
(
σ − iωε

)
grad V = curl

(
δµ−1 curl Ei

)
− iω

(
δσ − iωδε

)
Ei on Ωi, (4.4a)
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−div
(
σ − iωε

)
Es − γV = −div

(
δσ − iωδε

)
Ei on Ωi, (4.4b)

[n× Es]Σ = 0 on Σi,j, (4.4c)

[V]Σ = 0 on Σi,j, (4.4d)[
n× µ−1 curl Es

]
Σ

=
[
n× δµ−1 curl Ei

]
Σ

on Σi,j, (4.4e)

−
[
n ·
(
σ − iωε

)
Es
]

Σ = −
[
n ·
(
δσ − iωδε

)
Ei
]

Σ on Σi,j, (4.4f)

[n · (σ − iωε) grad V]Σ = 0 on Σi,j, (4.4g)

n× Es = 0 on Γe, (4.4h)

V = 0 on Γe, (4.4i)

n× µ−1 curl Es + iωn×
(
λ
(
n× Es

))
− n×

(
λ
(
n× grad V

))
= n× δµ−1 curl Ei

+ iωn×
(
δλ
(
n× Ei

))
on Γh, (4.4j)

n · (σ − iωε) Es + n · curl (λ (n× Es)) = n · (δσ − iωδε) Ei

+ n · curl (δλ (n× Ei)) on Γh, (4.4k)

n · (σ − iωε) grad V − n · curl (λ(n× grad V)) = 0 on Γh. (4.4l)

All source and exterior field terms cancel because they have been chosen identical for the the total
field and the incident field. Sources of the scattered field are generated by the incident field in
domains where the constitutive parameters deviate from those of the incident field boundary value
problem. The sources are not restricted to the interior of the subdomains Ωi. Differences of the
constitutive parameters can also cause source terms at the interfaces Σi,j between subdomains as
well as on the Neumann boundary Γh. The Dirichlet boundary condition is chosen such that it is
homogeneous in terms of the scattered field.

4.1.2 The weak form

The weak form of the scattered field problem is derived from the total field problem similarly to the
previous section. Assume that the incident field is a solution of the weak equivalent of boundary
value problem (4.1). This is the same as the weak form of the total field problem (2.31) where
the constitutive parameters are replaced by their incident field values. Dropping all terms which
involve the dummy variable V the incident field will satisfy the following variational problem:

Search Ei ∈ Ui such that∫
Ω

curl Φ ·
(

µ−1
i curl Ei

)
d3r− iω

∫
Ω

Φ · ((σi − iωεi)Ei) d3r + iω
∫
Γh

(
n×Φ

)
· (λi (n× Ei)) d2r

= iω
∫
Ω

Φ · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φ · j f d2r− iω
∫
Γh

Φ ·
(

j f + n× H0
)

d2r (4.5a)
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for all Φ ∈ U0 and∫
Ω

grad φ · ((σi − iωεi)Ei) d3r−
∫
Γh

(
n× grad φ

)
· (λi (n× Ei)) d2r

= −
∫
Ω

grad φ · js d3r +
∫
Γh

grad φ (n× H0) d2r (4.5b)

for all φ ∈ V0. The spaces of test and trial functions are defined by

U0 =
{

Φ ∈ Hcurl(Ω) : n×Φ = 0 on Γe
}

, (4.5c)

Ui =
{

Ei ∈ Hcurl(Ω) : n× Ei = n× E0 on Γe
}

(4.5d)

V0 =
{

φ ∈ H1(Ω) : φ = 0 on Γe
}

, (4.5e)

where

Hcurl(Ω) =
{

Ei ∈ (L2(Ω))3 : curl Ei ∈ (L2(Ω))3}, (4.5f)

H1(Ω) =
{

φ ∈ L2(Ω) : grad φ ∈ L2(Ω)
}

(4.5g)

are the spaces of functions with a well-defined curl and gradient, respectively.

The variational problem in terms of the scattered field Es is obtained by inserting the split field
approach E = Ei + Es into the total field variational problem (2.31) and subtracting corresponding
equations from (4.5). As before, all source terms cancel except for those involving the difference of
the two sets of constitutive parameters.

Search Es ∈ Us and V ∈ V such that∫
Ω

curl Φ ·
(

µ−1 curl Es

)
d3r− iω

∫
Ω

Φ · ((σ − iωε)Es) d3r +
∫
Ω

Φ · ((σ − iωε) grad V) d3r

+ iω
∫
Γh

(
n×Φ

)
· (λ (n× Es)) d2r−

∫
Γh

(
n×Φ

)
· (λ (n× grad V)) d2r

=
∫
Ω

curl Φ ·
(

δµ−1 curl Ei

)
d3r− iω

∫
Ω

Φ ·
((

δσ − iωδε
)
Ei
)

d3r

+ iω
∫
Γh

(
n×Φ

)
· (δλ (n× Ei)) d2r (4.6a)

for all Φ ∈ U0 and∫
Ω

grad φ · ((σ − iωε) Es) d3r−
∫
Ω

φγV d3r−
∫
Γh

(
n× grad φ

)
· (λ (n× Es)) d2r

=
∫
Ω

grad φ ·
((

δσ − iωδε
)
Ei
)

d3r−
∫
Γh

(
n× grad φ

)
· (δλ (n× Ei)) d2r (4.6b)

for all φ ∈ V0. The spaces of test and trial functions are defined by

U0 =
{

Φ ∈ Hcurl(Ω) : n×Φ = 0 on Γe
}

(4.6c)

Us = U0 (4.6d)

86



4.1 Scattered field problems

V0 =
{

φ ∈ H1(Ω) : φ = 0 on Γe
}

(4.6e)

V = V0 (4.6f)

where

Hcurl(Ω) =
{

E ∈ (L2(Ω))3 : curl E ∈ (L2(Ω))3} (4.6g)

H1(Ω) =
{

V ∈ L2(Ω) : grad V ∈ L2(Ω)
}

(4.6h)

are the spaces of functions with a well-defined curl and gradient, respectively.

In contrast to the classical form of the scattered field formulation (4.4) source terms in the weak
form (4.6) turn up only as volume integrals over Ω and as a boundary integral over Γh. The source
terms at the interfaces Σi,j (4.4e) and (4.4f) have been absorbed by the variational integrals as
natural interface conditions.

4.1.3 Finite element solution

As in Chapter 3, the variational problem (4.6) forms the point of departure for the finite element
method. The discrete problem is derived in a completely analogous way to Chapter 3. Therefore,
only the final form of the resulting system of linear equations is given here. If the scattered electric
field is expanded in terms of the finite element basis {Φi}N

i=1 as

Es,h(r) =
N

∑
i=1

Ei Φi(r) (4.7)

the unknown linear coefficients Ei and Vi are determined by

n

∑
i=1

a(Φ,Φ)
j,i Ei +

m

∑
i=1

a(Φ,φ)
j,i Vi = f (Φ)

j , j = 1, . . . , n , (4.8a)

n

∑
i=1

a(φ,Φ)
j,i Ei +

m

∑
i=1

a(φ,φ)
j,i Vi = f (φ)

j , j = 1, . . . , m , (4.8b)

where

a(Φ,Φ)
j,i =

∫
Ω

curl Φj ·
(

µ−1 curl Φi

)
d3r− iω

∫
Ω

Φj · ((σ − iωε) Φi) d3r

+ iω
∫
Γh

(
n×Φj

)
· (λ (n×Φi)) d2r, (4.8c)

a(Φ,φ)
j,i =

∫
Ω

Φj · ((σ − iωε) grad φi) d3r−
∫
Γh

(
n×Φj

)
· (λ (n× grad φi)) d2r, (4.8d)

a(φ,Φ)
j,i =

∫
Ω

grad φj · ((σ − iωε) Φi) d3r−
∫
Γh

(
n× grad φj

)
· (λ (n×Φi)) d2r, (4.8e)

a(φ,φ)
j,i = −

∫
Ω

φjγφi d3r (4.8f)
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and

f (Φ)
j =

∫
Ω

curl Φj ·
(

δµ−1 curl Ei

)
d3r− iω

∫
Ω

Φj · ((δσ − iωδε) Ei) d3r

+ iω
∫
Γh

(
n×Φj

)
· (δλ (n× Ei)) d2r−

N

∑
i=n+1

a(Φ,Φ)
j,i Ei −

M

∑
i=m+1

a(Φ,φ)
j,i Vi, (4.8g)

f (φ)
j =

∫
Ω

grad φj · ((δσ − iωδε) Ei) d3r

−
∫
Γh

(
n× grad φj

)
· (δλ (n× Ei)) d2r−

N

∑
i=n+1

a(φ,Φ)
j,i Ei −

M

∑
i=m+1

a(φ,φ)
j,i Vi. (4.8h)

The Dirichlet boundary conditions for Es and V require that Ei = 0 for i = n + 1, . . . , N and Vi = 0
for i = m + 1, . . . , M.

Note that the coefficient matrices of both the total and the scattered field discrete problem are
identical. The total field variational problem (2.31) and the scattered field variational problem (4.6)
differ only by their source terms and boundary values and, therefore, the derived systems of linear
equations only by different right hand side vectors.

4.1.4 Incident fields

Three of the most important types of incident fields have been integrated into the finite element
software suite, the electric and magnetic dipole as well as the plane wave.

The electric and magnetic dipole are prototypes for most of the sources used in active electro-
magnetic methods. The approximation of the real source geometry by an ideal point source is valid
if the fields are considered far enough from the source. This model assumption always needs to be
remembered. The electromagnetic fields of the electric and magnetic dipole have a compact form
solution for the case of a homogeneous fullspace. The fields of an electric dipole at rs excited by
source current density js are given by (Nolting, 1997)

E =
Z

4π

eikr

r2

(
(js − (n · js) n) ikr + (js − 3 (n · js) n)

(
1

ikr
− 1
))

, (4.9a)

H =
1

4π

eikr

r2 (n× js) (ikr− 1) (4.9b)

where r = |r− rs|, n = (r− rs)/r and Z = ωµ/k. Equations (4.9a) and (4.9b) are a solution of
Maxwell’s equations with source current density js(r) = jsδ(r− rs) where δ(r− rs) denotes the
Dirac delta distribution. Similarly, the fields of a magnetic dipole at rs with magnetic dipole
moment m are given by

E =
ikZ
4π

eikr

r2 (n×m) (ikr− 1) , (4.10a)

H = − ik
4π

eikr

r2

(
(m− (n ·m) n) ikr + (m− 3 (n ·m) n)

(
1

ikr
− 1
))

. (4.10b)
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Figure 4.1: Horizontally stratified earth which consists of n layers

(including the upper and lower halfspaces).

If the magnetic dipole is assumed to be the approximation of a single loop circular coil with radius
R, the coil’s axis determines the direction of vector m and |m| = πR2 I where I denotes the current
flowing through the coil.

Equations (4.9) and (4.10) are only valid for an isotropic and homogeneous fullspace. They
are, nevertheless, preferred to the much more complicated formulae for a layered medium which
involve Hankel integrals (Løseth, 2007). The numerical evaluation of these integrals is computa-
tionally expensive compared to the simple expressions of the fullspace case.

In contrast to the dipole field solution, the plane wave solution of Maxwell’s equations for a
horizontally stratified earth reduces to a very compact form. Denote by ki and Zi the complex
wavenumber and the intrinsic complex wave impedance of layer i (i = 1, . . . , n; Figure 4.1). Further,
denote the depth of the layer interfaces by zi and let z0 = z1. Then, the fields of a plane wave
travelling along the z-axis, i. e., perpendicular to the stack of layers can be expressed within layer i
by

Ei = Zi

(
ai eiki(z−zi−1) + bi e−iki(z−zi−1)

)
E0, (4.11a)

H i =
(

ai eiki(z−zi−1) − bi e−iki(z−zi−1)
)

H0 (4.11b)

where E0 and H0 define the horizontal field vectors. They satisfy n · E0 = 0, n · H0 = 0 and
H0 = n× E0 if n = (0, 0, 1)T is the propagation direction. The coefficients ai and bi are derived
in Appendix E and turn out to be independent of z. If they are precomputed the fields can be
evaluated for arbitrary z according to equations (4.11a) and (4.11b) very fast. Note that due to
the one-dimensional model assumptions the fields do not depend on the x- and y-coordinates.
The plane wave solution for a layered medium is the typical incident field pattern for modelling
magnetotellurics.

4.2 Absorbing boundaries – The perfectly matched layer

All electromagnetic methods of geophysics probe part of the earth either with active sources placed
within or near the target under investigation like, e. g., GPR and TEM or with passive sources
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placed far away like, e. g., MT or VLF. In each case, the electromagnetic field introduced by the
source and distorted by the ground structure is not confined to a closed volume but penetrates all
space. The field of a finite source obeys the Sommerfeld radiation condition, i. e., it decays to zero
as the distance from the source approaches infinity.

Translated into mathematical terms, the boundary value problem describing the electromagnetic
phenomena is naturally posed on an infinite domain, in fact, the R3. Numerical simulation with
the finite element method requires a finite domain. Therefore, an artificial boundary Γ needs to
be introduced that defines the simulation volume Ω ( R3. Suitable boundary conditions have to
be posed on the boundary Γ = ∂Ω. Their effect on the fields has to be equivalent to that of the
Sommerfeld radiation condition for the original infinite domain problem. This means, the field
approaches and penetrates the boundary as if there was no boundary. If the field is considered to
be decomposed into the superposition of plane waves with all possible propagation directions,
the boundary must be able to pass all partial waves coming from within the simulation volume
and block all waves coming from outside. This can be formally described by the so called one way
wave equation, a pseudodifferential equation (Trefethen, 1996): Consider the vector Helmholtz
equation of an isotropic and homogeneous medium(

1
c2

∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2

)
E = 0 (4.12)

where c denotes the phase velocity. Any plane wave E = Ê ei(kxx+kyy+kzz−ωt) solves equation (4.12)
if kx, ky, kz and ω satisfy the dispersion relation

kz = ±1
c

√
ω2 − c2k2

x − c2k2
y. (4.13)

The plus sign corresponds to waves travelling in positive z-direction, the minus sign to waves
travelling in negative z-direction. At an artificial planar boundary with a +z-directed outward
normal vector the desired outgoing waves are characterized by positive kz. These waves could be
extracted by a differential operator with an associated dispersion relation

kz = +
1
c

√
ω2 − c2k2

x − c2k2
y. (4.14)

Unfortunately, such a differential equation does not exist. A number of absorbing boundary
conditions can be derived from (4.14) if the square root is approximated by rational functions.
Neglecting the kx and ky terms leads to the dispersion relation kz = ω/c which corresponds to the
simple differential equation(

1
c

∂

∂t
− ∂

∂z

)
E = 0. (4.15)

This zeroth order absorbing boundary condition is exact for waves incident at a right angle onto
the x-y-plane but causes reflections for oblique incidences, i. e., if kx and ky do not vanish.

90



4.2 Absorbing boundaries – The perfectly matched layer

Higher order absorbing boundary conditions involve higher order derivatives of space and time.
In other words, they may require more regular solutions than the wave equation within Ω. Their
benefit, however, is a lower reflectivity for a wider range of oblique incidences.

The problem could be treated mathematically rigorously by coupling the finite element solution
of the interior problem with an integral equations solution of the exterior problem. This approach,
however, has several drawbacks: The implementation is rather involved since two numerical
methods have to be implemented. The key problem of the integral equation method is finding an
appropriate Green’s function. Take, e. g., a problem where some objects are imbedded within a
layered earth structure. This layered earth has to be taken into account for computing the Green’s
function, i. e., the field of a point source placed at an arbitrary position within the earth. The Green’s
function depends on the particular model structure. Therefore, this approach might be beneficial
for a certain class of models and special cases but is not very general.

Simple boundary conditions are applicable directly to the finite element method and are easier
implemented. One possibility to improve their poor quality for obliquely incident wave fields is
moving the boundary further away from the simulation volume of interest. The size of this sponge
layer can be reduced if loss is added to the material properties. While this approach has been
used for a long time, an revolutionary improvement has been suggested by Berenger in 1994. He
modified the set of Maxwell’s equations such that the sponge layer has optimal properties in a
certain sense: Waves traversing the layer are exponentially damped. And, there is no reflection
at the interface between the simulation volume and the sponge layer. That’s why his approach is
called the perfectly matched layer (PML). A number of different derivations of the PML equations
(in contrast to the usual Maxwell’s equations) have been made, since (Berenger, 1994; Chew and
Weedon, 1995; Rappaport, 1995; Sacks, Kingsland, Lee, and Lee, 1995; Fang and Wu, 1995; Gedney,
1996; Zhao and Cangellaris, 1996; Teixeira and Chew, 1997; Petropoulos, 2000). It turns out that the
PML can be seen as a refined combination of both simple approaches – moving away the boundary
and adding loss – if a complex coordinate stretching is applied to Maxwell’s equations.

