
Frequency domain methods for the

analysis of time delay systems

von der Fakultät für Naturwissenschaften der Technischen Universität Chemnitz
genehmigte

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt von M.Sc. Andreas Otto

geboren am 18. April 1983 in Greiz

eingereicht am 18. April 2016

Gutachter:
Prof. Dr. Günter Radons
Prof. Dr. Karl Heinz Hoffmann

Tag der Verteidigung 6. Juli 2016:



Bibliografische Beschreibung

Andreas Otto
Frequency domain methods for the analysis of time delay systems

Dissertation (in englischer Sprache)
Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Chemnitz, 2016
140 Seiten, 20 Abbildungen, 2 Tabellen, 213 Literaturzitate

Referat

In dieser Dissertation wird ein neues Verfahren zur Analyse von Systemen mit Totzei-
ten im Frequenzraum vorgestellt. Nach Linearisierung einer nichtlinearen retardierten
Differentialgleichung (DDE) mit konstanter verteilter Totzeit um eine konstante oder
periodische Referenzlösung kann die sogenannte Hill-Floquet Methode für die Analyse
der resultierende linearen DDE angewendet werden. Darüber hinaus werden Systeme mit
schnell oder langsam variierender Totzeit, Systeme mit einer variablen Totzeit, resultie-
rend aus einem Transport mit variabler Geschwindigkeit, und entsprechende räumlich
ausgedehnte Systeme vorgestellt, welche ebenfalls mit der vorgestellten Methode analy-
siert werden können.

Die neu eingeführte Hill-Floquet Methode basiert auf der Hillschen unendlichen Deter-
minante und ermöglicht die Transformation eines Systems mit periodischen Koeffizienten
auf ein autonomes System mit konstanten Koeffizienten. Dadurch können zur Analyse
periodischer Systeme auch eine Vielzahl existierender Methoden für autonome Systeme
genutzt werden und die Berechnung der Monodromie-Matrix für die Lösung des Systems
über eine Periode entfällt. In dieser Arbeit wird zur Analyse des autonomen Systems
die Tschebyscheff-Kollokationsmethode verwendet. Im Speziellen wird bei diesem Verfah-
ren der periodische Teil der Lösung in einer Fourierreihe entwickelt und das exponen-
tielle Verhalten durch die Werte der Fourierkoeffizienten an den Tschebyscheff Knoten
approximiert, wohingegen bei klassischen spektralen Verfahren die komplette Lösung in
bestimmten Basisfunktionen entwickelt wird.

Im Anwendungsteil der Arbeit werden neue Ergebnisse für drei Beispielsysteme prä-
sentiert, welche mit den vorgestellten Methoden analysiert wurden. Es wird gezeigt, dass
Welleninstabilitäten schon bei Einkomponenten-Reaktionsdiffusionsgleichungen mit ver-
teilter oder variabler Totzeit auftreten können. In einem zweiten Beispiel werden Schwin-
gungen an Werkzeugmaschinen betrachtet, wobei speziell simultane Drehbearbeitungs-
prozesse und Prozesse mit Drehzahlvariationen genauer untersucht werden. Am Ende
wird die Synchronisation in Netzwerken mit heterogenen Totzeiten in den Kopplungs-
termen untersucht, wobei die Zerlegung in Netzwerk-Eigenmoden für synchrone periodi-
sche Orbits hergeleitet wird und konkrete numerische Ergebnisse für ein Netzwerk aus
Hodgkin-Huxley Neuronen gezeigt werden.

Schlagwörter

Nichtlineare Dynamik, Stabilität, Floquet Theorie, Retardierte Differentialgleichgungen,
Musterbildung, Mechanische Schwingungen, Rattern, Synchronisation
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Abstract

In this thesis a new frequency domain approach for the analysis of time delay systems
is presented. After linearization of a nonlinear delay differential equation (DDE) with
constant distributed delay around a constant or periodic reference solution the so-called
Hill-Floquet method can be used for the analysis of the resulting linear DDE. In addi-
tion, systems with fast or slowly time-varying delays, systems with variable transport
delays originating from a transport with variable velocity, and the corresponding spa-
tially extended systems are presented, which can be also analyzed with the presented
method.

The newly introduced Hill-Floquet method is based on the Hill’s infinite determinant
method and enables the transformation of a system with periodic coefficients to an au-
tonomous system with constant coefficients. This makes the usage of a variety of existing
methods for autonomous systems available for the analysis of periodic systems, which im-
plies that the typical calculation of the monodromy matrix for the time evolution of the
solution over the principle period is no longer required. In this thesis, the Chebyshev col-
location method is used for the analysis of the autonomous systems. Specifically, in this
case the periodic part of the solution is expanded in a Fourier series and the exponential
behavior of the solution is approximated by the discrete values of the Fourier coefficients
at the Chebyshev nodes, whereas in classical spectral or pseudo-spectral methods for
the analysis of linear periodic DDEs the complete solution is expanded in terms of basis
functions.

In the last part of this thesis, new results for three applications with time delay ef-
fects are presented, which were analyzed with the presented methods. On the one hand,
the occurrence of diffusion-driven instabilities in reaction-diffusion systems with delay
is investigated. It is shown that wave instabilities are possible already for single-species
reaction diffusion systems with distributed or time-varying delay. On the other hand, the
stability of metal cutting vibrations at machine tools is analyzed. In particular, parallel
orthogonal turning processes with multiple discrete delays and turning processes with a
time-varying delay due to a spindle speed variation are studied. Finally, the stability of
the synchronized solution in networks with heterogeneous coupling delays is studied. In
particular, the eigenmode expansion for synchronized periodic orbits is derived, which
includes an extension of the classical master stability function to networks with hetero-
geneous coupling delays. Numerical results are shown for a network of Hodgkin-Huxley
neurons with two delays in the coupling.

5



Keywords

Nonlinear Dynamics, Stability, Floquet theory, Delay Differential Equations, Pattern
formation, Mechanical vibrations, Chatter, Synchronization

6



Contents

Acronyms and nomenclature 11

1. Introduction 13

2. System definition and equivalent systems 19

2.1. System definition and memory . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2. Equivalent time delay systems . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1. Variable transport delays . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2. Equivalent DDEs with time- or state-dependent delay . . . . . . . 23

2.3. Equivalent spatially extended systems . . . . . . . . . . . . . . . . . . . . 26
2.3.1. Equivalent first order hyperbolic PDEs . . . . . . . . . . . . . . . . 26
2.3.2. PDE representations in population dynamics . . . . . . . . . . . . 29

2.4. Approximations for systems with variable delay distribution . . . . . . . . 31

2.4.1. Fast time-varying delays . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2. Slowly time-varying delays . . . . . . . . . . . . . . . . . . . . . . . 34

2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3. Analysis of nonlinear time delay systems 39

3.1. Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2. Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3. Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1. Lyapunov’s direct method . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2. Lyapunov’s indirect linearization method . . . . . . . . . . . . . . 41

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4. Analytical solution of linear time delay systems 43

4.1. Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2. Method of steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3. Inverse Laplace transform via residue theory . . . . . . . . . . . . . . . . . 47
4.4. Eigenmode expansion for DDEs . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. Frequency domain approach 53

5.1. Autonomous systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.1. Characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2. Linear chain trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.3. Lambert W approach . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.4. Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7



Contents

5.2. Periodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1. Hill’s infinite determinant method . . . . . . . . . . . . . . . . . . 57

5.2.2. Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3. D-subdivision method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1. Autonomous systems . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2. Periodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.3. Aperiodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.4. Floquet exponents from D-subdivision . . . . . . . . . . . . . . . . 62

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6. Hill-Floquet method 63

6.1. The Hill-Floquet transformation . . . . . . . . . . . . . . . . . . . . . . . 63

6.2. Non-uniqueness of the Hill-Floquet transformation . . . . . . . . . . . . . 67

6.3. Chebyshev expansion of the Hill-Floquet system . . . . . . . . . . . . . . . 70

6.4. The alternative method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5. Discussion of the two separate expansions . . . . . . . . . . . . . . . . . . 77

6.6. Solution operator from the Hill-Floquet method . . . . . . . . . . . . . . . 78

6.6.1. Fundamental matrix solution . . . . . . . . . . . . . . . . . . . . . 78

6.6.2. Monodromy matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6.3. Lyapunov-Floquet transformation . . . . . . . . . . . . . . . . . . . 80

6.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7. Applications 83

7.1. Delayed reaction-diffusion systems . . . . . . . . . . . . . . . . . . . . . . 83

7.1.1. Stability analysis for homogeneous equilibria . . . . . . . . . . . . 84

7.1.2. Diffusion-driven instabilities . . . . . . . . . . . . . . . . . . . . . . 85

7.1.3. Turing-like traveling waves . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.4. Diffusion-driven instabilities in systems with time-varying delay . . 87

7.2. Metal cutting vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.1. Parallel turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.2. Stability lobes for parallel turning . . . . . . . . . . . . . . . . . . 92