Concerning finite element algorithmic development, the PML is implemented most easily using
an anisotropic media set of equations. They will be derived using the complex coordinate stretching
argument in the next section. Some properties of the PML will be examined before the chapter is
finished by a simple example.

4.2.1 Construction of a perfectly matched layer

The starting point for all considerations is the boundary value problem (boundary value problem)
which is posed on an infinite domain Ω∗ ⊆ R3. A Sommerfeld radiation condition determines
the solution behavior far away from any sources. Ω∗ can have a boundary Γ∗ where problem
dependent boundary conditions are imposed like, e. g., PEC or symmetry boundary conditions.
In order to be able to compute a finite element approximation to the boundary value problem
solution the infinite domain Ω∗ is subdivided into three disjoint parts, a Maxwell domain ΩMaxwell,
a PML domain ΩPML and the remainder Ω∞ = Ω∗ \Ω. The Maxwell and PML domains are chosen
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(a)

TX RX

ΩMaxwell

ΩPML

Ω∞ΣΓ∞

(b)

Ω∞ ΩPML ΩMaxwell ΩPML Ω∞

Γ∞ Σ Γ: PEC

Γ: PEC

Σ Γ∞

Figure 4.2: Examples of PML applications: (a) a buried object within the earth, (b) a waveguide.

as finite subsets of Ω∗ such that their union Ω = ΩMaxwell ∪ΩPML forms the finite computational
domain. See Figure 4.2 for two examples.

The boundary of the computational domain Ω can consist of up to two parts. The first one,
Γ ⊆ Γ∗, is the restriction of Γ∗ to Ω. The same boundary conditions apply for the boundary
value problems posed on Ω∗ and Ω. The second part will be denoted by Γ∞ = Ω ∩Ω∞. Γ∞ is an
artificial boundary which cuts the finite computational domain out of the infinite domain Ω∗. New
boundary conditions have to be introduced on Γ∞ that replace and approximate the Sommerfeld
radiation condition of the original problem. The interior boundary Σ = ΩMaxwell ∩ΩPML separates
the Maxwell and the PML domain.

It is reasonable to assume that the solution is only needed at a finite and discrete set of points of
interest within Ω∗. The Maxwell domain ΩMaxwell has to be large enough to contain these points of
interest as well as all sources and relevant structures that contribute to the wavefield at the points
of interest. This condition is easily met for bounded scatterers. Unbounded structures like, e. g., the
layered halfspace will have to be cut somewhere and, consequently, introduce diffraction points at
the boundary. In this case, a suitable balance has to be found which minimizes the domain size on
the one hand and, on the other hand, constrains solution errors introduced by cutting the boundary
through reflectors.

The PML domain ΩPML is a buffer which moves away the boundary of the computational domain
Γ∞ from the Maxwell domain and, thus, reduces solution errors caused by the approximate bound-
ary conditions. In addition, Maxwell’s equations are modified in ΩPML such that no reflections
occur at the Maxwell–PML domain interface Σ and that the solution decays rapidly away from Σ.
Consequently, the influence of the boundary condition imposed on Γ∞ further decreases.

The construction of a PML can be divided into three steps.

1. Define the PML domain ΩPML ⊂ Ω∗ which acts as a sponge layer between ΩMaxwell and Ω∞.
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ΩMaxwell

ΩPML

Γ∞

Σ
Figure 4.3: The PMLs of adjacent boundary faces of ΩMaxwell

overlap. The arrows indicate the stretching direction.

2. Define a complex coordinate stretching on the PML domain. Maxwell’s equations are assumed
to be valid for fields defined over these complex coordinates while the constitutive parameters
maintain their values from the original problem defined on Ω∗.

3. Rewrite Maxwell’s equations from complex to real coordinates. This yields the classical
system of Maxwell’s equations with modified, anisotropic constitutive parameters within the
PML.

These steps will be made more precise in the following.

PML geometry

The derivation of the PML equations will be restricted to the case of a PML in Cartesian coordinates.
Since coordinate surfaces in Cartesian coordinates are planar, the Maxwell–PML domain interface Σ
is assumed to be composed of planar faces, in particular of polygons. If Γ = ∅, the Maxwell domain
is a polyhedron. This assumption has the nice consequence that ΩMaxwell can be triangulated by
standard finite element meshes with rectilinear elements.

Now, the PML domain can be constructed in the following manner: A planar layer of constant
thickness Li is attached to the i-th polygonal subdomain of Σ. The layer not only covers its
originating boundary face but extends to the right and left such that layers of adjacent subdomains
overlap and create a boundary Γ∞ parallel to Σ (Figure 4.3). Γ∞ can be seen as an extrusion of Σ.
The distance between Σ and Γ∞ is at least mini Li. A complex coordinate stretching will be applied
within the i-th layer in the direction of the i-th face normal vector. Within the overlap regions, the
individual stretchings of all layers involved will contribute to the total stretching. The stretching is
discussed in the next section.

Complex coordinate stretching

The idea behind the complex coordinate stretching can be illustrated by considering an one-
dimensional, scalar wave function u(x) = u0 cos kx. If the wavenumber k is real, the wave propa-
gates with constant amplitude u0 along the real x-axis. This corresponds to the black, horizontal
line in Figure 4.4 which gives a color encoded picture of u(x) for x ∈ C. The wave is damped if
u is defined on a path x̃(x) in the upper complex plane like the one shown by the green line in
Figure 4.4, u(x̃) = u0 e−kx= cos kx<. The mapping x 7→ x̃ is assumed to be bijective and called a
complex coordinate stretching.
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0 x
ℜ

0

x
ℑ

 

 

u(x)

−1

0

1

Figure 4.4: Continuation of a harmonic wave
u(x) = cos kx, k, x ∈ R, into the complex
plane. The PML extension of Maxwell’s
equations replaces the path along the real
axis by a path within the upper complex
plane, marked by the green line.

This motivates the following complex coordinate transform R3 3 r 7→ r̃ ∈ C3 for a Cartesian
PML:

r̃(r) = r +
l

∑
k=1

Sk
(
(r− rk)Tnk

)
nk (4.16a)

where

Sk(t) =
t∫

0

sk(τ) dτ (4.16b)

and sk(t), R 3 t 7→ sk(t) ∈ C, is the k-th, frequency dependent, so-called stretching function which
is applied along the direction of vector nk. If the Maxwell–PML domain interface Σ consists of l
planar faces with normal vectors nk, l different layers are attached to Σ to form the PML domain
and l corresponding stretching functions sk are defined. For each PML subdomain, however, the
summation in (4.16a) only involves those layers which actually overlap within the subdomain.
The quantity t = (r− rk)Tnk measures the distance from the plane through rk. This point and the
normal vector nk define the plane which is tangent to the k-th polygonal Maxwell–PML domain
interface part.

A short calculation shows that the Jacobian of the mapping (4.16a) J = ∂ r̃i/∂rj reads

J = I +
l

∑
k=1

sk
(
(r− rk)Tnk

)
nknT

k (4.17)

where I denotes the identity matrix.
Throughout this work, all choices of the stretching function sk(t) will be covered by the definition

sk(t) = aktmk +
i

ω + ck
bktnk (4.18)

where ak, bk ∈ R, ck ∈ C, mk, nk ∈N, 0 ≤ t ≤ Lk and Lk is the thickness of the k-th PML. The stretch-
ing function is a polynomial of t with bounded coefficients provided that ω 6= ck. If mk, nk > 0,
sk(t) vanishes at t = 0. Equation (4.18) reduces to some important cases for particular sets of the
PML parameters:

• ak = 0, ωk = 0 is the standard PML stretching (Rappaport, 1995; Fang and Wu, 1995);
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• ak = 0, ωk ∈ iR is the complex frequency shifted (CFS) PML stretching (Kuzuoglu and Mittra,
1996);

• bk = 0 is a physical stretching of the PML cells.

The classical definition of the electric field E as the mapping R3 3 r 7→ E(r) ∈ C3 is now extended
to a transformed electric field C3 3 r̃ 7→ Ẽ(r̃) ∈ C3 and similar for the magnetic field H, the electric
flux density D, the magnetic flux density B and the electric current density j. Analogously to E, H,
D, B, j which are a solution to Maxwell’s equations combined with constitutive equations Ẽ, H̃, D̃,
B̃, j̃ are to satisfy Maxwell’s equations written in the transformed coordinates r̃,

˜curl Ẽ = iωB̃, (4.19a)
˜curl H̃ = j̃− iωD̃, (4.19b)
˜div B̃ = 0, (4.19c)

˜div( j̃− iωD̃) = 0 (4.19d)

with constitutive equations

B̃ = µ̃H̃, (4.19e)

D̃ = ε̃Ẽ, (4.19f)

j̃ = σ̃Ẽ. (4.19g)

The tilde over the operators curl and div denotes differentiation with respect to the stretched
coordinates. For the PML domain, the constitutive parameters are assumed to maintain their values
from the original problem defined on Ω∗,

ε̃(r̃) ≡ ε(r), (4.19h)

µ̃(r̃) ≡ µ(r), (4.19i)

σ̃(r̃) ≡ σ(r) (4.19j)

for r ∈ ΩPML and r̃ = r̃(r). The PML has been designed as a buffer zone where the wave field
leaving the Maxwell domain is extinguished. This implies that the PML is source free and does
not generate a new wave field which can propagate back into the Maxwell domain. Therefore, all
source terms are restricted to the Maxwell domain and have been dropped in equations (4.19a)
to (4.19g).

Anisotropic PML equations

Equations (4.19a) to (4.19g) are now rewritten in terms of the real coordinates. To do this, the finite
element techniques can be applied which are used for mappings between reference and actual
elements. First, note that per definition and by the assumption on si(t) the mapping r 7→ r̃ is
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continuously differentiable, invertible and surjective. Therefore, Corollary 3.58 of Monk (2003) can
be used to rewrite the curl of a vector function Φ with well-defined curl

˜curl Φ̃ =
1

det J
JT curl Φ if Φ̃ = J−1Φ (4.20a)

where J denotes the Jacobian matrix with entries Ji,j = ∂r̃i/∂rj. Similarly, Lemma 3.59 gives for
another vector field Ψ with well-defined divergence

˜div Ψ̃ =
1

det J
div Ψ if Ψ̃ =

1
det J

JTΨ. (4.20b)

While the fields Ẽ and H̃ transform according to (4.20a), the flux densities D, B and j transform
according to (4.20b). Now, the transform pairs for the constitutive parameters can be derived as
follows:

D̃ = ε̃Ẽ
1

det J
JTD = εJ−1E

D = (det J) J−TεJ−1E

and similarly for µ and σ. If new constitutive parameters are defined by

ε̂ = (det J) J−TεJ−1, (4.21a)

µ̂ = (det J) J−TµJ−1, (4.21b)

σ̂ = (det J) J−Tσ J−1 (4.21c)

the system of partial differential equations (4.19a) to (4.19d) with constitutive equations (4.19e)
to (4.19g) is equivalent to

curl E = iωB, (4.22a)

curl H = j− iωD, (4.22b)

div B = 0, (4.22c)

div(j− iωD) = 0 (4.22d)

with constitutive equations

B = µ̂H, (4.22e)

D = ε̂E, (4.22f)

j = σ̂E. (4.22g)

To prove this, straightforward application of the transform pairs (4.20a) and (4.20b) shows that

curl E = iωB

(det J) J−T ˜curl Ẽ = iω (det J) J−T B̃
˜curl Ẽ = iωB̃
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and similarly for the other curl equation. Furthermore,

div B = 0

(det J) ˜div B̃ = 0
˜div B̃ = 0

and similarly for the other divergence equations. It has been assumed that det J 6= 0, i. e., that J is
invertible for all r ∈ ΩPML which follows from the assumption that r̃(r) is invertible.

The partial differential equations (4.19a) to (4.19d) and the constitutive equations (4.19e) to (4.19g)
can be combined and reduce to the PML equations in complex coordinates r̃(r), r ∈ ΩPML,

˜curl Ẽ = iωµ̃H̃, (4.23a)
˜curl H̃ = (σ̃ − iωε̃)Ẽ, (4.23b)

˜div µ̃H̃ = 0, (4.23c)
˜div(σ̃ − iωε̃)Ẽ = 0 (4.23d)

where the constitutive parameters are chosen according to equations (4.19h) to (4.19j). Combination
of equations (4.22a) to (4.22d) and (4.22e) to (4.22g) produces the equivalent formulation in real
coordinates r ∈ ΩPML,

curl E = iωµ̂H, (4.24a)

curl H = (σ̂ − iωε̂)E, (4.24b)

div µ̂H = 0, (4.24c)

div(σ̂ − iωε̂)E = 0. (4.24d)

The constitutive parameters are defined by equations (4.21a) to (4.21c). If a solution
{

Ẽ, H̃
}

of
equations (4.23a) to (4.23d) is known, the fields

{
JẼ, JH̃

}
, defined by the transform pair (4.20a),

will satisfy equations (4.24a) to (4.24d).
From this point on, the usual theory for Maxwell’s equations applies except for the fact that

the real-valued, oftentimes isotropic constitutive parameters are replaced by complex-valued,
anisotropic ones. Note that the definitions (4.21a) to (4.21c) preserve symmetry of the constitu-
tive parameter tensors. The PML constitutive parameters ε̂, µ̂, σ̂ are symmetric tensors if the
corresponding Maxwell constitutive parameters ε, µ, σ are symmetric tensors.

4.2.2 Properties of a uniaxial PML

The properties of the electromagnetic field within the PML are most easily revealed if a plane wave
incident onto the planar interface between the Maxwell domain and its PML extension is examined.
Since only one interface is considered there is only one complex stretching function and the PML is
therefore called uniaxial. For simplicity only the case of a homogeneous and isotropic medium is

97



Chapter 4 Enhanced concepts

inspected. The Maxwell domain is assumed to cover the halfspace z < 0 and the PML domain the
halfspace z > 0. The complex coordinate transform (4.16) for this particular case simplifies to

r̃(r) = r + S(z) ez for z > 0 (4.25)

where the stretching is performed along the direction of the third unit vector ez. The Jacobian of
r̃(r) takes the explicit form

J = I + s(z) ezeT
z =

1 0 0
0 1 0
0 0 1 + s(z)

 (4.26)

where s(z) = S′(z). The introduction of function d(z) according to

z̃(z) = z + S(z) = z d(z) (4.27a)

for z > 0 will be useful in the following. Using definitions (4.16) and (4.18), d(z) can be written as

d(z) = 1 +
1
z

∫ z

0
s(t) dt

= 1 +
azm

m + 1
+

i
ω + c

bzn

n + 1

= 1 +
azm

m + 1
+

c=
(ω + c<)2 + c2

=

bzn

n + 1
+ i

ω + c<
(ω + c<)2 + c2

=

bzn

n + 1
. (4.27b)

One dimensional wave propagation

If the plane wave propagates along the z-axis it encounters the Maxwell–PML domain interface at
a right angle. Without loss of generality, the electric field is assumed to be polarized parallel to the
y-axis and can be expressed by

E(r) = E(z) ey (4.28a)

where

E(z) = E0

exp {ikz} , z ≤ 0,

exp {ikz̃(z)} , z > 0.
(4.28b)

The electric field of two instances of a PML is depicted for z ≥ 0 in panels (a) of Figures 4.5 and 4.6.
The electric field expression can be reinterpreted if a modified wavenumber is introduced,

E(z) = E0 exp
{

ik̃z
}

(4.29a)

with

k̃ = k̃(z) =

k, z ≤ 0,

k d(z), z > 0.
(4.29b)
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Figure 4.5: Plane wave traversing a uniaxial PML with µr = 1, εr = 8, σ = 0.1 S/m, L = 1 m, a = 0,
b = 2.53× 108 Hz/m2, c = 0, n = 2.
(a) Electric field E = E(z) ey. (b) Wavelength λ(z). (c) Reflection coefficient R( f ) calculated
analytically (line) and numerically (symbols) for two grid spacings h and three polynomial
degrees p of the finite element basis functions.
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Figure 4.6: Plane wave traversing a uniaxial CFS PML with µr = 1, εr = 8, σ = 0.1 S/m, L = 1 m,
a = 0, b = 2.27× 108 Hz/m2, c< = 0, c= = 2π × 2.30× 106 Hz, n = 2.
(a) Electric field E = E(z) ey. (b) Wavelength λ(z). (c) Reflection coefficient R( f ) calculated
analytically (line) and numerically (symbols) for two grid spacings h and three polynomial
degrees p of the finite element basis functions.
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Equation (4.29a) describes a plane wave defined for z ∈ R with a non-constant wavenumber k̃(z).
The imaginary part of k̃,

k̃= = k= +
azm

m + 1
k= +

bzn

n + 1
c=k= + (ω + c<) k<

(ω + c<)2 + c2
=

for z > 0, (4.30a)

determines the damping of the wave. If k̃= > 0, the wave is exponentially damped. The first
summand k= is the normal damping coefficient which is present in all conductive media. The
other two terms are introduced by the PML extension and add to the normal damping if a ≥ 0
or b ≥ 0 and c=k= + (ω + c<)k< ≥ 0. Note that k̃= = k= at z = 0 and the PML damping increases
monotonically as a function of z if m, n > 0. The real part of k̃,

k̃< = k< +
azm

m + 1
k< +

bzn

n + 1
c=k< − (ω + c<) k=

(ω + c<)2 + c2
=

for z > 0, (4.30b)

determines wave propagation which is more frequently described by, e. g., phase velocity v = ω/k̃<
or wavelength λ = 2π/k̃<. The general form (4.30b) includes some important special cases which
deserve a closer examination. In order to ensure exponential damping, b > 0 and c= ≥ 0 is assumed
throughout the following.