7.2.3. Turning with spindle speed variation . . . . . . . . . . . . . . . . . 94

7.2.4. Stability lobes for turning with spindle speed variation . . . . . . . 96

7.3. Networks with heterogeneous coupling delays . . . . . . . . . . . . . . . . 97

7.3.1. Synchronization in heterogeneously delay-coupled networks . . . . 97

7.3.2. Representation with the adjacency lag operator . . . . . . . . . . . 98

7.3.3. Decomposition into network eigenmodes . . . . . . . . . . . . . . . 99

7.3.4. Synchronized delay-coupled Hodgkin-Huxley neurons . . . . . . . . 102

7.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8. Concluding remarks 107

Bibliography 109

8



Contents

A. Appendix 125

A.1. Equivalent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1.1. Relation between delay kernels . . . . . . . . . . . . . . . . . . . . 125
A.1.2. Characteristic curves for PDE representation . . . . . . . . . . . . 126

A.2. Analytical methods for linear DDEs . . . . . . . . . . . . . . . . . . . . . 127
A.2.1. Laplace transform of non-autonomous DDEs . . . . . . . . . . . . 127
A.2.2. Propagator of linear DDEs . . . . . . . . . . . . . . . . . . . . . . 128
A.2.3. Method of steps for DDEs with discrete delays . . . . . . . . . . . 130
A.2.4. Biorthonormality condition for eigenmode expansion of DDEs . . . 131

List of Figures 133

List of Tables 134

Selbstständigkeitserklärung nach §6 Promotionsordnung 135

Curriculum vitae 137

9





Acronyms and nomenclature

Acronyms

ODE Ordinary differential equation
DDE Delay differential equation
PDE Partial differential equation
FRF Frequency response function
DOF Degree of freedom
FFT Fast Fourier transform
SSV Spindle speed variation

Nomenclature

v̇(t) Time derivative of an arbitrary vector v(t)
v̄(s) Laplace transform of an arbitrary vector v(t)
v̂(ω) Fourier transform of an arbitrary vector v(t)
δij Kronecker delta
δ(t) Dirac delta function
H(t) Heaviside step function
T Principal period
i Imaginary unit
I Identity matrix
0 Vector or matrix with all entries equal to zero
σ(X) Eigenvalues of an arbitrary matrix X

◦ Composition
∗ Convolution
⊗ Kronecker product
∆ Laplace operator

t, t̃ Internal clock, physical time
Φ
(

t̃
)

, Ω
(

t̃
)

Time scale transformation and its derivative
u(t), ũ

(

t̃
)

Configuration of a system in the internal clock and the physical time
τ , τ̃ Time delay in the internal clock and the physical time
τmax, τ̃max

(

t̃
)

Upper bound of the delay distribution
ut, ũt̃ State of a time delay system
K(τ), K̃

(

t̃, τ̃
)

Delay distribution in the internal clock and the physical time
ru(t), r̃ũ

(

t̃
)

Memory in the internal clock and the physical time
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Acronyms and nomenclature

a(t), ã
(

t̃
)

Retarded access map in the internal clock and the physical time
Aτ , τm Amplitude and mean of a delay modulation
v (τ, t), w (τ̃ , t) Configuration of the equivalent PDE in the internal clock
ṽ
(

τ, t̃
)

, w̃
(

τ̃ , t̃
)

Configuration of the equivalent PDE in the physical time
Kvar(t, τ), Kav(τ) Time-varying and time-averaged delay distribution
rvar
u (t), rav

u (t) Time-varying and time-averaged memory
rfroz
u (t, t′) Frozen memory

x(t), x̃
(

t̃
)

Infinitesimal perturbations
A(t), B(t) Coefficient matrices in the linearized delay system
s Laplace variable, characteristic root or Floquet exponent
λ, ω Real part and imaginary part of s (growth rate and frequency)
Ψ(t), Ψ̄(s) Initial function and its weighted Laplace transform
T (t, t′), T̄ (s, s′) Propagator of a DDE and its Laplace domain representation
M(t, t′) Propagator of an ordinary differential equation
dT
k , qk Left and right eigenvectors in the characteristic equation

xk(t) Eigenmode of a linear system
pk(t) Periodic part of the eigenmode of a periodic system
F l(t), F

i(t) Hill-Floquet and inverse Hill-Floquet transformation
C∞(s) Hill’s infinite matrix
A∞, B∞(τ) Coefficient matrices in the Hill-Floquet representation
x∞(t) Configuration in the Hill-Floquet representation
DF , DM Fourier and Chebyshev differentiation matrix
n, M Number of higher harmonics, number of Chebyshev nodes
z∞(t), H∞ Configuration and coefficient matrix in the Chebyshev expanded

Hill-Floquet system

D, k Diffusion coefficient and wavenumber
b, h(t) Chip width, chip thickness
Ω0 Nominal spindle speed
γ Angle between the tools in parallel turning
G(ω) Matrix of oriented frequency response functions
P (ω,Ω) Force coefficient matrix
AΩ, fΩ Amplitude and frequency of a spindle speed variation
ωn, ζ Frequency and damping ratio of a structural eigenmode
w Dimensionless chip width
d Number of nodes of a network
C Adjacency matrix
S(τ), C Time lag operator, adjacency lag operator
L, L Eigenvalue matrix, diagonal operator of the adjacency lag operator
U(t), V (t) Left and right eigenvector matrix of adjacency lag operator
U , V Matrix operators associated to U(t) and V (t)
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1. Introduction

It is well-known that typically dynamical systems can be described by ordinary differ-
ential equations (ODEs). In this case the state of the system is characterized by the
instantaneous configuration u(t) of the ODE. If the initial state u(0) of the system is
known, the solution of the ODE can be predicted by an integration of the differential
equation. Beyond the classical ODE systems, there are dynamical systems, where the
effects of time delays τ0 are relevant and retarded configurations u(t− τ0) of the system
cannot be neglected for the description of the dynamics of the system. These systems are
called time delay systems and can be described by delay differential equations (DDEs)

u̇(t) = f(u(t),u(t− τ0)). (1.1)

One of the main difference between DDEs and ODEs is given by the fact, that DDEs are
infinite dimensional systems. In particular, the state of the DDE Eq. (1.1) at time t is
given by the function ut = u(t−τ), 0 ≤ τ ≤ τ0. In other words, for ODEs an initial value
u(0) specifies a unique solution of the system, whereas for DDEs an initial function u0

is necessary for specifying a unique solution. A famous example for a time delay system
is related to the production of blood cells, which is known as Mackey-Glass equation
[1]. There exists a significant delay τ0 between the initiation of cellular production and
the release of mature cells into the blood. This means that the rate of change u̇(t)
of the blood cells at time t depends not only on the instantaneous number of blood
cells u(t) but also on the retarded configuration u(t − τ0). The time delay τ0 specifies
the time from the initiation of a cell production until its maturity. For small delays,
the number of blood cells from the solution of the Mackey-Glass equation is constant.
However, if the time delay τ0 increases, large amplitude oscillations occur. Indeed, the
number of blood cells of normal healthy adults can be kept nearly constant, whereas
an abnormal periodic behavior of the number of blood cells and an increased cellular
generation time has been observed in patients with chronic granulocytic leukemia ([1]
and Refs. therein). A second famous example, where time delays play a crucial role for
the system dynamics, are machine tool vibrations [2, 3]. Large undesired vibrations in
machining are called chatter. The occurrence of chatter leads to poor surface finish, noise
and increased tool wear. In machining the cutting force on the cutting tool depends on
the chip thickness. As can be seen from the turning example in Fig. 1.1 the chip thickness
is affected both by instantaneous and delayed displacements of the structure at the tool
tip, u(t) and u(t − τ0). In this example, the time delay τ0 is equivalent to the time for
one revolution of the workpiece. Fluctuations of the cutting force due to fluctuations of
the chip thickness lead to new variations of the tool tip displacements and again to chip
thickness variations. This mechanism for self-excited vibrations is known as regenerative
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u

F(t)

u(t)

u(t-τ0)

workpiece

machine tool structure

Figure 1.1.: Fluctuations of the cutting force F (t) in turning occur not only due to the
machine tool vibrations u(t) at the present cut but also due to vibrations at
the previous cut u(t− τ0) left on the workpiece at some retarded time t− τ0.

effect. The regenerative effect has been identified as the main reason for chatter vibrations
in metal cutting [4, 5].