Standard PML: a = 0 and c = 0 reduce k̃< to

k̃< = k< −
bzn

n + 1
k=
ω

for z > 0. (4.31)

For a dielectric, k= = 0 and the propagation constant is the same within the Maxwell and the PML
domain. Within a conductive medium, k̃< is a decreasing function of z which assumes negative
values for z > zc where

zc = n

√
n + 1

b
ω

k=/k<
. (4.32)

Consequently, the phase velocity and the wavenumber are increasing functions of z as long as z < zc.
They have a pole at z = zc. An infinite phase velocity is of course a non-physical phenomenon
which is introduced by the non-physical PML extension of Maxwell’s equations. For z > zc the
phase velocity and wavenumber are negative. Their absolute values are monotonically decreasing
functions of z which decay to zero as z approaches infinity. This can be seen in panel (b) of
Figure 4.5 for frequencies 106 Hz and 107 Hz. Since the poles of the wavelength are caused by a
root of the complex wavenumber real part, they coincide with a zero crossing of the electric field
imaginary part shown in panel (a) above. The field itself does not look suspicious. The dubious
behavior of phase velocity and wavelength can be relaxed for the complex frequency shifted (CFS)
PML. This modification has been introduced by Kuzuoglu and Mittra (1996) in order to obtain
anisotropic constitutive parameters which satisfy the Kramers-Kronig relations and to render the
PML extension of Maxwell’s equations causal. The standard PML is not causal.
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CFS PML: a = 0 and c< = 0 reduce k̃< to

k̃< = k< +
bzn

n + 1
c=k< −ωk=

ω2 + c2
=

for z > 0. (4.33)

If, on the one hand, c= > ωk=/k<, wavelength and phase velocity are decreasing functions of z.
This holds especially for dielectric media if c= > 0. A smaller wavelength will have to be taken care
of by a finer mesh within the PML domain if the boundary value problem is solved numerically. If,
on the other hand, 0 < c= < ωk=/k<, wavelength and phase velocity are increasing functions of z
as long as z < zc where

zc = n

√
n + 1

b
ω2 + c2

=
ωk=/k< − c=

. (4.34)

Compared to the standard PML which is depicted in Figure 4.5, the range of critical frequencies
where the wavelength has a pole can be reduced considerably by introducing the imaginary
frequency shift. This fact can be seen in panel (b) of Figure 4.6.

For monofrequent problems it is possible to render the propagation constant the same for both
the Maxwell and the PML domain by choosing c= = ωk=/k<. In contrast to the standard PML this
property can be achieved also for conductive media but only at a single frequency.

Reflection coefficient for orthogonal incidence

So far, only the outgoing wave has been considered. If the PML domain is terminated at z = L, the
boundary condition imposed there gives rise to a reflection and an incoming wave. In the simplest
case, the PML is terminated by a homogeneous Dirichlet boundary condition for the tangential
electric field, i. e., the computational domain is enclosed by a PEC surface. Then the electric field is
given by

E(z) = E0
(
exp

{
ik̃z
}
− R exp

{
−ik̃z

})
for z ≤ L (4.35a)

where

R = exp
{

2ik̃L
}

(4.35b)

is the reflection coefficient of the truncated PML. At the interface, E(0) = E0(1− R). The magnitude
of R is determined by k̃=,

|R| = exp
{
−2k̃=L

}
= exp {−2k=L} exp

{
−2

(
aLm+1

m + 1
k= +

bLn+1

n + 1
c=k= + (ω + c<) k<

(ω + c<)2 + c2
=

)}
. (4.36)

The first exponential term is the natural damping of the Maxwell medium which depends on the
electric conductivity. The second exponential term describes the influence of the PML extension,
the complex coordinate stretching.
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4.2 Absorbing boundaries – The perfectly matched layer

The frequency dependency of R is depicted in panel (c) of Figures 4.5 and 4.6. Its analytically
computed values according to equation (4.37) are shown as a solid line. Both instances of the
PML have been designed such that R( f ) ≤ 10−4 for 106 Hz ≤ f ≤ 109 Hz. In order to assess the
accuracy of the finite element implementation the problem has been solved numerically with two
grid spacings h = 0.1 m and 0.01 m and a piecewise polynomial approximation of E of degrees
p = 1, 2 and 3. The numerical results are shown in the figures as symbols. The reflection coefficient
is extracted from the total field numerical solution by computing R = 1− E(0)/E0. Note that the
finest resolution h = 0.01 m with p = 3 involves 300 degrees of freedom for Ey within the PML if
only the discretization with respect to z is considered. However, only this very fine mesh reproduces
the analytical reflection coefficient sufficiently well. There are significant differences between the
analytically and numerically computed reflection coefficients for the coarser approximations at
least at the low and high frequencies. This can partly be explained by the fact that the numerical
approximation has to recover the field with an accuracy of R. Consequently, larger values of R will
be recovered better than lower values which occur at high and for the standard PML also at low
frequencies. The higher frequency part also suffers from the smaller wavelengths which are poorly
sampled by the coarser mesh and lower polynomial degrees.

In practice, the PML will not be sampled that densely. The additional number of degrees of
freedom spent for the PML domain solution should not exceed a reasonable factor of the number
of degrees of freedom for the solution of interest in the Maxwell domain. Even the coarse grid
spacing h = 0.1 m, which subdivides the PML into 10 elements in z-direction, combined with a
piecewise linear approximation of the electric field appears to cut the edge of this assumption. As
a conclusion, the theoretical reflection coefficient (4.37) can be used to get an order of magnitude
estimation for the actual effect of the truncated PML but will rarely be realized in practice. The
dominating influence is supposed to be the approximation error of the finite element solution.

Polynomial stretching

The spatial variation of the stretching function (4.18) is a polynomial of the form bzn. Interestingly
enough, the reflection coefficient of the truncated PML (4.36) only depends on the integral value∫ L

0 bzn dz = bLn+1/(n + 1). In theory, a PML can be constructed using polynomials of arbitrary
degree such that the same reflection coefficient is obtained. Discretization errors will make a
difference in practice if the solution varies too rapidly with a polynomial stretching of a high
degree.

In order to achieve a smooth transition of the constitutive parameters between the Maxwell
and the PML domain, n > 0 has to be assumed. If n = 0 the PML stretching function is piecewise
constant and renders the Jacobian (4.17) of the coordinate transform (4.16) discontinuous and,
according to their definition (4.21), also the anisotropic constitutive parameters. The PML thus
created will suffer from physical reflections at the interfaces where the constitutive parameters are
discontinuous. This effect is demonstrated in Figure 4.7.

The figure depicts three instances of the polynomial stretching bzn with n = 1, 2, 3 in panel (a).
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Figure 4.7: (a) Spatial component bzn of the stretching function s(z) for n = 1, 2, 3 and its staircase
approximation. (b) Corresponding reflection coefficient of a CFS PML computed numerically
with grid spacing h = 0.01 m and a cubic finite element basis (p = 3). The remaining CFS PML
parameters are L = 1 m, a = 0, c< = 0, c= = 2π × 2.30× 106 Hz, µr = 1, εr = 8, σ = 0.1 S/m.
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4.2 Absorbing boundaries – The perfectly matched layer

They have been chosen such that they yield the same reflection coefficient. Panel (b) shows that
the analytically and numerically computed reflection coefficients agree very well for the spatial
discretization of h = 0.01 m and the piecewise cubic finite element basis used. If the continuous
stretching function is approximated by a piecewise constant, ‘staircase’ function as shown in panel
(a) the numerically determined reflection coefficient shown in panel (b) clearly deviates from the
continuous case, as predicted. The extremely fine discretization practically excludes numerical
errors and identifies the physical reflections at the material discontinuities as the origin of the poor
performance of the staircase PML.

The staircase PML is of some practical relevance, though. It is usually used in finite difference
approximations of Maxwell’s equations where constitutive parameters are assumed to be piecewise
constant. This assumption is relaxed for the finite element approximation where constitutive
parameters enter the variational integrals. Their spatial variation is accommodated by using
numerically quadrature when the integrals are evaluated. Concluding, PMLs for the finite element
method are better constructed using continuous stretching functions (n > 0).

Anisotropy

The isotropic constitutive parameters of the Maxwell domain are transformed to anisotropic
parameters within the PML domain. According to equations (4.21) and (4.26),

η̂ = η (det J) J−T J−1

= η

1 + s(z) 0 0
0 1 + s(z) 0
0 0 1

1+s(z)

 (4.37)

where η is used as a placeholder for ε, µ and σ. This particular form of an anisotropic medium has
been considered in section 2.5 of Chapter 2. Setting M = (det J) J−T J−1 reveals that the uniaxial
PML extension of an isotropic Maxwell medium does not distinguish between two polariza-
tions with distinct wavenumbers as it is the case with a generally anisotropic medium. The two
wavenumbers are identical but their values very well depend on the propagation direction.

In any boundary value problem discussed so far the constitutive parameter tensors have been
assumed to possess eigenvalues bounded from below and above. This guarantees that the integrals
defining the finite element matrix entries are bounded as well. In Chapters 2 and 3 the electric
conductivity had been assumed to be non-zero in order to have a non-vanishing contribution of
the integral

∫
Ω grad φ · (σ − iωε)E d3r also in the static limit ω → 0. Following this concept, the

eigenvalues of the anisotropic PML constitutive parameters should be bounded for low frequencies
as well. As PMLs are usually applied to models describing wave propagation the notion of ‘low
frequency’ differs somewhat from the low frequencies considered in Chapter 3. Nevertheless, the
idea of bounded constitutive parameters might prove to be beneficial for numerical accuracy as
well.
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Returning to the uniaxial PML, the critical eigenvalue of η̂ according to (4.37) is

1
|1 + s(z)| =

1∣∣1 + azm + i
ω+c bzn

∣∣
=

1√(
1 + azm + c=

(ω+c<)2+c2
=

bzn
)2

+
(

ω+c<
(ω+c<)2+c2

=
bzn
)2

(4.38a)

For the standard PML, a = 0, b > 0 and c = 0,

1
|1 + s(z)| =

1√
1 +

(
bzn

ω

)2
=

ω√
ω2 + (bzn)2

ω→0−−→ 0. (4.38b)

Introduction of an imaginary frequency shift c= with the CFS PML, a = 0, b > 0, c< = 0 and c= > 0,
establishes a non-zero lower bound,

1
|1 + s(z)| =

1√(
1 + c=

ω2+c2
=

bzn
)2

+
(

ω
ω2+c2

=
bzn
)2

ω→0−−→
∣∣∣∣ c=
c= + bzn

∣∣∣∣ (4.38c)

for a PML domain of finite extension, z < ∞.
From a numerical point of view the anisotropy factor ρ of the constitutive parameter tensors is of

interest. It is defined as the ratio of the largest and smallest eigenvalue of η̂ and takes the form

ρ =
1

|1 + s(z)|2 (4.39)

if a > 0 in equation (4.18). Similarly to a model with highly discontinuous constitutive parameters
a highly anisotropic medium causes large variations of the numerical values present in the finite
element matrices and deteriorates the system matrix condition. This has been shown in section 3.5.5
of Chapter 3 for the case of a strong contrast in the electric conductivity.

Figure 4.8 illustrates this effect for the case of the anisotropic PML medium. The standard PML
of Figure 4.5 and the CFS PML of Figure 4.6 are compared. Panel (a) shows the corresponding
anisotropy factors which differ markedly only at lower frequencies. The finite element system
matrix condition number has been computed for a piecewise polynomial approximation of the
electric field of degrees p = 1, 2 and 3. Differing matrix condition numbers for the two PML
instances can only be observed visually at low frequencies, in agreement with the anisotropy factor.
The inferior matrix condition number of the standard PML is not significant for the frequency range
considered.

Reflection coefficient for oblique incidence

A plane wave propagating within the x-z plane at angle ϕ measured from the positive z-axis
(Figure 4.9) is described by the expression exp {ik(x sin ϕ + z cos ϕ)}. The one-dimensional model
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Figure 4.8: (a) Anisotropy factor ρ( f ) of the PML of Figure 4.5 and of the CFS PML of Figure 4.6. (b)
1-norm condition number of the system matrix for grid spacing h = 0.1 m and three polynomial
degrees p of the finite element basis functions.

structure permits the decomposition of the wavefield into two independent modes. If the definition
of the PML electric and magnetic fields, wavenumber and stretching function are extended to the
Maxwell domain by

Ẽ(r) =

E(r), z ≤ 0,

Ẽ(r̃(r)), 0 < z ≤ L,
(4.40a)

H̃(r) =

H(r), z ≤ 0,

H̃(r̃(r)), 0 < z ≤ L,
(4.40b)

k̃(z) =

k, z ≤ 0,

k d(z), 0 < z ≤ L, and
(4.40c)

s̃(z) =

0, z ≤ 0,

s(z), 0 < z ≤ L,
(4.40d)

the notation of the electromagnetic fields can be compacted. The extended PML electric and
magnetic fields satisfy the usual Maxwell’s equation within the Maxwell domain and Maxwell’s
equations in stretched coordinates within the PML domain. Therefore, the electric field in real
coordinates is obtained for the PML domain by the transformation (4.20a), E = JẼ. The Jacobian of
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Figure 4.9: Propagation direction of a plane wave travelling

within the x-z-plane and incident on the Maxwell–PML
domain interface at angle ϕ.

the uniaxial PML (4.26) only affects the z-components which are related by Ez = (1 + s(z))Ẽz. The
same applies to the magnetic field.

Now, the electromagnetic fields in real coordinates are sought according to the following ap-
proach:

Transverse electric (TE) mode

Hx(x, z) = −H0 eikx sin ϕ
(

eik̃(z)z cos ϕ + R e−ik̃(z)z cos ϕ
)

cos ϕ (4.41a)

Ey(x, z) = E0 eikx sin ϕ
(

eik̃(z)z cos ϕ − R e−ik̃(z)z cos ϕ
)

(4.41b)

Hz(x, z) = H0 (1 + s̃(z)) eikx sin ϕ
(

eik̃(z)z cos ϕ + R e−ik̃(z)z cos ϕ
)

sin ϕ (4.41c)

Transverse magnetic (TM) mode

Ex(x, z) = E0 eikx sin ϕ
(

eik̃(z)z cos ϕ − R e−ik̃(z)z cos ϕ
)

cos ϕ (4.42a)

Hy(x, z) = H0 eikx sin ϕ
(

eik̃(z)z cos ϕ + R e−ik̃(z)z cos ϕ
)

(4.42b)

Ez(x, z) = −E0 (1 + s̃(z)) eikx sin ϕ
(

eik̃(z)z cos ϕ + R e−ik̃(z)z cos ϕ
)

sin ϕ (4.42c)

The fields can easily be shown to satisfy Maxwell’s equations in real coordinates if the constants
E0 and H0 are related by H0 = YE0 where Y is the complex wave admittance. E0 and H0 are
independent constants for each mode. Note that k̃ only appears in the exponential in terms of z
and not in the exponential in terms of x because k̃ absorbs the PML function d(z) which is only
present in the stretched coordinate z̃(z).

The reflection coefficient R needs to be determined by the boundary condition which terminates
the PML domain at z = L.

PEC boundary condition: If the tangential electric field is made to vanish on the boundary,

n× E = 0 (4.43a)

at z = L where n = (0, 0, 1)T, the reflection coefficient is given by

R = e2ik̃(L)L cos ϕ = Rcos ϕ
0 (4.43b)
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Figure 4.10: Reflection coefficient R of a PML,
which is terminated by a Dirichlet boundary
condition (PEC) or by an absorbing boundary
condition (ABC), as a function of the angle of
incidence φ.

for both modes. It is related to the reflection coefficient with orthogonal incidence R0 = R(ϕ = 0)
by the power of cos ϕ.