In general, time delay systems can be found, for example, in climate dynamics [6, 7],
life science [8, 9, 10], control theory [11, 12, 13] and network dynamics [14, 15]. A
nice overview on time delay systems with models from mechanics, physics, engineering,
biology, medicine and economy is given in [16]. In Eq. (1.1) only a constant delay τ = τ0
is considered. However, it is also reasonable that the delay depends explicitly on time
t or on the state ut of the system, which is known as a time-varying delay τ = τ(t) or
state-dependent delay τ = τ(ut), respectively. For example, the Mackey-Glass equation
with time-varying delay is studied numerically in [17]. Moreover, population models with
time-dependent delay [18] or state-dependent delay [19, 20, 21] have been studied. In
machining time-varying or state-dependent delays appear due to a continuous variation
of the spindle speed [22, 23] or whenever the effect of vibrations on the angular position
of the spindle is taken into account [24, 25, 26]. Other examples, for systems with time-
varying and state-dependent delays can be found in variable [27, 28, 29] and adaptive [30]
time-delayed feedback control or in the synchronization of complex networks with variable
[31, 32, 33, 34] and state-dependent coupling delays [35, 36]. Apart from variable and
state-dependent delays, systems with multiple delays or distributed delays are relevant in
applications. In biology, distributed delays are often found in population models because,
for example, the time to maturity will obviously not be the same for each individual of
the population [37, 38, 39]. In metal cutting applications DDEs with multiple delays
or distributed delays are used as models for milling processes with variable pitch [40] or
variable helix tools [41, 42].

From the above-mentioned examples it can be seen that the stability analysis of time
delay systems is important, for example, for understanding the control of biological sys-
tems [43]. In machining, there is a significant interest in the identification of stability
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charts for machine tool vibrations because the so-called chatter stability lobes can be
used either for increasing the productivity of manufacturing processes by an optimiza-
tion of the cutting conditions [44] or for increasing the efficiency in the development of
new machine tools [45, 46]. An overview on the stability analysis of time delay systems
is presented in [47, 48]. There are two main concepts. The first approach is called Lya-
punov’s first or indirect linearization method and is based on the linearization of the
nonlinear time delay system Eq. (1.1) around a reference solution or attractor

ẋ(t) = A(t)x(t) +B(t)x(t− τ0). (1.2)

In Eq. (1.2) the coefficient matrices A(t) and B(t) depend on the reference solution of the
nonlinear system Eq. (1.1) and the configurations x(t) are small perturbations around
the reference solution (see Sec. 3.3.2 for details). The reference solution is stable or
unstable if the amplitude of the perturbations x(t) goes to zero or diverges, respectively.
The advantage of the indirect method is the fact that precise results for the exponential
behavior of the perturbations x(t) can be obtained from Eq. (1.2) for the specific reference
solution. On the other hand, Eq. (1.2) holds only for infinitesimal perturbations, which
means that the results are not robust and, in general, depend on the initial condition of
the system. In 1892 Lyapunov suggests a second or direct method in his doctoral thesis
[49], which is based on the concept of the so-called Lyapunov function. The system is
stable if the Lyapunov function decreases to zero independent of the state of the system.
Thus, the direct method can be used to guarantee the robust stability of a nonlinear
system independent of a specific perturbation and solution. On the other hand, the
direct method leads, in general, only to a conservative bound on the parameter regions
where the system is stable. In this thesis, Lyapunov’s indirect linearization method
is considered, which means that the stability of linear DDEs similar to Eq. (1.2) is
studied. For the autonomous case, i.e. for DDEs with constant coefficient matrices
A(t) = A0, B(t) = B0, the frequency domain stability analysis of Eq. (1.2) is presented
in [50, 51, 52, 53]. It is based on the Laplace transform of the DDE and the solution of
the resulting characteristic equation. A nice overview on the methods for the stability
analysis of autonomous DDEs can be found in [54].

Constant coefficient matrices in Eq. (1.2) occur only if the original system Eq. (1.1)
is already linear or if an equilibrium of a nonlinear DDE Eq. (1.1) is analyzed. The
focus of this thesis are non-autonomous DDEs and especially periodic DDEs. A linear
DDE with periodic coefficients A(t) = A(t+ T ) and B(t) = B(t+ T ) occurs whenever
a periodic solution u(t) = u(t + T ) of the nonlinear DDE Eq. (1.1) is analyzed. A
specific example is chaos control with time-delayed feedback, where an unstable periodic
orbit of a chaotic system with period τ0 is stabilized by a control term proportional to
u(t − τ0) − u(t) [12, 13]. Other common examples are DDEs with periodic parametric
excitation, where one or more parameters of the system are characterized by an explicit
periodic variation. Such systems are often found in engineering, as for example in the
stability analysis of machine tool vibrations [3, 55] or in act-and-wait control [56, 57, 58].
A paradigmatic example for systems with periodic parametric excitation is the delayed
Mathieu equation [59, 60]. In addition to periodic coefficients, it is also possible that
the time delay is periodically modulated [22, 23] or periodic solutions of DDEs with
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1. Introduction

state-dependent delays are investigated [61]. In both cases, periodically varying delays
τ(t) = τ(t+T ) appear in the linearized DDE Eq. (1.2), which are in the scope of this thesis
as well. From a mathematical point of view the theory for DDEs with constant delays is
well-developed [62, 63], whereas there are some fundamental difficulties in the analysis
of systems with time-varying delays [64, 65] and state-dependent delays [66, 67]. The
main part of Chapter 2 is dedicated to the reduction of the complexity of systems with
variable and state-dependent delays by a transformation to systems with constant delays.
In fact, it was already shown that some DDEs with a discrete periodically-varying delay
are equivalent to DDEs with a constant delay similar to Eq. (1.2) [26, 68, 69, 70, 71, 72].

Most of the methods for the stability analysis of linear DDEs with periodic coefficients
are based on the finite dimensional approximation of the state xt of the DDE and the
construction of the monodromy matrix [3, 55, 73, 74]. In particular, the state is approxi-
mated by a finite number of basis functions and the monodromy matrix specifies the time
evolution of the state vector over the principle period of the time delay system. Then,
the stability can be obtained from the eigenvalues of the monodromy matrix. A more
detailed description of these methods is given in Chapter 5. Alternatively to the time
domain methods based on the construction of the monodromy matrix, frequency domain
methods can be used for the stability analysis of periodic DDEs [2, 59]. The frequency do-
main approach is based on the Floquet decomposition for DDEs [75, 76] and the Fourier
transformation of the periodic terms and is known as Hill’s infinite determinant method
[77, 78]. Note that the Hill’s infinite determinant method is related to the central equa-
tion in solid state physics, which is used for the calculation of energy bands for electrons
in periodic crystals [79, 80] 1. Frequency domain methods for the analysis of periodic
DDEs are almost exclusively used for the calculation of stability charts of machine tool
vibrations [2, 41, 81, 82]. In particular, specific root finding algorithms are used for the
numerical solution of the transcendental characteristic equation that is associated with
the Hill’s infinite determinant. However, the numerical methods for finding the roots of
the transcendental characteristic equation are not suitable for the explicit calculation of
the dominant Floquet exponents because one cannot be sure that a dominant exponent
is omitted by the numerical root finder. Nevertheless, there are two fundamental ad-
vantages of frequency domain methods. On the one hand, Fourier modes or, in general,
complex exponentials are eigenfunctions of the differential operator, i.e. d

dte
st = sest. As

a consequence, the structural behavior of the machine tool vibrations can be described
by frequency response functions (FRFs), which specifies the amplitudes and the phases of
a harmonic vibration at the tool tip in response to a harmonic excitation with a certain
frequency2 [83]. The concept of FRFs is not only limited to mechanical engineering. In
fact, the FRFs in mechanical engineering are closely related to the impulse response in
signal processing [84], the impedance in electrical engineering [85], the dynamic suscepti-
bility or the linear response function in physics [86] and the transfer function in control
theory [87]. On the other hand, the calculation of the monodromy matrix for the solu-

1In solid state physics Floquet theory is commonly known as Bloch theory
2In many applications such a linear structural behavior is valid because, for example, the amplitude of

the vibrations is very low compared to the size of the machine-tool structure
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tion over one period is not necessary in the frequency domain approach, which can be
an advantage to time domain methods, when the period of the excitation becomes very
large.

Contribution of the present work

In this thesis a generalization of the frequency domain approach based on the Hill’s
infinite determinant method for the analysis of periodic DDEs with time-varying, state-
dependent and distributed delay is presented. The main contribution is a new method
that puts the frequency domain approach for periodic systems in a more general frame-
work, which is called Hill-Floquet method. In general, the Hill-Floquet method can be
used for a transformation of non-autonomous systems with periodic coefficients to higher
dimensional autonomous systems with constant coefficients. This is a significant advance
in comparison to the existing methods because it enables the use of a bulk of methods
for the analysis of DDEs with periodic coefficients, which were initially designed for the
analysis of autonomous DDEs. Thus, the Hill-Floquet method represents an alternative
approach for the calculation of Floquet exponents and eigenvectors of periodic systems,
which is not based on the approximation of the monodromy operator, and where no
specific numerical method for the analysis of the Hill’s infinite determinant is necessary.