ABC boundary condition: If a first order absorbing boundary condition is applied (Jin and Chew,
1996),

n× H + n×
(

k̃ (ωµ̂)−1 n× E
)

= 0 (4.44a)

at z = L where n = (0, 0, 1)T, the reflection coefficient is given by

R =
1− cos ϕ

1 + cos ϕ
e2ik̃(L)L cos ϕ =

1− cos ϕ

1 + cos ϕ
Rcos ϕ

0 (4.44b)

for both modes. Of course, R = 0 for ϕ = 0 because a plane wave incident at a right angle onto the
boundary satisfies the absorbing boundary condition of zeroth order exactly. Here, R0 also denotes
the reflection coefficient with orthogonal incidence of a PEC boundary condition truncated PML.

The angular dependency of the reflection coefficients R according to equations (4.43b) and (4.44b)
is depicted in Figure 4.10 for R0 = 10−4. Not surprisingly, the absorbing boundary condition
outperforms the PEC boundary condition and produces unwanted reflections of lower magnitude
for all angles of incidence.

4.2.3 The PML in three dimensions – An example

In order to demonstrate the use of the PML technique in three dimensions a simple test example has
been devised as follows. The computational domain is the cube Ω = [0, 0.7]3 m3 whose intersection
with the sphere S = {r : |r| ≤ 0.1 m} of radius 0.1 m and placed at the origin has been removed
(Figure 4.11(a)). The electric field of a vertical electric dipole (VED) placed at the origin is to
be computed within the Maxwell domain ΩMaxwell = [0, 0.5]3 m3 \ S . The electric dipole field is
coupled into the computational domain by prescribing the tangential electric field on the spherical
surface ∂S . This construction avoids the source singularity at the origin. For symmetry reasons,
the tangential components of the magnetic field are made to vanish on the planar faces x, y = 0 by
imposing a homogeneous Neumann boundary condition in terms of the electric field. Similarly,
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Figure 4.11: Geometry of the 3-D PML test model (a) and its boundary mesh (b).

a homogeneous Dirichlet boundary condition is imposed on the plane z = 0 which requires that
the tangential electric field components vanish. The remaining boundary part Γ∞ at x, y, z = 0.7 m
is subject either to a homogeneous Dirichlet, i. e., PEC boundary condition or to a mixed, i. e.,
absorbing boundary condition of the first order.

The PML domain ΩPML = Ω \ΩMaxwell serves as a buffer zone which reduces the influence of
the approximate nature of the boundary conditions on Γ∞. The volume ratio between ΩMaxwell and
ΩPML is 1 : 1.75. The computational domain is triangulated by a tetrahedral mesh which consists of
48 658 elements (Figure 4.11(b)). They split into 19 174 elements for ΩMaxwell and 29 484 elements
for ΩPML (ratio 1 : 1.54). A piecewise quadratic approximation of the electric field results in a total
number of 320 810 degrees of freedom for the E-field formulation.

For comparison the electric field has been computed for a homogeneous medium covering
both ΩMaxwell and ΩPML. This case can be seen as the special choice sk(t) ≡ 0 for all uniaxial PML
stretching functions within ΩPML. Panels (a) and (b) of Figure 4.12 show the relative solution error
for constitutive parameters µr = 1, εr = 8, σ = 0.1 S/m and frequency f = 108 Hz. These values
result in a wavelength of λ = 0.8 m. Therefore, the boundary Γ∞ is placed in the near-field of
the dipole. The relative errors have been computed according to equations (3.23a) and (3.23b) of
Chapter 3 for each element K, i. e., the norm is evaluated elementwise, ‖u‖ =

∫
K u d3r.

Comparison of panels (a) and (b) clearly reveals that the absorbing boundary condition approxi-
mates the field behavior at the boundary far better than the PEC boundary condition. Panels (c) and
(d) show the corresponding relative solution errors which have been computed for a PML stretch-
ing function (4.18) with parameters a = 0, b = 3.9× 109 Hz/m, c< = 0, c= = 2π × 4.8× 106 Hz
and n = 1. The theoretical reflection coefficient of a PEC boundary condition terminated PML of
thickness L = 0.2 m for orthogonal incidence is, according to equation (4.36), |R0| = 1.8× 10−2.
This value suffices to improve the solution accuracy markedly within the complete Maxwell do-
main as can be seen by comparison of panels (a) and (c) as well as (b) and (d). Similarly to the
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Figure 4.12: Relative L2-norm error δ of the electrical field E and its curl calculated elementwise.
(a), (b): ΩPML and ΩMaxwell have identical constitutive parameters. (c), (d): Complex coordinate
stretching applied in ΩPML. (a), (c): PEC boundary condition on Γ∞. (b), (d): Absorbing
boundary condition on Γ∞.
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result of the trivial PML stretching function the ABC terminated PML performs better than the
PEC terminated PML. While in case (b) the errors are higher near the edges where the planes
x, y, z = 0.5 m intersect, the PML case (d) reduces the error to about the same level of about 1%
across all planes x, y, z = 0.5 m.

This observation agrees well with the integral expansion of the VED electric field in terms of plane
waves propagating in all directions (Chew, 1995). Within the x-y plane at z = 0 the electric field
can be expressed at the first approximation by a plane wave travelling in the radial direction. The
ABC accounts best for this field behavior along the x- and y-coordinate axes where the propagation
direction is parallel to the boundary normal vector. At x, y = 0.7 m the ABC of the first order gives
rise to a reflected field since the outer normal vectors on the boundary are (1, 0, 0) and (0, 1, 0) but
the propagation direction is (1/

√
2, 1/
√

2, 0). The electric field has a non-negligible component
normal to the boundary and is therefore poorly approximated by the ABC.

For z > 0, especially at the upper boundary part z = 0.7 m, the plane wave expansion contains
significant contributions from non-radial propagation directions. Figure 4.12(b) shows that here the
ABC introduces errors. The PML significantly improves the solution quality also within this part of
the Maxwell domain even though the PML reflection coefficient is predicted by equation (4.44b) to
approach unity for slanting angles of incidence.

Comparison of the two columns in Figure 4.12 discloses that the relative error of the electric field
and the relative error of its curl assume about the same level. They follow a similar behavior for all
the four combinations of PML and boundary condition settings.

As a final note, the elevated relative error along the z-axis is explained by approximation errors
of the vertical electric field component which dominates at x = y = 0. Here, the solution is very
sensitive with respect to projection errors introduced by the Dirichlet boundary condition on ∂S .
The source field is coupled into the computational domain by prescribing the tangential electric field
on the surface ∂S of the spherical exclusion while the dominating field component at x = y = 0,
z = 0.1 m is normal to the boundary.

112



Chapter 5

Application – Marine controlled source electromagnetics

The software suite presented in Chapter 3 has been designed as versatile as possible in order to cover
a broad range of geophysical applications. Here, only one application, marine controlled source
electromagnetics (CSEM), will be considered and illustrated by two models. Marine CSEM has
recently gained considerable attention as a method which is potentially able to detect and quantify
marine hydrocarbon deposits (Constable and Weiss, 2006; Weiss and Constable, 2006). Even though
the data acquisition technique has reached a satisfactory level of quality data interpretation tools
are still under development, in particular with regard to sophisticated 3-D modelling and inversion
software. The finite volume code FDM3D by C. Weiss (Weiss and Constable, 2006) is one of the
simulation tools available. However, it is limited to rectilinear tensor product grids and a first
order finite difference approximation of the spatial derivatives. The first example of this chapter
will compare simulation results computed for the canonical disk model (Weiss and Constable,
2006) with FDM3D and with the finite element software of this work. The geometric flexibility of
the finite element software is demonstrated in a second example by a model involving seafloor
topography which is compared to a model with a flat seafloor.

Along with the geophysical application this chapter provides examples for the scattered field
approach and the adaptive mesh refinement using a local error indicator, techniques which have
been introduced in the previous chapters. The incident field is always the electric field of a
horizontal electric dipole situated within a homogeneous fullspace filled with sea water. The
adaptive mesh refinement proceeds in two stages: During the first stage less accurate solutions
are computed on a sequence of locally refined meshes with finite element basis functions of lower
degree, p = 1. A direct solver provided by PARDISO is used to solve the system of linear equations
for these smaller problem sizes. The non-normalized error indicator (3.16) is preferred to the
normalized one (3.18) in order to resolve the large gradient of the fields near the source. For a
mesh consisting of n elements denote by ηKi the local error indicator of element Ki, i = 1, . . . , n,
and enumerate the elements such that ηK1 ≥ ηK2 ≥ · · · ≥ ηKn . Then, element ηKi is selected for
refinement if

ηKi ≥ α1 max
j=1,...,n

ηKj or i ≥ α2n. (5.1)

The values α1 = 0.1 and α2 = 0.001 have been used for the examples presented here.
During the second stage of the adaptive mesh refinement process the actual solution is computed

on the finest grid using higher order basis functions, p = 3 for the canonical disk model and p = 2
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model DOFs QMR iterations

canonical disk, finite volume 4 518 780 1 146
canonical disk, finite element (p = 3) 2 199 111 111 975
flat seafloor, finite element (p = 2) 755 762 29 574
topography, finite element (p = 2) 3 444 676 45 813

Table 5.1: Summary of the marine CSEM numerical examples. DOFs is the number of degrees of
freedom used to approximate the electric field.

for the topography model. The large number of degrees of freedom (Table 5.1) and the limited
computational resources necessitated the use of the QMR algorithm. The number of QMR iterations
required to reduce the residual norm to 10−8 times the right hand side vector norm (Table 5.1) are
almost prohibitive. Apart from the differing finite element and finite difference matrix properties
discussed in section 3.5.3 of Chapter 3 the largely different number of QMR iterations are attributed
to two causes. The higher order polynomial approximation appears to decelerate QMR convergence.
This can easily be seen from Table 5.1 by comparing the number of QMR iterations for the finite
element solutions. Even though less degrees of freedom are used for the canonical disk model
the number of QMR iterations with cubic polynomials is considerably larger than the number of
QMR iterations for the topography model with quadratic polynomials. The other cause for the
slower convergence of the QMR method is seen in the unstructured and locally highly refined finite
element mesh if compared to the large but orthogonal and almost equidistant finite difference grid.

5.1 Canonical disk model

The canonical disk model (Figure 5.1) has been introduced by Weiss and Constable (2006). It
serves as a simplified model of a resistive hydrocarbon deposit which is located in a conductive,
marine environment consisting of two layers of sea water and sea bed. The electric field of a
horizontal electric dipole radiating at frequency 1 Hz and placed 100 m above the sea floor has been
computed by FDM3D using a tensor product grid of size 161× 161× 61 and by FEMSTER using
adaptive mesh refinement. The initial tetrahedral mesh contains 79 616 elements and is depicted in
Figure 5.2(a). It has been refined adaptively in eight steps. The final mesh shown in Figure 5.2(b)
consists of 118 534 elements. The vicinity of point r = (−3 km, 0, 0) has been subject to the mesh
refinement. This point lies directly beneath the transmitter on the seafloor. Here, the secondary
sources are strongest since they scale with some power of the inverse distance from the primary
source at r = (−3 km, 0,−100 m).

The scattered electric field computed by FDM3D is depicted at four slices through the computa-
tional volume in Figures 5.3, 5.5, 5.7 and 5.9. The corresponding results computed by FEMSTER
using a piecewise cubic approximation are given in Figures 5.4, 5.6, 5.8 and 5.10. Each figure
consists of six subfigures which respectively show the absolute value (modulus, abbreviation mod)
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x
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Figure 5.1: Geometry of the canonical disk model
(Weiss and Constable, 2006). The disk has a height of
100 m and a conductivity of 0.01 S/m. An x-directed
electric dipole TX radiating with frequency 1 Hz is
placed 100 m above the seafloor. Scattered electric
field values are plotted in Figures 5.3 to 5.10 for the
subdomain enclosed by the dashed rectangle.

as well as the phase (argument, abbreviation arg) of the three complex vector components of the
electric field. Note that only the scattered field part is plotted in order to better illustrate the effect
of the sea bed and the disk.

Comparison of the results computed by FDM3D and FEMSTER shows that the non-zero compo-
nents of the field generally agree very well. For symmetry reasons the y-component of the electric
field vanishes within the x-z plane at y = 0 km (Figures 5.5 and 5.6). Approximation and inter-
polation errors introduced by the finite difference and finite element method produce an electric
field whose y-component is smaller by orders of magnitude compared to the non-vanishing x- and
z-components but which is not exactly zero. While the regular structure of the finite difference grid
yields a smoother picture of Ey the unstructured finite element mesh produces a speckled pattern,
especially in the phase. The residual magnitude of the zero component is reduced to a lower level
on the orthogonal finite difference grid than on the unstructured finite element mesh. This is not
surprisingly since the evaluation of the field on the tetrahedral mesh is subject to interpolation
errors which originate in the distribution of the degrees of freedom on the non-orthogonal edges
and faces of a tetrahedron while the interpolation of one vector component on the orthogonal finite
difference grid involves only degrees of freedom defined in the same coordinate direction.

There is one interesting difference in the x-y plane at z = 1 km which cuts horizontally through
the center of the disk. The horizontal components of the scattered electric field computed by
FEMSTER (Figure 5.10) rarely show an influence of the disk but only the response of the sea bed
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Figure 5.2: Canonical disk model. (a) Initial volume mesh and (b) final volume mesh after eight
steps of mesh refinement. Side view on a slice at y = 0 m.

homogeneous halfspace. This is best seen in the phases which have a concentric shape around the
vertical axis through the transmitter location. The disk expresses itself within this plane only in the
vertical component. This is in contrast to the results of FDM3D (Figure 5.9) where the disk is visible
in all three field components. In order to understand this difference it is instructive to compare the
results with the two vertical slices cut through the center of the disk (Figures 5.3 to 5.6). The phase
of the non-zero horizontal field components above and below the disk differ by 180°. This implies
that the horizontal field components change their direction along an arbitrary vertical line from
top, z = 950 m, to bottom, z = 1050 m, of the disk. Consequently, they must be zero somewhere
in-between. The results of the finite element approximation in Figure 5.10 now reveal that the
horizontal field components vanish approximately at z = 1000 m. The finite difference results do
not show this feature because they are computed with lower accuracy within the disk. Both the
finite difference grid and the finite element mesh spatially discretize the disk by one cell/element
in height. However, the finite difference approximation is of first order and the horizontal field
components are computed by linear interpolation between their values at the top and bottom faces
of the disk. The finite element approximation consists of a cubic polynomial which interpolates
not only between the horizontal field components on the boundary of the disk but also involves
degrees of freedom within the disk’s interior with non-vanishing horizontal components. This
results in a locally higher solution accuracy compared to the finite difference solution.

A speckled pattern occurs in Figure 5.10 in the horizontal components around the disk’s rim and
at x > 2 km. It points at the inherent interpolation error of the unstructured tetrahedral mesh and
the rather coarse mesh size away from the primary source and the disk. The average edge length of
elements at the right margin of the plotted slice at x = 3 km is about 700 m and should be compared
to the finite difference grid spacing of 100 m in vertical and 68.75 m in horizontal direction.
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Figure 5.3: Canonical disk model, finite volume solution. Scattered electric field in y-z-plane at
x = 0 km.
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Figure 5.4: Canonical disk model, finite element solution. Scattered electric field in y-z-plane at
x = 0 km.
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Figure 5.5: Canonical disk model, finite volume solution. Scattered electric field in x-z-plane at
y = 0 km.
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Figure 5.6: Canonical disk model, finite element solution. Scattered electric field in x-z-plane at
y = 0 km.
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Figure 5.7: Canonical disk model, finite volume solution. Scattered electric field in x-y-plane at
z = +0 km.
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Figure 5.8: Canonical disk model, finite element solution. Scattered electric field in x-y-plane at
z = +0 km.
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Figure 5.9: Canonical disk model, finite volume solution. Scattered electric field in x-y-plane at
z = 1 km.
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Figure 5.10: Canonical disk model, finite element solution. Scattered electric field in x-y-plane at
z = 1 km.
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Figure 5.11: Seafloor bathymetry of the topog-
raphy model, 2 × vertical exaggeration. An
x-directed electric dipole TX is placed 100 m
above the seafloor.

5.2 Seafloor topography

One of the problems realistic marine CSEM simulations have to face is the consideration of seafloor
topography. Bathymetric data can be incorporated into the model most naturally as a surface
triangulation of the seafloor. In contrast to a typical finite difference, i. e., tensor product grid which
samples the seafloor in a staircase-like manner the seafloor can be represented as a continuous
surface by an unstructured tetrahedral mesh. The example considered here is constructed from
a synthetic bathymetry data set provided by the INRIA Gamma team1. The bathymetry is de-
picted in Figure 5.11. It divides the computational volume Ω = {(x, y, z) : −2 km ≤ x, y ≤ 2 km,
−1.5 km ≤ z ≤ 2.5 km} into two halfspaces representing sea water and the sea bed. The electrical
conductivity has been chosen as in the previous section, 3.3 S/m for sea water and 1 S/m for the
sea bed sediments. An x-directed electric dipole TX radiating with frequency 1 Hz is placed 100 m
above the seafloor at x = y = 0 and z = −100 m.

In order to quantify the accuracy of the solution and to qualitatively estimate the distortion of
the electromagnetic field by the seafloor topography a second, flat seafloor model is considered
for comparison. Both models have been spatially discretized using the adaptive mesh refinement
strategy presented in Chapter 3. The initial mesh of the flat seafloor model is shown in Figure 5.12(a)
and the final mesh after eight steps of mesh refinement in Figure 5.12(b). The meshes respectively
contain 16 545 and 118 793 elements. Similarly, Figure 5.13 shows the initial and final mesh of the
topography model. Here, only five steps of mesh refinement were required to enlarge the number
of elements from 380 809 to 542 425 elements. The considerably larger number of elements in the
initial mesh is a consequence of the relatively dense surface triangulation of the bathymetry data
set with a regular grid spacing of 250 m in x- and y-direction. Similarly to the canonical disk model
the mesh is refined directly beneath the primary source at the seafloor where the secondary sources
and, consequently, the scattered field assumes its maximum magnitude.

This can be seen from the bottom rows of Figures 5.14 and 5.15 which respectively depict the
norm of the electric and magnetic field plotted on three orthogonal planes through the origin.
The relative solution error of a piecewise quadratic approximation of E and H as defined by

1http://www-c.inria.fr/gamma/download/affichage.php?dir=RELIEF/&name=mmal25pm
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equation (3.23a) in Chapter 3 is plotted above in the top row. The slices are restricted to the
subvolume [−500, 500]3 m3. The relative error within this smaller portion of the computational
volume is mostly less than 1%. Only the x-z- and x-y-plane views of the relative error of H in
Figure 5.15 contain pronounced regions where it is significantly larger. However, this is an artifact
of the relative measure used. The norm of the magnetic field which normalizes the absolute
solution error has a pronounced minimum which exactly coincides with the maximum of the
relative error. A smaller field magnitude is naturally reconstructed less accurately by the finite
element approximation.

The reference solution for the horizontal electric dipole in a two-layered medium has been
implemented according to Sommerfeld (1964). The Hankel integrals are evaluated numerically
using the digital filter algorithm of Anderson (1989).

Figures 5.15 to 5.27 finally show slices of the electric and magnetic fields for the seafloor and
the topography model in the three planes defined by x = 0, y = 0 and z = 0. Comparison of
corresponding field components and slices between both models nicely illustrates how the seafloor
topography distorts the symmetric shape of the electromagnetic fields. In particular the field
components which vanish for the one-dimensional flat seafloor model gain significant values from
the three-dimensional geometry of the topography model.
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Figure 5.12: Flat seafloor model. (a) Initial volume mesh and (b) final volume mesh after eight steps
of mesh refinement. Side view on a slice at y = 0 m.
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Figure 5.13: Topography model. (a) Initial volume mesh and (b) final volume mesh after five steps
of mesh refinement. Side view on a slice at y = 0 m.

123



Chapter 5 Application – Marine controlled source electromagnetics

y in m

z 
in

 m

log
10

δ{E}

 

 

−500 0 500

−500

0

500

−2.5

−2

−1.5

x in m

z 
in

 m

log
10

δ{E}

 

 

−500 0 500

−500

0

500

−2.5

−2

−1.5

x in m

y 
in

 m

log
10

δ{E}

 

 

−500 0 500

−500

0

500

−2.5

−2

−1.5

y in m

z 
in

 m

|E| in dB

 

 

−500 0 500

−500

0

500

−50

−40

−30

−20

−10

0

x in m

z 
in

 m

|E| in dB

 

 

−500 0 500

−500

0

500

−50

−40

−30

−20

−10

0

x in m

y 
in

 m

|E| in dB

 

 

−500 0 500

−500

0

500
−40

−30

−20

−10

0

Figure 5.14: Flat seafloor model. Relative error (top row) and norm (bottom row) of the scattered
electric field in y-z-plane at x = 0 m (left column), x-z-plane at y = 0 m (middle column), x-y-
plane at z = +0 m (right column).
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Figure 5.15: Flat seafloor model. Relative error (top row) and norm (bottom row) of the scattered
magnetic field in y-z-plane at x = 0 m (left column), x-z-plane at y = 0 m (middle column),
x-y-plane at z = +0 m (right column).
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Figure 5.16: Flat seafloor model. Scattered electric field in y-z-plane at x = 0 m. The black line
represents the seafloor.
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Figure 5.17: Topography model. Scattered electric field in y-z-plane at x = 0 m. The black line
represents the seafloor.
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Figure 5.18: Flat seafloor model. Scattered magnetic field in y-z-plane at x = 0 m. The black line
represents the seafloor.
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Figure 5.19: Topography model. Scattered magnetic field in y-z-plane at x = 0 m. The black line
represents the seafloor.
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Figure 5.20: Flat seafloor model. Scattered electric field in x-z-plane at y = 0 m. The black line
represents the seafloor.
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Figure 5.21: Topography model. Scattered electric field in x-z-plane at y = 0 m. The black line
represents the seafloor.

127



Chapter 5 Application – Marine controlled source electromagnetics

x in m

z 
in

 m

mod{H
x
} in dB

 

 

−500 0 500

−500

0

500

−120

−100

−80

−60

x in m

z 
in

 m

mod{H
y
} in dB

 

 

−500 0 500

−500

0

500

−50

−40

−30

−20

−10

x in m

z 
in

 m

mod{H
z
} in dB

 

 

−500 0 500

−500

0

500 −140

−120

−100

−80

−60

x in m

z 
in

 m

arg{H
x
} in °

 

 

−500 0 500

−500

0

500 0

100

200

300

x in m

z 
in

 m

arg{H
y
} in °

 

 

−500 0 500

−500

0

500 0

100

200

300

x in m

z 
in

 m

arg{H
z
} in °

 

 

−500 0 500

−500

0

500 0

100

200

300

Figure 5.22: Flat seafloor model. Scattered magnetic field in x-z-plane at y = 0 m. The black line
represents the seafloor.
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Figure 5.23: Topography model. Scattered magnetic field in x-z-plane at y = 0 m. The black line
represents the seafloor.
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Figure 5.24: Flat seafloor model. Scattered electric field in x-y-plane at z = +0 m. The black line
represents the seafloor.

x in m

y 
in

 m

mod{E
x
} in dB

 

 

−500 0 500

−500

0

500

−80

−60

−40

−20

0

x in m

y 
in

 m

mod{E
y
} in dB

 

 

−500 0 500

−500

0

500

−80

−60

−40

−20

0

x in m

y 
in

 m

mod{E
z
} in dB

 

 

−500 0 500

−500

0

500
−60

−40

−20

0

x in m

y 
in

 m

arg{E
x
} in °

 

 

−500 0 500

−500

0

500 0

100

200

300

x in m

y 
in

 m

arg{E
y
} in °

 

 

−500 0 500

−500

0

500 0

100

200

300

x in m

y 
in

 m

arg{E
z
} in °

 

 

−500 0 500

−500

0

500 0

100

200

300

Figure 5.25: Topography model. Scattered electric field in x-y-plane at z = 0 m. The black line
represents the seafloor.
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Figure 5.26: Flat seafloor model. Scattered magnetic field in x-y-plane at z = +0 m. The black line
represents the seafloor.
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Figure 5.27: Topography model. Scattered magnetic field in x-y-plane at z = 0 m. The black line
represents the seafloor.
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Chapter 6

Summary and outlook

A finite element software has been developed which solves Maxwell’s equations for time-harmonic
problems. The complete Maxwell system is considered including both conduction and displacement
currents in order to model inductive as well as wave propagation phenomena. The implementa-
tion allows for constitutive parameters which may be isotropic or anisotropic, homogeneous or
polynomial functions of space. In addition, an anisotropic constitutive parameters formulation
of the perfectly matched layer in Cartesian coordinates has been implemented. The most impor-
tant incident field patterns for the scattered field approach which are relevant for geophysical
applications are provided, namely, the electric and magnetic dipole in fullspace as well as the
plane wave in a horizontally stratified earth. The finite element core supplies polynomial base
functions of practically arbitrary order for both tetrahedral and hexahedral elements. Combined
with mesh generators any geometric shape can be accounted for by unstructured meshes. An a
posteriori error indicator forms the basis for adaptive mesh refinement. Implementation of such
a powerful finite element code would have been impossible without the use of existing software
modules. Third party libraries or programs include the finite element core FEMSTER, the mesh
generators NETGEN and TETGEN, the direct solvers for the system of linear equations PARDISO
and MUMPS, and MATLAB® for visualization.

The finite element solver bases on either the vector Helmholtz equation in terms of the electric
field E or its extension by the continuity equation. Stability considerations of the low frequency
behavior of the electric field lead to the introduction of a mixed formulation in terms of both
the electric field and an auxiliary scalar variable V. The vector Helmholtz equation alone suffers
from the large kernel of the curl-operator which spoils the solution for low frequencies. The
kernel can be removed if the continuity equation is explicitly taken into account. In order to
obtain an algebraically balanced problem, the auxiliary scalar variable V has been introduced. The
augmented problem was designed such that the symmetry property of the coefficient matrix of the
discrete problem pertaining to the vector Helmholtz equation alone is retained for the coefficient
matrix of the augmented discrete problem.

The derivation of the E-V formulation necessitated two assumptions which do not apply to
the E-field formulation. First, a stable implementation could only be achieved for conducting
media, σ > 0 within all of the computational domain, because the continuity equation vanishes in
a dielectric at ω = 0. Replacing the continuity equation by a non-vanishing divergence condition
within the dielectric subdomain leads to technical problems which are due to the finite element
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function spaces used (Appendix B). This assumption can be relaxed in practice as long as the
frequency is bounded away from zero.

Second, the computational domain was assumed to be simply connected with not more than
one connected Dirichlet boundary part. This excludes, e. g., the case of the parallel plate capacitor
where the two plate electrodes are represented by two disconnected Dirichlet, PEC boundary
patches. An generalization for more than one connected Dirichlet boundary part can be found in
Appendix C. However, the design paradigm of a symmetric extension that is equivalent to the
vector Helmholtz equation boundary value problem implies that the augmented formulation does
not contain additional source terms. The parallel plate capacitor would indeed extend the class of
physical models beyond the limit of the E-field formulation since a non-vanishing integral current
flow through all but one of the Dirichlet boundary patches, i. e., through one of the plates would
have to be prescribed and introduce a new source term. Investigation of non-symmetric mixed
formulations and the comparison with mixed vector and scalar potential approaches (Haber et al.,
2000; Mitsuhata and Uchida, 2004) offers a line of future research.

The theoretical considerations concerning the kernel of the curl-operator and the low frequency
stability have been supported by a number of numerical experiments. They give empirical evidence
for the improved stability of the E-V formulation at low frequencies. The solution of a boundary
value problem using a stable operator is still susceptible to errors of the data, in particular of
the boundary values. If alternate types of boundary conditions can be devised which model
one and the same physical problem the particular choice might influence solution stability and
needs to be carefully considered. An improper set of boundary conditions appears to give rise to
elevated solution errors for part of the numerical example given in Appendix C. According to this
observation the influence of unstructured meshes on the convergence rate of the finite element
method should be further investigated.

Another open question remains the solver for the system of linear equations. Most experiments
have been carried out using a direct solver. The memory requirement for the storage of the matrix
factors is still the limiting factor for the simulation of three-dimensional problems, even on recent
computers. Experiments with a QMR solver proved to be discouraging and resulted in a far slower
convergence than for a finite difference/volume discretization of the same problem setup. The
poor convergence might be accelerated if a suitable preconditioner can be found. However, storage
and operational costs of the construction of a non-trivial preconditioner and of its application to an
iterative solver need to be carefully weighed against the costs of a direct solver.

The finite element software has primarily been developed as a versatile simulation tool. Its
application has been successfully demonstrated by two examples from marine CSEM. Simulation
of other geophysical methods like MT, airborne EM or even GPR measurements for more or less
complicated earth models only waits to be carried out. In future, the software can also serve as a
forward operator for an inversion scheme. Nevertheless, the efficient computation of sensitivities
still needs to be investigated and should be closely seen in context with the inverse problem solution
strategy. So far, only the sensitivity equation method (McGillivray and Oldenburg, 1990) has been
implemented as a straightforward extension of the boundary value problem finite element solution
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(Appendix D). If the system of linear equations is solved directly the matrix factorization can be
exploited in order to compute sensitivities without much overhead. The sensitivity equation method
is best suited for sensitivity studies for models with a moderate number of model parameters. The
typical parameterization of a three-dimensional inverse model, however, involves tens or hundreds
of thousands cells for each of which a system of linear equations needs to be solved. Even if only
the forward and backwards substitution phases need to be carried out, this method is impractical
and unfavorable compared to the adjoint fields method (McGillivray and Oldenburg, 1990) as long
as the number of receiver locations times the number of measured field components is significantly
smaller than the number of cells.
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Appendices

A Formulary

This section collects a number of useful vector and integral identities which frequently occur within
the main part of this work.

A.1 Vector identities

For a scalar function u, a vector function u and a unit vector n, ‖n‖ = 1, the following equalities
hold, provided the functions are smooth enough:

curl grad u = 0, (A.1a)

div curl u = 0, (A.1b)

n · (n× u) = 0, (A.1c)

(n× u)× n = u− (n · u) n, (A.1d)

φ · (n× u) = − (n×φ) · u. (A.1e)

In addition to the well known volume differential operators grad, curl and div, a set of differential
operators can be defined on surfaces. The following relations between surface and volume differen-
tial operators are taken from Buffa, Costabel, and Sheen (2002). Let Ω be a Lipschitz domain with
smooth boundary Γ whose outer normal vector is denoted by n. For a scalar function u ∈ H1(Ω),
the surface gradient and the surface vector curl are related to the volume gradient by

gradΓ u = (n× grad u)× n and (A.1f)

curlΓ u = −n× grad u. (A.1g)

The surface scalar curl and the surface divergence of a vector field u ∈ Hcurl(Ω) are related to the
volume curl by

curlΓ ((n× u)× n) = n · curl u and (A.1h)

divΓ (n× u) = −n · curl u. (A.1i)

Note that there are two types of curl-operators defined for surfaces. The surface vector curl (A.1g)
maps scalar fields onto vector fields and the surface scalar curl (A.1h) vector fields onto scalar
fields. This distinction should be evident from the different argument types in equations (A.1g)
and (A.1h).
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A.2 Integral identities

Let Ω ∈ R3. For functions u ∈ Hdiv(Ω) and φ ∈ H1(Ω) the following Green’s theorem holds (Monk,
2003, Theorem 3.24)∫

Ω

φ div u d3r = −
∫
Ω

grad φ · u d3r +
∫

∂Ω

φ (n · u) d2r (A.2)

and for functions u, Φ ∈ Hcurl(Ω) (Monk, 2003, Theorem 3.31)∫
Ω

Φ · curl u d3r =
∫
Ω

curl Φ · u d3r +
∫

∂Ω

((n×Φ)× n) · (n× u) d2r. (A.3)

The double cross product (n×Φ)× n ensures that the trace of Φ ∈ Hcurl(Ω) on ∂Ω belongs to an
appropriate function space. For practical purposes it is sufficient to use the form∫

Ω

Φ · curl u d3r =
∫
Ω

curl Φ · u d3r +
∫

∂Ω

Φ · (n× u) d2r (A.3*)

which formally follows from equation (A.3) by expanding the double cross product according
to (A.1d) and making use of the vector identity (A.1c).

Equalities (A.2) to (A.3*) apply to volume integrals. Another integral identity is required for the
transformation of surface integrals. Let Σ be a surface in R3 with normal vector n. Denote the outer
normal vector on the boundary ∂Σ by ν where n · ν = 0. A tangential vector on ∂Σ is uniquely
defined by τ = n× ν. Using the notation of the surface differential operators introduced above,
Stoke’s theorem (Monk, 2003, Corollary 3.21) can be stated as∫

Σ

φ curlΣ û d2r =
∫
Σ

curlΣ φ · û d2r +
∫
∂Σ

φ τ · û dr (A.4)

where û = (n× u)× n and φ are continuously differentiable functions on Σ. Relaxing the regularity
assumptions on û and φ and inserting the expressions (A.1g) and (A.1h) leads to the proposition
that ∫

Σ

φ n · curl u d2r = −
∫
Σ

(n× grad u) · ((n× u)× n) d2r +
∫
∂Σ

φ τ · ((n× u)× n) dr

for functions u ∈ Hcurl(Ω) and φ ∈ H1(Ω). Expansion of the double cross product, the vector
identity n · (n× grad φ) = 0 and the orthogonality n · τ = 0 finally yield∫

Σ

φ n · curl u d2r =
∫
Σ

grad φ · (n× u) d2r +
∫
∂Σ

φ τ · u dr. (A.4*)
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B The mixed dielectric and conductive media case –
A counterexample

The weak form of the E-V formulation has been derived in Chapter 2 under the assumption of a
non-vanishing electric conductivity, σ 6= 0 in Ω. The rationale of this assumption will be given
here. Note that in the following the inequality η 6= 0 is to be understood for a tensor η in the sense
of its non-vanishing eigenvalues.