The newly introduced Hill-Floquet method is described for DDEs with periodic coeffi-
cients and time-invariant distributed delays. However, an essential part of this thesis is
devoted to equivalent representations of the system. For example, as mentioned above
it is known that certain systems with a discrete time-varying delay can be transformed
to systems with a constant delay [26, 68, 69, 70, 71, 72]. In this thesis, the applica-
tion of such a nonlinear time scale transformation for DDEs with a time-varying or a
state-dependent delay distribution is shown. Moreover, the equivalence of these systems
to some first-order hyperbolic partial differential equations (PDEs) is presented, where
the boundaries can be either constant or variable, associated to the constant or variable
delay distribution, respectively. Nevertheless, it is also shown that not every DDE with
a variable delay or a variable delay distribution can be transformed to a DDE with con-
stant delay. Specifically, only variable delay distributions originating from a transport
with a variable velocity over a constant distance can be described by a DDE with a
time-invariant delay distribution and are in the scope of this thesis.

In addition, to the newly introduced Hill-Floquet method and the theoretical results
on the equivalence of time delay systems some new results on the analytical solution of
linear DDEs are presented. In particular, the Laplace transform is used to describe the
solution of DDEs with distributed delays in terms of a time domain representation of the
propagator of the system. An explicit representation of the propagator is derived with
the method of steps and the inverse Laplace transform via residue theory. The spectral
representation of the propagator for autonomous DDEs is used to derive the eigenmode
decomposition for DDEs with distributed delay. The results on the analytical solution of
linear DDEs fill some gaps in the existing literature, where the theory is only presented
for scalar DDEs [88] or only for DDEs with discrete delays [89].

The presented theory is used for the derivation of new results in specific applications
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1. Introduction

in the field of time delay systems. In particular, single species reaction-diffusion systems
with a delay in the reaction term are studied. Whereas diffusion-driven or Turing-like
instabilities are not possible for single species reaction-diffusion systems without delay
or with a single delay in the reaction term [90], it is shown that an asymmetric delay dis-
tribution can lead to Turing-like waves in these systems. For parallel turning processes,
where two tools are simultaneously cutting the same surface of the workpiece at different
locations, a very efficient method for the construction of the stability lobe diagram is pre-
sented. It is shown that the radial angle between the cutting tools, which indeed affects
the time delays in the system [91, 92], has no influence on the stability lobes as long as
the structural coupling between the two tools can be neglected. For synchronization in
networks with heterogeneous delay couplings a technique for the decomposition of the
network dynamics into network eigenmodes is presented. This method is an extension of
the so-called master stability function, which can be used for the analysis of synchronized
solutions in networks with homogeneous delays [93], to networks with heterogeneous de-
lays. Here, it is shown that heterogeneous delays in the coupling lead to larger parameter
regions with unstable transversal network eigenmodes and desynchronized solutions.

Organization

In Chapter 2 the standard form of the considered systems is defined and their relation to
equivalent time delay systems and equivalent spatially extended systems is given. The
theoretical background and an overview on the methods for the analysis of nonlinear
time delay systems is given in Chapter 3. The standard analytical techniques for the
solution of linear time delay systems are shown in Chapter 4. In Chapter 5 the basic
tools for the stability analysis of linear DDEs is presented. The new Hill-Floquet trans-
formation for the transformation of a DDE with periodic coefficients to an autonomous
DDE with constant coefficients is introduced in Chapter 6. In particular, in Sec. 6.3
the method is combined with a Chebyshev collocation method for the analysis of the
resulting autonomous DDE. The application of the presented theory to specific time
delay systems in engineering, physics and biology are presented in Chapter. 7. In partic-
ular, the existence of diffusion-driven instabilities from equilibria of single species delayed
reaction-diffusion systems is systematically analyzed in Sec. 7.1. The application of fre-
quency domain methods for the stability analysis of metal cutting vibrations is presented
in Sec. 7.2, and finally, the analysis of synchronized solutions in delay-coupled networks
with heterogeneous coupling delays is studied in Sec. 7.3.
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2. System definition and equivalent

systems

In this chapter, in Sec. 2.1 the standard form for the considered dynamical systems is
defined. In addition, a large part of this chapter is dedicated to systems, which are
equivalent to the standard form, and therefore, fall within the scope of this thesis as
well. In particular, these are DDEs with time-varying and state-dependent delay, which
are presented in Sec. 2.2, and first-order hyperbolic PDEs with constant and moving
boundaries, which are presented in Sec. 2.3. Moreover in Sec. 2.4 systems with fast and
slowly variable delays are presented, which can be approximated with the standard form
defined in Sec. 2.1.