The crucial point when stabilizing the vector Helmholtz equation of the E-field formulation for
low frequencies is the proper choice of the divergence condition. The choice of div (σ − iωε)E
is consistent with the vector Helmholtz equation and eliminates the charge density as a variable.
The complex current density (σ − iωε) E is non-zero for all frequencies including ω = 0 if, and
only if, σ 6= 0. For a dielectric, where σ ≡ 0, the divergence condition vanishes at ω = 0 and can
consequently not be used to eliminate the kernel of the curl-operator. A dielectric requires that a
divergence condition involving div εE is enforced. This condition is non-trivial also at ω = 0. The
derivation of the weak form of the divergence condition leads to a technical problem if the domain
contains both dielectric and conductive subdomains. A simple example will illustrate this issue.

Consider the domain Ω which is subdivided into two subdomains Ω1 and Ω2 as depicted in
Figure B.1 such that the constitutive parameters are smooth within each subdomain and may
be discontinuous at the interface Σ. The outer boundary of Ω will not be of interest during the
following considerations. Denote by n the surface normal vector on Σ pointing from Ω1 to Ω2. The
constitutive parameters and the electric field within each subdomain are marked by subscripts
1 and 2. In order to get a complete picture, all three possible combinations of a vanishing/non-
vanishing conductivity within each of the subdomains will be examined in turn. For the sake of
simplicity, the domain is assumed to be source free (js = 0, j f = 0, ρ = 0).

σ1 6= 0, σ2 6= 0: The electric field has to satisfy the continuity equations and conditions

−div (σ1 − iωε1)E1 = 0 in Ω1, (B.1a)

−div (σ2 − iωε2)E2 = 0 in Ω2, (B.1b)

n · (σ1 − iωε1)E1 = n · (σ2 − iωε2)E2 on Σ. (B.1c)

Multiplication by a test function φ and integration over Ω yields

−
∫

Ω1

φ div (σ1 − iωε1)E1 d3r−
∫

Ω2

φ div (σ2 − iωε2)E2 d3r

=
∫

Ω1

grad φ · (σ1 − iωε1)E1 d3r +
∫

Ω2

grad φ · (σ2 − iωε2)E2 d3r

−
∫
Σ

φ (n · (σ1 − iωε1)E1 − n · (σ2 − iωε2)E2) d2r. (B.2a)
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Σ
n

ε1, µ1, σ1; E1

ε2, µ2, σ2; E2

Ω1

Ω2

Figure B.1: Interface between two subdomains.

Note the opposite signs of the two terms in the surface integral. The normal vector n is outward
pointing for Ω1 but inward pointing for Ω2. The surface integral vanishes thanks to the interface
condition (B.1c). Combining the integrals leads to∫

Ω

φ div (σ − iωε)E d3r =
∫
Ω

grad φ · (σ − iωε)E d3r (B.2b)

where

E =

E1 in Ω1,

E2 in Ω2
(B.2c)

and similarly for σ and ε. The continuity condition at Σ has been absorbed into the volume integral
on the right hand side and will be enforced in the weak sense. The right hand side integral is
well-defined if φ ∈ H1(Ω) and E ∈ Hcurl(Ω).

σ1 ≡ 0, σ2 ≡ 0: The electric field has to satisfy the continuity equations and conditions

−div ε1E1 = 0 in Ω1, (B.3a)

−div ε2E2 = 0 in Ω2, (B.3b)

n · ε1E1 = n · ε2E2 on Σ. (B.3c)

Analogously to the previous case, multiplication by a test function φ and integration over Ω yields

−
∫

Ω1

φ div ε1E1 d3r−
∫

Ω2

φ div ε2E2 d3r

=
∫

Ω1

grad φ · ε1E1 d3r +
∫

Ω2

grad φ · ε2E2 d3r−
∫
Σ

φ (n · ε1E1 − n · ε2E2) d2r. (B.4a)

The surface integral again vanishes thanks to the interface condition (B.3c). Combining the integrals
leads to∫

Ω

φ div εE d3r =
∫
Ω

grad φ · εE d3r. (B.4b)

The continuity condition at Σ has been absorbed into the volume integral on the right hand side
and will be enforced in the weak sense. The right hand side integral is well-defined if φ ∈ H1(Ω)
and E ∈ Hcurl(Ω).
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σ1 ≡ 0, σ2 6= 0: The electric field has to satisfy the continuity equations and conditions

−div ε1E1 = 0 in Ω1, (B.5a)

−div (σ2 − iωε2)E2 = 0 in Ω2, (B.5b)

−iωn · ε1E1 = n · (σ2 − iωε2)E2 on Σ. (B.5c)

If equation (B.5a) is considered as special case of equation (B.1a) the factor −iω can and must be
dropped in order to obtain a non-vanishing partial differential equation at ω = 0. This factor is
retained in the continuity condition (B.5c) which is a special case of equation (B.1a) and turns out
to be the obstacle when deriving the weak form. Multiplication by a test function φ and integration
over Ω yields

−
∫

Ω1

φ div ε1E1 d3r−
∫

Ω2

φ div (σ2 − iωε2)E2 d3r

=
∫

Ω1

grad φ · ε1E1 d3r +
∫

Ω2

grad φ · (σ2 − iωε2)E2 d3r

−
∫
Σ

φ (n · ε1E1 − n · (σ2 − iωε2)E2) d2r. (B.6a)

Now, the surface integral does not vanish any more because the two terms differ by the factor of
−iω compared to the interface condition (B.5c). The definition of a composite parameter according
to

η =

ε1 in Ω1 and

σ2 − iωε2 in Ω2
(B.6b)

allows for the combination of the volume integrals like in (B.2b) or (B.4b). Making use of (B.5c)
leads to∫

Ω

φ div ηE d3r =
∫
Ω

grad φ · ηE d3r− (1 + iω)
∫
Σ

φ n · ε1E1 d2r. (B.6c)

The continuity condition at Σ has not been absorbed into the volume integral on the right hand
side but leaves a surface integral. If φ ∈ H1(Ω) and E ∈ Hcurl(Ω), only the right hand side volume
integral is well-defined but not the surface integral. The normal trace of ε1E1 on Σ is not well-
defined for E ∈ Hcurl(Ω) even if ε1 is a scalar and n · ε1E1 = ε1n · E1.

In conclusion, a variational form of the E-V formulation which is stable for ω → 0 cannot be
found for the case of a mixed dielectric and conductive medium using the standard procedure.
Enforcing different types of continuity equations within separate subdomains leads to a surface
integral which cannot be made vanish by the physically correct interface condition. This surface
integral is not well-defined since the standard function space Hcurl(Ω) does not provide the required
regularity for the electric field.
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C Removing a non-trivial normal cohomology space

C.1 The continuous problem

The E-V formulation has been introduced in Chapter 2 under the assumption that the Dirichlet
boundary part Γe consists of exactly one connected but possibly empty part. If it is composed
of J > 1 connected parts Γe,j, j = 1, . . . , J, the kernel of the curl-operator is not only spanned by
functions grad V, where V ∈ H1(Ω) and V = 0 on Γe, but by additional J − 1 functions spanning
the normal cohomology space

KN =
{

Vi ∈ H1(Ω) : div (σ − iωε) grad Vi = 0 in Ω and

Vi = δi,j on Γe,j, i = 1, . . . , J − 1, j = 1, . . . , J
}

. (C.1)

Its definition has been extended to non-zero frequencies in comparison to definition (2.16). While
the first, infinite dimensional part of the kernel has been removed in Chapter 2 by enforcing the
continuity equation within Ω, the normal cohomology space can be annihilated by additional
boundary conditions. According to the dimension of KN , the net current flow through J − 1 of the
J Dirichlet boundary parts can be prescribed,∫

Γe,j

n · (js + (σ − iωε)E) d2r = Is,j for j = 1, . . . , J − 1, (C.2)

where Is,j denotes an exterior current entering the domain Ω through Γe,j. Note that the nature of the
integral boundary condition allows for a locally varying normal current flow n · (js + (σ − iωε)E)
which might even be positive on one part of Γe,j and negative on another.

The net current flow through Γe,J is not independent but follows from the continuity equation. It
balances the current flow through ∂Ω \ Γe,J ,

0 =
∫
Ω

div (js + (σ − iωε)E) d3r =
∫

∂Ω

n · (js + (σ − iωε)E) d2r,

hence,

−
∫

Γe,J

n · (js + (σ − iωε)E) d2r =
∫
Γh

n · (js + (σ − iωε)E) d2r +
J−1

∑
j=1

Is,j. (C.3)

In order to show that the additional boundary conditions (C.2) completely remove the kernel of
the curl-operator, the boundary value problem (2.15) in terms of V is extended to the case of J > 1.
The boundary condition (2.15d), V = const. on Γe, translates to V = Cj on Γe,j, j = 1, . . . , J, where
Cj ∈ C are unknown constants. The kernel is spanned by functions E = grad V where V satisfies

div σ grad V = 0 on Ωi, (C.4a)

[V] = 0 on Σi,j, (C.4b)

[n · σ grad V] = 0 on Σi,j, (C.4c)
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V = Cj on Γe,j, j = 1, . . . , J (C.4d)

n · σ grad V = 0 on Γh. (C.4e)

The solution of this boundary value problem can be constructed by

V =
J

∑
j=1

Cj ψj (C.5a)

where the functions ψj are a solution of boundary value problem (C.4) with Ci = δi,j, i, j = 1, . . . , J.
By construction,

J

∑
j=1

ψj ≡ 1 (C.5b)

holds on Γe. Since (C.4) is a potential problem, the maximum principle can be applied to proof
that (C.5b) also holds in Ω and on Γh. This gives rise to the following decomposition

V =
J−1

∑
j=1

Cj ψj + CJ ψJ

=
J−1

∑
j=1

Cj ψj + CJ

(
1−

J−1

∑
j=1

ψj

)

= CJ +
J−1

∑
j=1

(Cj − CJ) ψj. (C.5c)

Now, the boundary conditions (C.2) with E = grad V, ω = 0 and vanishing source terms require
that V also satisfies∫

Γe,j

n · σ grad V d2r = 0 for j = 1, . . . , J − 1. (C.5d)

Insertion of (C.5c) yields a system of linear equations
∫

Γe,1
n · σ grad ψ1 d2r . . .

∫
Γe,1

n · σ grad ψJ−1 d2r
...

...∫
Γe,J−1

n · σ grad ψ1 d2r . . .
∫

Γe,J−1
n · σ grad ψJ−1 d2r




C1 − CJ
...

CJ−1 − CJ

 =


0
...
0

 (C.5e)

in terms of the unknown constants Cj. Its coefficient matrix is regular because the functions ψj,
j = 1, . . . , J − 1, are linearly independent. Equation (C.5e) consequently has only the trivial solution
and C1 = . . . = CJ−1 = CJ . Consequently, V ≡ CJ in Ω and its gradient vanishes. This completes
the proof that the boundary conditions (C.2), in addition to the equation of continuity, remove the
kernel of the curl-operator completely and stabilize the E-field formulation for low frequencies.
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The E-V formulation

Straightforward extension of the E-V formulation as presented in Chapter 2 to the case of a
non-trivial normal cohomology space is most easily performed within the framework of the
weak form. In section 2.3 of Chapter 2, the equation of continuity had been tested against all
functions φ ∈ H1(Ω) with φ = 0 on Γe. This set of test functions is exhaustive only if Γe consists
of one connected, possibly empty, part, i. e., if J ≤ 1. If J > 1, J − 1 additional test functions are
required which correspond to the dimension of the normal cohomology space and the number
of integral boundary conditions (C.2). Alas, choosing arbitrary but fixed functions ψj ∈ H1(Ω),
j = 1, . . . , J − 1, with ψj = δi,j on Γe,i, i = 1, . . . , J, the continuity equation is integrated as given by
equations (2.28) to (2.30) where the test function φ is replaced by ψj. The only difference occurs
with the boundary integrals which additionally give rise to a contribution from the j-th Dirichlet
boundary part, where ψj ≡ 1. Similarly to equation (2.30),

−
n

∑
i=1

∫
∂Ωi

ψj n · (js + (σ − iωε)E) d2r

= Is,j −
∫
Γh

grad ψj · (n× H0) d2r−
∫
Γh

(
n× grad ψj

)
· (λ(n× E)) d2r (C.6a)

holds because∫
Γe

ψj n · (js + (σ − iωε)E) d2r =
∫

Γe,j

n · (js + (σ − iωε)E) d2r

= Is,j. (C.6b)

In order to obtain a symmetric system, the vector Helmholtz equation is supplemented by the
terms

J−1

∑
j=1

Cj

∫
Ω

Φ ·
(
(σ − iωε) grad ψj

)
d3r, (C.7a)

−
J−1

∑
j=1

Cj

∫
Γh

(
n×Φ

)
·
(
λ
(
n× grad ψj

))
d2r (C.7b)

and the continuity equation by

−
J−1

∑
j=1

Cj

∫
Ω

φγψj d3r (C.7c)

which enlarge the unknown quantities of the boundary value problem by the J − 1 constants
Cj ∈ C, j = 1, . . . , J − 1. Now, the weak form of the E-V formulation reads

Search E ∈ U , V ∈ V and, if J > 1, constants C1, . . . , CJ−1 ∈ C such that∫
Ω

curl Φ ·
(

µ−1 curl E
)

d3r− iω
∫
Ω

Φ · ((σ − iωε) E) d3r
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+
∫
Ω

Φ · ((σ − iωε) grad V) d3r +
J−1

∑
j=1

Cj

∫
Ω

Φ ·
(
(σ − iωε) grad ψj

)
d3r

+ iω
∫
Γh

(
n×Φ

)
· (λ (n× E)) d2r−

∫
Γh

(
n×Φ

)
· (λ (n× grad V)) d2r

−
J−1

∑
j=1

Cj

∫
Γh

(
n×Φ

)
·
(
λ
(
n× grad ψj

))
d2r

= iω
∫
Ω

Φ · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φ · j f d2r− iω
∫
Γh

Φ ·
(

j f + n× H0
)

d2r (C.8a)

for all Φ ∈ U0,

∫
Ω

grad φ · ((σ − iωε) E) d3r−
∫
Ω

φγV d3r−
J−1

∑
j=1

Cj

∫
Ω

φγψj d3r

−
∫
Γh

(
n× grad φ

)
· (λ (n× E)) d2r = −

∫
Ω

grad φ · js d3r +
∫
Γh

grad φ · (n× H0) d2r (C.8b)

for all φ ∈ V0 and, if J > 1,

∫
Ω

grad ψj · ((σ − iωε) E) d3r−
∫
Ω

ψjγV d3r−
J−1

∑
j=1

Cj

∫
Ω

ψjγψj d3r

−
∫
Γh

(
n× grad ψj

)
· (λ (n× E)) d2r

= Is,j −
∫
Ω

grad ψj · js d3r +
∫
Γh

grad ψj · (n× H0) d2r (C.8c)

for j = 1, . . . , J − 1 where ψj ∈ Vj is fixed. The spaces of test and trial functions are defined by

U0 =
{

Φ ∈ Hcurl(Ω) : n×Φ = 0 on Γe
}

, (C.8d)

U =
{

E ∈ Hcurl(Ω) : n× E = n× E0 on Γe
}

, (C.8e)

V0 =
{

φ ∈ H1(Ω) : φ = 0 on Γe
}

, (C.8f)

Vj =
{

ψj ∈ H1(Ω) : ψj = δi,j on Γe,i, i = 1, . . . , J
}

, (C.8g)

V = V0 (C.8h)

where

Hcurl(Ω) =
{

E ∈ (L2(Ω))3 : curl E ∈ (L2(Ω))3}, (C.8i)

H1(Ω) =
{

V ∈ L2(Ω) : grad V ∈ L2(Ω)
}

(C.8j)

are the spaces of functions with a well-defined curl and gradient, respectively.
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Note that in contrast to the infinite number of test functions φ and the infinite dimension of the
trial function space H1(Ω), the number of test functions ψj and the number of unknown constants
Cj is finite. This corresponds to the decomposition of the kernel of the curl-operator into an infinite
dimensional part and its finite dimensional orthogonal complement using the Hcurl (Ω) inner
product, called the normal cohomology space.

If the variational problem (C.8) is to be a valid extension of the E-field formulation (2.27), all V and
C1, . . . , CJ−1 have to be identical to zero. Inserting Φ = grad φ and Φ = grad ψj as test functions in
equation (C.8a), and using equations (C.8b) and (C.8c) produces the following boundary value
problem:

Search V ∈ V and, if J > 1, constants C1, . . . , CJ−1 ∈ C such that

∫
Ω

grad φ ·
(
(σ − iωε) grad Ṽ

)
d3r− iω

∫
Ω

φγṼ d3r

−
∫
Γh

(
n× grad φ

)
·
(
λ
(
n× grad Ṽ

))
d2r = 0 (C.9a)

holds for all φ ∈ V0 and∫
Ω

grad ψj ·
(
(σ − iωε) grad Ṽ

)
d3r− iω

∫
Ω

ψjγṼ d3r

−
∫
Γh

(
n× grad ψj

)
·
(
λ
(
n× grad Ṽ

))
d2r = Is,j (C.9b)

for j = 1, . . . , J − 1 where ψj ∈ Vj is fixed and Ṽ is defined by

Ṽ = V +
J−1

∑
j=1

Cj ψj. (C.9c)

The solution of this boundary value problem only vanishes if Is,j = 0 for all j = 1, . . . ,
J − 1. This requirement is not surprising at all. The net current flow Is,j through the Dirich-
let boundary part Γe,j has no analogue in the E-field formulation (2.27). It introduces a new source
term into the E-V formulation. Both formulations can only be equivalent if Is,j = 0.

Even if this assumption is met the class of problems covered by the E-V formulation (C.8) is
enlarged by a number of important applications. Buried metallic objects can be modelled by a
PEC surface, for example. However, current emitting electrodes which could be modelled by a
PEC surface with non-zero net current flow lead to a non-vanishing auxiliary field Ṽ. The ensuing
solution E of (C.8) does not satisfy Maxwell’s equations any more.

There is one exception. boundary value problem (C.9) in terms of Ṽ can only derived from (C.8)
if ω 6= 0. If ω = 0, insertion of Φ = grad φ and Φ = grad ψj as test functions into equation (C.8a)
produces a boundary value problem identical to (C.9) except for vanishing source terms, Is,j = 0 for
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all j = 1, . . . , J − 1. Equations (C.8b) and (C.8b) have not been used. Consequently, Ṽ ≡ 0 for ω = 0
and E is a valid solution of the static Maxwell’s equations. boundary value problem (C.9) could
be used, e. g., to compute the electric field of direct current problem settings with electrodes of
finite extension. The numerical solution of the general boundary value problem (C.9) covering all
frequencies is, of course, far more expensive than the solution of a zero or low frequency specialized
boundary value problem in terms of the electric scalar potential only.

C.2 The discrete problem

Finite element approximation

The discrete problem is derived by the finite element method as described in Chapter 3. Basically,
the infinite dimensional function spaces Hcurl(Ω) and H1(Ω) are approximated by finite dimen-
sional, piecewise polynomial spaces Pcurl(Ω) and P1(Ω). The weak form (C.8) consequently reads

Search Eh ∈ Uh, Vh ∈ Vh and, if J > 1, constants C1, . . . , CJ−1 ∈ C such that

∫
Ω

curl Φh ·
(

µ−1 curl Eh

)
d3r− iω

∫
Ω

Φh · ((σ − iωε) Eh) d3r

+
∫
Ω

Φh · ((σ − iωε) grad Vh) d3r +
J−1

∑
j=1

Cj

∫
Ω

Φh ·
(
(σ − iωε) grad ψj

)
d3r

+ iω
∫
Γh

(
n×Φh

)
· (λ (n× Eh)) d2r−

∫
Γh

(
n×Φh

)
· (λ (n× grad Vh)) d2r

−
J−1

∑
j=1

Cj

∫
Γh

(
n×Φh

)
·
(
λ
(
n× grad ψj

))
d2r

= iω
∫
Ω

Φh · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φh · j f d2r− iω
∫
Γh

Φh ·
(

j f + n× H0
)

d2r (C.10a)

for all Φh ∈ Uh,0,

∫
Ω

grad φh · ((σ − iωε) Eh) d3r−
∫
Ω

φhγVh d3r−
J−1

∑
j=1

Cj

∫
Ω

φhγψj d3r

−
∫
Γh

(
n× grad φh

)
· (λ (n× Eh)) d2r

= −
∫
Ω

grad φh · js d3r +
∫
Γh

grad φh · (n× H0) d2r (C.10b)

for all φh ∈ Vh,0 and, if J > 1,
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∫
Ω

grad ψj · ((σ − iωε) Eh) d3r−
∫
Ω

ψjγVh d3r−
J−1

∑
j=1

Cj

∫
Ω

ψjγψj d3r

−
∫
Γh

(
n× grad ψj

)
· (λ (n× Eh)) d2r

= Is,j −
∫
Ω

grad ψj · js d3r +
∫
Γh

grad ψj · (n× H0) d2r (C.10c)

for j = 1, . . . , J − 1 where ψj ∈ Vh,j is fixed. The spaces of test and trial functions are defined by

Uh,0 =
{

Φh ∈ Pcurl(Ω) : n×Φh = 0 on Γe
}

, (C.10d)

Uh =
{

Eh ∈ Pcurl(Ω) : n× Eh = n× E0 on Γe
}

, (C.10e)

Vh,0 =
{

φh ∈ P1(Ω) : φh = 0 on Γe
}

, (C.10f)

Vh,j =
{

ψj ∈ P1(Ω) : ψj = δi,j on Γe,i, i = 1, . . . , J
}

, (C.10g)

Vh = Vh,0 (C.10h)

where

Pcurl(Ω) =
{

Eh ∈ (L2(Ω))3 : curl Eh ∈ (L2(Ω))3, Eh|K polynomial
}

, (C.10i)

P1(Ω) =
{

Vh ∈ L2(Ω) : grad Vh ∈ L2(Ω), Vh|K polynomial
}

(C.10j)

are the spaces of elementwise polynomial functions with a well-defined curl and gradient, respectively.

If {Φi}N
i=1 forms a basis of Pcurl(Ω) and {φi}M

i=1 a basis of P1(Ω), the finite element approximation
of the electric field E and the auxiliary field V can be expressed by

Eh(r) =
N

∑
i=1

Ei Φi(r) and (C.11a)

Vh(r) =
M

∑
i=1

Vi φi(r). (C.11b)

The basis functions are sorted such that the set {Φi}n
i=1, n ≤ N, forms a basis of Uh,0, i. e., n×Φi = 0,

i = 1, . . . , n, on Γe, and the set {φi}m
i=1, m ≤ M, forms a basis of Vh,0, i. e., φi = 0, i = 1, . . . , m, on

Γe. The coefficients Ei and Vi of the remaining basis functions Φi, i = n + 1, . . . , N, and φi,
i = m + 1, . . . , M, have to be fixed in order to ensure Eh ∈ Uh and Vh ∈ Vh, i. e., to enforce the
Dirichlet boundary conditions.

Since the additional test functions ψj, j = 1, . . . , J − 1, are arbitrary but fixed functions from
H1(Ω) the approximation of H1(Ω) by P1(Ω) is irrelevant for ψj. Therefore, the assumption
ψj ∈ P1(Ω) allows for a basis function expansion of the form

ψj(r) =
M

∑
i=1

αi,j φi(r) (C.12a)
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where the coefficients αi,j have to be chosen such that ψj = δi,j on Γe,i for i = 1, . . . , J. Given the
linear mapping Ai which maps the scalar field V onto its degrees of freedom Vi the coefficients αi,j

are determined by

αi,j = Ai{Hj} where Hj(r) =

1 if r ∈ Γe,j,

0 if r ∈ Ω \ Γe,j
(C.12b)

for i = 1, . . . , M, j = 1, . . . , J − 1. The projection (C.12b) is exact, i. e., ψj ≡ 1 on Γe,j for any reason-
able finite element space P1(Ω) which contains the constant function.

Inserting the trial functions (C.11a) and (C.11b) into the variational integrals (C.10a), (C.10b) and
(C.10c), and taking the j-th basis function Φj, φj, ψj, respectively, as the test function produces the
j-th row of a system of linear equations in terms of the unknown linear coefficients Ei, Vi and Ci,

n

∑
i=1

a(Φ,Φ)
j,i Ei +

m

∑
i=1

a(Φ,φ)
j,i Vi +

J−1

∑
i=1

a(Φ,ψ)
j,i Ci = f (Φ)

j , j = 1, . . . , n , (C.13a)

n

∑
i=1

a(φ,Φ)
j,i Ei +

m

∑
i=1

a(φ,φ)
j,i Vi +

J−1

∑
i=1

a(φ,ψ)
j,i Ci = f (φ)

j , j = 1, . . . , m , (C.13b)

n

∑
i=1

a(ψ,Φ)
j,i Ei +

m

∑
i=1

a(ψ,φ)
j,i Vi +

J−1

∑
i=1

a(ψ,ψ)
j,i Ci = f (ψ)

j , j = 1, . . . , J − 1 , (C.13c)

where

a(Φ,Φ)
j,i =

∫
Ω

curl Φj ·
(

µ−1 curl Φi

)
d3r− iω

∫
Ω

Φj · ((σ − iωε)Φi) d3r

+ iω
∫
Γh

(
n×Φj

)
· (λ(n×Φi)) d2r, (C.13d)

a(Φ,φ)
j,i =

∫
Ω

Φj · ((σ − iωε) grad φi) d3r−
∫
Γh

(
n×Φj

)
· (λ (n× grad φi)) d2r, (C.13e)

a(Φ,ψ)
j,i =

∫
Ω

Φj · ((σ − iωε) grad ψi) d3r−
∫
Γh

(
n×Φj

)
· (λ (n× grad ψi)) d2r

=
M

∑
k=m+1

a(Φ,φ)
j,k αk,i, (C.13f)

a(φ,Φ)
j,i =

∫
Ω

grad φj · ((σ − iωε)Φi) d3r−
∫
Γh

(
n× grad φj

)
· (λ (n×Φi)) d2r, (C.13g)

a(φ,φ)
j,i = −

∫
Ω

φjγφi d3r (C.13h)
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a(φ,ψ)
j,i = −

∫
Ω

φjγψi d3r

=
M

∑
k=m+1

a(φ,φ)
j,k αk,i, (C.13i)

a(ψ,Φ)
j,i =

∫
Ω

grad ψj · ((σ − iωε)Φi) d3r−
∫
Γh

(
n× grad ψj

)
· (λ (n×Φi)) d2r

=
M

∑
l=m+1

αl,j a(φ,Φ)
l,i , (C.13j)

a(ψ,φ)
j,i = −

∫
Ω

ψjγφi d3r

=
M

∑
l=m+1

αl,j a(φ,φ)
l,i , (C.13k)

a(ψ,ψ)
j,i = −

∫
Ω

ψjγψi d3r

=
M

∑
k,l=m+1

αl,j a(φ,φ)
l,k αk,i (C.13l)

and

f (Φ)
j = iω

∫
Ω

Φj · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φj · j f d2r− iω
∫
Γh

Φj ·
(

j f + n× H0
)

d2r

−
N

∑
i=n+1

a(Φ,Φ)
j,i Ei −

M

∑
i=m+1

a(Φ,φ)
j,i Vi, (C.13m)

f (φ)
j = −

∫
Ω

grad φj · js d3r +
∫
Γh

grad φj · (n× H0) d2r

−
N

∑
i=n+1

a(φ,Φ)
j,i Ei −

M

∑
i=m+1

a(φ,φ)
j,i Vi, (C.13n)

f (ψ)
j = −Is,j −

∫
Ω

grad ψj · js d3r +
∫
Γh

grad ψj · (n× H0) d2r

−
N

∑
i=n+1

a(ψ,Φ)
j,i Ei −

M

∑
i=m+1

a(ψ,φ)
j,i Vi

= −Is,j +
M

∑
l=m+1

αl,j f (φ)
l . (C.13o)
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Summarizing all equations the overall system of linear equations reads in matrix notation as follows



a(Φ,Φ)
1,1 . . . a(Φ,Φ)

1,n a(Φ,φ)
1,1 . . . a(Φ,φ)

1,m a(Φ,ψ)
1,1 . . . a(Φ,ψ)

1,J−1
...

...
...

...
...

...

a(Φ,Φ)
n,1 . . . a(Φ,Φ)

n,n a(Φ,φ)
n,1 . . . a(Φ,φ)

n,m a(Φ,ψ)
n,1 . . . a(Φ,ψ)

n,J−1

a(φ,Φ)
1,1 . . . a(φ,Φ)

1,n a(φ,φ)
1,1 . . . a(φ,φ)

1,m a(φ,ψ)
1,1 . . . a(φ,ψ)

1,J−1
...

...
...

...
...

...

a(φ,Φ)
m,1 . . . a(φ,Φ)

m,n a(φ,φ)
m,1 . . . a(φ,φ)

m,m a(φ,ψ)
m,1 . . . a(φ,ψ)

m,J−1

a(ψ,Φ)
1,1 . . . a(ψ,Φ)

1,n a(ψ,φ)
1,1 . . . a(ψ,φ)

1,m a(ψ,ψ)
1,1 . . . a(ψ,ψ)

1,J−1
...

...
...

...
...

...

a(ψ,Φ)
J−1,1 . . . a(ψ,Φ)

J−1,n a(ψ,φ)
J−1,1 . . . a(ψ,φ)

J−1,m a(ψ,ψ)
J−1,1 . . . a(ψ,ψ)

J−1,J−1



×



E1
...

En

V1
...

Vm

C1
...

CJ−1



=



f (Φ)
1
...

f (Φ)
n

f (φ)
1
...

f (φ)
m

f (ψ)
1
...

f (ψ)
J−1



. (C.13p)

This system of equations is the straightforward extension of system (3.11i) to the case of a boundary
with J > 1 connected Dirichlet parts by J − 1 additional unknowns and equations. The matrix
in (C.13i) has the same properties as the matrix in (3.11i).

C.3 Numerical experiments

Similar to the numerical experiments described in section 3.5 of Chapter 3, additional numerical
tests have been devised in order to give numerical evidence for the correctness of the theoretical
considerations outlined in the previous sections.

Dimension of the normal cohomology space

In section 3.5.4 the compatibility of the polynomial spaces which are used to approximate E and
V had been examined by the singular decomposition of the finite element system matrix. This
experiment is now extended to the case of a Dirichlet boundary which consists of two disjoint parts.
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As in Chapter 3, the domain Ω = [−1, 1]3 m3 is discretized by a regular hexahedral grid with
23 elements, i. e., there is exactly one interior vertex. Ω is covered by a homogeneous medium
of electrical conductivity σ = 0.01 S/m and relative magnetic permeability µr = 1. The relative
electrical permittivity is irrelevant because only frequency f = 0 is considered for this test problem.
Here, vanishing tangential electric field components are imposed as a homogeneous Dirichlet
boundary condition only on the two +z- and −z-directed boundary faces of ∂Ω. A homogeneous
Neumann boundary condition is imposed on the ±x- and ±y-directed boundary faces. Therefore,
the Dirichlet boundary part Γe consists of two disjoint parts.

The electric field E and the scalar field V are approximated by piecewise quadratic basis functions
(p = 2). This results in 220 degrees of freedom for E and 76 degrees of freedom for V, excluding
the fixed boundary values. Note that, compared to the experiment in section 3.5.4, the different
setup of boundary conditions leads to a different number of degrees of freedom.

The kernel of the curl-operator now not only consists of the gradient of a scalar field V which
vanishes on Γe, but contains one additional function which can be fixed by prescribing the electric
current flow through one of the Dirichlet boundary parts. Figure C.1 displays the singular values
of the resulting finite element system matrices if only the E-field formulation is used (a), or if the
E-V formulation is used and the total current flow is prescribed through none (b), one (c) or both
(d) Dirichlet boundary parts.

Only case (c) results in a regular finite element system matrix. The rank deficiency of 76 caused
by the kernel of the curl-operator is resolved by enhancing the discrete problem by 76 additional
equations reflecting the equation of continuity. Therefore, the well posed problem has 296 degrees
of freedom, subdivided into 220 for the electric field and 76 for the scalar field. If in case (b) a scalar
field is considered which vanishes on all of Γe, there are only additional 75 equations. The total
current flow through one of the boundaries is required as one additional condition to render the
problem well-posed. If the current flow is prescribed for the second Dirichlet boundary part as
well, the resulting system is again singular. The additional equation is not linearly independent of
the others.

Low frequency stability

In order to show that the E-V formulation is stable at low frequencies also for the case of a non-
trivial cohomology space, the numerical experiment described in section 3.5.5 of Chapter 3 has
been repeated. The test suite is extended by a third set of boundary conditions which is a mixture
of the purely Dirichlet or purely Neumann boundary conditions considered there. Here, the
inhomogeneous Dirichlet boundary condition is prescribed only on the two +z- and −z-directed
boundary faces and the inhomogeneous Neumann boundary condition on the±x- and±y-directed
boundary faces. Therefore, the Dirichlet boundary part Γe consists of two disjoint parts and an
integral boundary condition of the type (C.2) is applied on the −z-directed boundary face Γe,1. The
mixture of Dirichlet and Neumann boundary conditions will shortly be called the mixed boundary
case in the following. This should not be confused with an actual mixed boundary condition.
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Figure C.1: Singular values of the finite element system matrix A at frequency ω = 0 for the E-field
formulation (a) and the E-V formulation where the total current flow is prescribed through none
(b), one (c) and two (d) of the two disjoint Dirichlet boundary parts.

The 1-norm matrix condition number for the finite element matrices is depicted as a function of
frequency in Figures C.2 and C.3 and should be compared to Figures 3.20 and 3.21. The condition
number of the mixed boundary case exhibits the same behavior like the condition number of the
Dirichlet boundary case. Since the Dirichlet boundary part is not empty, the finite element matrix
of the E-V formulation ‘Laplace, mixed’ does not show the singular behavior of the Neumann
boundary condition case.

The relative solution error of the constant current density test case is depicted in Figures C.4
and C.5. It agrees well with the relative solution error for the other boundary condition types in
Figures 3.23 and 3.24. The electric field of the constant current density is a special case of the E-V
formulation (C.10). Since Is,1 = −1 A 6= 0 the auxiliary scalar field V does not vanish. However,
the property curl E ≡ 0 renders E = − grad V/iω the correct solution of Maxwell’s equations.

The plane wave test case satisfies the assumption Is,1 = 0. Figures C.6/C.7 and C.8/C.9 show the
relative solution error for a piecewise quadratic and linear approximation. Their counterparts for
the other boundary conditions are depicted in Figures 3.25/3.26 and 3.27/3.28. The relative errors
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of the mixed boundary case compare best with the Neumann boundary case of Chapter 3. There is
one exception. The relative error of the electric field is bounded from below by circa 10−3 for the
tetrahedral mesh. The error bound is of the same order of magnitude for both the fullspace and the
halfspace model as well as for p = 1 and 2. However, the relative error of the curl agrees with the
results of the Neumann boundary condition. This indicates that E is spoiled by the gradient of a
scalar field whose origin seems to be connected with the unstructured tetrahedral mesh since the
effect is not observed with the hexahedral mesh. Examination of the numerical solution indeed
shows that the electric field computed on the tetrahedral mesh has a non-physical, constant and
non-vanishing z-component. This component is proportional to the total electric field energy within
Ω and, therefore, produces a frequency independent solution error level.

152



C Removing a non-trivial normal cohomology space

fullspace halfspace

he
xa

he
dr

on

10
−3

10
0

10
3

10
6

10
5

10
10

10
15

frequency f in Hz

m
a
tr

ix
 c

o
n

d
it

io
n

 n
u

m
b

e
r

10
−3

10
0

10
3

10
6

10
10

10
20

frequency f in Hz

m
a
tr

ix
 c

o
n

d
it

io
n

 n
u

m
b

e
r

te
tr

ah
ed

ro
n

10
−3

10
0

10
3

10
6

10
5

10
10

10
15

frequency f in Hz

m
a
tr

ix
 c

o
n

d
it

io
n

 n
u

m
b

e
r

10
−3

10
0

10
3

10
6

10
5

10
10

10
15

frequency f in Hz

m
a
tr

ix
 c

o
n

d
it

io
n

 n
u

m
b

e
r

E−field mixed, Laplace mixed, Helmholtz

Figure C.2: 1-norm matrix condition number for both test cases ‘constant current density’ and
‘plane wave’ with symmetric matrix scaling; mixed boundary case, Dirichlet and Neumann
boundary conditions.
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Figure C.3: 1-norm matrix condition number for both test cases ‘constant current density’ and
‘plane wave’ without symmetric matrix scaling; mixed boundary case, Dirichlet and Neumann
boundary conditions.
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Figure C.4: Relative solution error for test case ‘constant current density’ with symmetric matrix
scaling; mixed boundary case, Dirichlet and Neumann boundary conditions.
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Figure C.5: Relative solution error for test case ‘constant current density’ without symmetric matrix
scaling; mixed boundary case, Dirichlet and Neumann boundary conditions.
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Figure C.6: Relative solution error for test case ‘plane wave’ with symmetric matrix scaling; piece-
wise quadratic approximation (p = 2); mixed boundary case, Dirichlet and Neumann boundary
conditions.
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Figure C.7: Relative solution error for test case ‘plane wave’ without symmetric matrix scaling;
piecewise quadratic approximation (p = 2); mixed boundary case, Dirichlet and Neumann
boundary conditions.
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Figure C.8: Relative solution error for test case ‘plane wave’ with symmetric matrix scaling; piece-
wise linear approximation (p = 1); mixed boundary case, Dirichlet and Neumann boundary
conditions.
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Figure C.9: Relative solution error for test case ‘plane wave’ without symmetric matrix scaling;
piecewise linear approximation (p = 1); mixed boundary case, Dirichlet and Neumann boundary
conditions.
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D Sensitivity calculation

Given the data of one of the boundary value problems of Chapter 2, i. e., constitutive parameters,
frequency, source terms and boundary values, an approximate solution of the boundary value
problem is computed using the numerical techniques described in Chapter 3. The solution can
be interpreted as a non-linear function of the data and consequently be partially differentiated
with respect to the data. This differentiation leads to the concept of sensitivity which is generally
understood as the derivative of a physical field with respect to the value of some constitutive
parameter within a subvolume of the computational domain.

Computation of sensitivities can easily appended to the solution of the boundary value problem
using the sensitivity equation approach (McGillivray and Oldenburg, 1990). The sensitivity is
sought as the solution of a boundary value problem which is identical to the boundary value
problem in terms of the electric field except for modified source terms. Therefore, a system of linear
equations is to be solved for the electric field and the sensitivities which has the same coefficient
matrix but different right hand sides. The sensitivities can be computed quite efficiently if the
system of linear equations is solved directly and the matrix factorization can be reused.

Recall that the electric field E is approximated by an expansion in terms of piecewise polynomial
vector finite element basis functions Φi as

Eh(r) =
N

∑
i=1

Ei Φi(r) . (D.1)

While the coefficients Ei ∈ C, i = 1, . . . , n, are determined by a system of linear equations

n

∑
i=1

aj,i Ei = f j , j = 1, . . . , n , (D.2a)

where

aj,i =
∫
Ω

curl Φj ·
(

µ−1 curl Φi

)
d3r− iω

∫
Ω

Φj · ((σ − iωε) Φi) d3r

+ iω
∫
Γh

(
n×Φj

)
· (λ (n×Φi)) d2r , (D.2b)

f j = iω
∫
Ω

Φj · js d3r− iω
n

∑
i,j=1
i<j

∫
Σi,j

Φj · j f d2r− iω
∫
Γh

Φj ·
(

j f + n× H0
)

d2r

−
N

∑
i=n+1

aj,iEi , (D.2c)

the remaining coefficients Ei ∈ C, i = n + 1, . . . , N, are fixed by the Dirichlet boundary condition
according to

Ei = Ai{E0} . (D.3)
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The sensitivity of the electric field with respect to an arbitrary, scalar parameter is formally described
by the derivative S := ∂E/∂η. This translates into the finite element approximation (D.1) as a
dependency of the basis function expansion coefficients Ei on η,

Sh(r) =
N

∑
i=1

Si Φi(r) , (D.4)

where Si := ∂Ei/∂η. The coefficients Si, i = n + 1, . . . , N vanish if the Dirichlet boundary condition
is assumed to be independent of η.

Application of the derivative ∂/∂η to the system of linear equations (D.2) and making use of the
chain rule, a similar system of equations has to be solved in terms of coefficients Si ∈ C, i = 1, . . . , n,

n

∑
i=1

aj,i Si = gj , j = 1, . . . , n , (D.5a)

where

aj,i =
∫
Ω

curl Φj ·
(

µ−1 curl Φi

)
d3r− iω

∫
Ω

Φj · ((σ − iωε) Φi) d3r

+ iω
∫
Γh

(
n×Φj

)
· (λ (n×Φi)) d2r , (D.5b)

gj = iω
∫
Ω

Φj ·
∂js

∂η
d3r− iω

n

∑
i,j=1
i<j

∫
Σi,j

Φj ·
∂j f

∂η
d2r

− iω
∫
Γh

Φj ·
(

∂j f

∂η
+ n× ∂H0

∂η

)
d2r

−
N

∑
i=1

Ei

−
∫
Ω

curl Φj ·
(

∂µ

∂η
µ−2 curl Φi

)
d3r

− iω
∫
Ω

Φj ·
((

∂σ

∂η
− iω

∂ε

∂η

)
Φi

)
d3r

+ iω
∫
Γh

(
n×Φj

)
·
(

∂λ

∂η
(n×Φi)

)
d2r

 . (D.5c)

Note that the sum in equation (D.5c) involves all E1, . . . , EN , including the Dirichlet boundary
values, while the system of linear equations (D.5a) includes only S1, . . . , Sn.

As an example, consider the sensitivity of the electric field with respect to conductivity σ.
Assume that the domain Ω consists of a number of subdomains such that σ is constant within
each subdomain, σ = σk on Ωk. Then, the finite element approximation to S = ∂E/∂σk is computed
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according to equations (D.5) where the right hand side reduces to

gj = iω
N

∑
i=1

Ei


∫

Ωk

Φj ·Φi d3r− i
2

∫
Γh∩Ωk

(
n×Φj

)
·
(

1
k

(n×Φi)
)

d2r

 (D.5c*)

if λ = k (ωµ)−1 and k =
√

iωµ (σ− iωε). The sensitivity of the other electromagnetic fields can be
derived using the expansion (D.4). For example, if

∂Eh

∂σk
=

N

∑
i=1

Si Φi(r) (D.6a)

then, by curl Eh = iωBh,

∂Bh

∂σk
=

1
iω

N

∑
i=1

Si curl Φi(r). (D.6b)

One practical aspect of the proposed method requires a note of caution. Even though the storage
of the degrees of freedom Ei, i = 1, . . . , N, appears undemanding, the storage of the degrees of
freedom Si, i = 1, . . . , N quickly becomes prohibitive if sensitivities are to be calculated for all
subdomains Ωk of a typical 3-D inverse problem parameterization. Therefore, the post-processing
step, evaluation of the sensitivity for all receiver positions, needs to be integrated into the finite
element solution stage such that the degrees of freedom need not be stored.
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E Plane wave within a horizontally stratified earth

A plane wave travelling in positive z-direction is assumed to impinge upon a stack of horizontal
layers with homogeneous constitutive parameters (Figure E.1). The electromagnetic field expres-
sions (4.11a) and (4.11b) satisfy Maxwell’s equations within each layer if the coefficients ai and bi

are independent of z. Without loss of generality, the fields can be assumed to be polarized according
to

Ei = (Ei(z), 0, 0)T, (E.1a)

H i = (0, Hi(z), 0)T (E.1b)

where

Ei(z) = Zi

(
ai eiki(z−zi−1) + bi e−iki(z−zi−1)

)
, (E.1c)

Hi(z) = ai eiki(z−zi−1) − bi e−iki(z−zi−1) (E.1d)

and ‖E0‖ = ‖H0‖ = 1 has been set in equations (4.11a) and (4.11b). For the first layer, z0 = z1.
The coefficients ai and bi can be determined by enforcing the continuity of the tangential field
components at the interfaces and by taking boundary conditions into account. The following
definitions will be useful:

Yi =
ki

ωµi
i = 1, . . . , n, (E.2a)

Zi =
ωµi

ki
=

1
Yi

i = 1, . . . , n, (E.2b)

Ri =
Yi −Yi+1

Yi + Yi+1
=

Zi+1 − Zi

Zi+1 + Zi
i = 1, . . . , n− 1, (E.2c)

ri =
bi

ai
i = 1, . . . , n− 1, (E.2d)

h1 = 0, (E.2e)

hi = zi − zi−1 i = 2, . . . , n− 1. (E.2f)

k1

k2

k3
...

kn−1

kn

Z1

Z2

Z3
...

Zn−1

Zn

z1

z2

...

zn−2

zn−1

z
Figure E.1: Horizontally stratified earth which consists of n layers

including the upper and the lower halfspace.
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E Plane wave within a horizontally stratified earth

Yi, Zi, Ri, ri and hi are respectively the intrinsic wave admittance, the intrinsic wave impedance,
the intrinsic reflection coefficient of the interface between two layers, the generalized reflection
coefficient and the layer thickness. Since the wave is assumed to be travelling in positive z-direction

bn = 0 (E.3)

has to be enforced in order to eliminate the upgoing wave within the last layer. Now, continuity of
the tangential field components requires that

Ei−1(zi−1) = Ei(zi−1)

Zi−1

(
ai−1 eiki−1hi−1 + bi−1 e−iki−1hi−1

)
= Zi (ai + bi)

Zi−1ai−1

(
e2iki−1hi−1 + ri−1

)
e−iki−1hi−1 = Ziai (1 + ri) (E.4a)

and

Hi−1(zi−1) = Hi(zi−1)

ai−1 eiki−1hi−1 − bi−1 e−iki−1hi−1 = ai − bi

ai−1

(
e2iki−1hi−1 − ri−1

)
e−iki−1hi−1 = ai (1− ri) (E.4b)

hold for all layer interfaces z1, . . . , zn−1. Division of equation (E.4b) by equation (E.4a) yields a
recursion formula of the form ri−1 = ri−1(ri). First, at z = zn−1 for i = n

rn = 0 (E.5a)

follows from equation (E.3) and

1
Zn−1

e2ikn−1hn−1 − rn−1

e2ikn−1hn−1 + rn−1
=

1
Zn

rn−1 =
Zn − Zn−1

Zn + Zn−1
e2ikn−1hn−1

= Rn−1 e2ikn−1hn−1 .
(E.5b)

Next, at z = zi−1 for i = n− 1, . . . , 2,

1
Zi−1

e2iki−1hi−1 − ri−1

e2iki−1hi−1 + ri−1
=

1
Zi

1− ri

1 + ri

Zi(1 + ri)
(

e2iki−1hi−1 − ri−1

)
= Zi−1(1− ri)

(
e2iki−1hi−1 + ri−1

)
ri−1 =

Zi(1 + ri)− Zi−1(1− ri)
Zi(1 + ri) + Zi−1(1− ri)

e2iki−1hi−1

=
Zi − Zi−1 + (Zi + Zi−1) ri

Zi + Zi−1 + (Zi − Zi−1) ri
e2iki−1hi−1

=
Ri−1 + ri

1 + Ri−1ri
e2iki−1hi−1 .

(E.5c)
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The coefficient r1 computed at the last step of the upward recursion (E.5) determines the fields
within the topmost layer up to the factor a1. a1 is fixed by enforcing that the horizontal magnetic
field has unit amplitude at z = z1,

H1(z1) = a1(1− r1) = 1

a1 =
1

1− r1
. (E.6a)

This condition is usually employed in magnetotelluric modelling where the topmost layer is the air
halfspace and z1 = 0 represents the air–earth interface. The other coefficients ai are computed by a
downward recursion of the form ai = ai(ai−1) which is derived from the interface conditions by
multiplication of equation (E.4b) with Zi−1 and adding equation (E.4a). For i = 2, . . . , n− 1

2ai−1Zi−1 eiki−1hi−1 = ai (Zi + Zi−1 + (Zi − Zi−1) ri)

ai−1(1− Ri−1) eiki−1hi−1 = ai(1 + Ri−1 ri)

ai = ai−1
1− Ri−1

1 + Ri−1ri
eiki−1hi−1 (E.6b)

and for i = n− 1

an = an−1(1− Rn−1) eikn−1hn−1 . (E.6c)

Finally,

bi = airi (E.7)

for i = 1, . . . , n. Summarizing, the coefficients ai and bi in equations (E.1c) and (E.1d) can be
computed according to the following sequence:

i = n : ri = 0

i = n− 1 : ri = Ri e2ikihi

i = n− 2, . . . , 2 : ri =
Ri + ri+1

1 + Riri+1
e2ikihi

i = 1 : ri =
Ri + ri+1

1 + Riri+1

i = 1 : ai =
1

1− ri

i = 2 : ai = ai−1
1− Ri−1

1 + Ri−1 ri

i = 3, . . . , n− 1 : ai = ai−1
1− Ri−1

1 + Ri−1 ri
eiki−1hi−1

i = n : ai = ai−1(1− Ri−1) eiki−1hi−1

i = 1, . . . , n : bi = airi

(E.8)

Note that only the three parameters intrinsic wave admittance Zi, wavenumber ki and layer
interface depth zi shown in Figure E.1 are required to compute the electromagnetic fields according
to equations (E.1) and (E.8).
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