2.1. System definition and memory

In this thesis non-autonomous dynamical systems with memory effects are studied. The
theory for the analysis of linear DDEs in Chapter 4, Chapter 5 and Chapter 6 are
presented for the standard form

u̇(t) = f (t,u(t), ru(t)) . (2.1)

The N -dimensional vector u(t) ∈ R
N is called the configuration of the system and the

Nτ dimensional vector ru(t) ∈ R
Nτ is called the memory. The vector field f : R×R

N ×
R
Nτ → R

N can depend explicitly on the independent variable t, on the configuration
u(t), and on the memory ru(t) of the system. The components of the memory vector
are a linear combination of the retarded configurations u(t − τ) of the system, and are
defined by

ru(t) =

τmax
∫

0

K(τ)u(t− τ)dτ. (2.2)

The Nτ × N dimensional matrix K(τ) is a matrix of delay distributions because their
elements contains distributions of the delay τ , where τmax ≥ 0 specifies an upper bound
of the delay distributions. Thus, the system Eq. (2.1) with the memory Eq. (2.2) is a
DDE with time-invariant distributed delay. For example, for a N × N diagonal matrix
K(τ) = K(τ)I with identical diagonal elements K(τ) the N dimensional memory vector
is determined by the same delay distribution K(τ) for each component of the configura-
tion and for a diagonal matrix K(τ) with non-homogeneous diagonal elements different
delay distributions for different components of the configuration u(t) can be specified. In
the following the matrix K(τ) is simply called delay distribution.
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2. System definition and equivalent systems

As mentioned already in the introduction the instantaneous configuration u(t) is not
sufficient for a unique determination of the solution of the time delay system Eq. (2.1).
Instead, due to the influence of the memory ru(t) in Eq. (2.1) the state of the system is
given by the vector function ut = u(t − τ), which contains also retarded configurations
u(t− τ) of the system with 0 ≤ τ ≤ τmax. A unique solution of Eq. (2.1) for t > 0 exists
if the state at t = 0 is specified by a unique initial function u0 [62].

Note that DDEs with time-varying or state-dependent delay distributions and PDEs
with constant and moving boundaries, which are presented in Sec. 2.2 and Sec. 2.3,
respectively, are in the scope of this thesis as well. In particular, it turns out that in many
applications the independent variable t of the standard form Eq. (2.1) is not necessarily
equal to the physical time in the real-world. In fact, in engineering applications in
Sec. 2.2.1 the independent variable t can specify a covered distance or as in the machine
tool example in Sec. 7.2 an angle. In the biological examples in Sec. 2.3.2 the independent
variable t can be often interpreted as the size or a specific amount of food. In this case in
the physical time the system can be specified by a DDE with variable or state-dependent
delay or by a PDE with constant or moving boundaries as it will be shown next in Sec. 2.2
and Sec. 2.3, respectively.

2.2. Equivalent time delay systems

In this section, time delay systems with a variable delay distribution are presented, which
are related to the standard form Eq. (2.1) with constant delay via a nonlinear time scale
transformation. The content of this Section is not necessarily required for the presented
analysis in the remaining Chapters of this thesis. Nevertheless, it is necessary for the
application of the presented theory to DDEs with time-dependent or state-dependent
delay distribution. In particular, the presented theory is used in Sec. 7.2 for the analysis of
machine tool vibrations in turning with a variable delay due to a spindle speed variation.

2.2.1. Variable transport delays

A nonlinear time scale transformation can be applied to the standard form Eq. (2.1), with
the objective of changing the delay distribution K(τ) of the memory ru(t) in Eq. (2.2).
The nonlinear time scale transformation and its inverse are defined as

t = Φ
(

t̃
)

, and t̃ = Φ−1(t). (2.3)

Note that the time scale transformation Φ
(

t̃
)

and its inverse may also depend on the
configuration u(t) of the system. In particular, in some applications the inverse time
scale transformation can be given by t̃ = Φ−1

u (t,u(t)) [26, 94]. In this case the inverse
transformation Φ−1(t) consistent to Eq. (2.3) can be defined as Φ−1(t) := Φ−1

u (t,u(t)).
Some additional remarks on state-dependent time scale transformations are given below.
It is assumed that the time scale transformation Φ

(

t̃
)

is differentiable and the derivative
is strictly positive

dt

dt̃
= Ω

(

t̃
)

> 0. (2.4)
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2.2. Equivalent time delay systems

Thus, the inverse Φ−1 (t) is unique and a one-to-one mapping between the independent
variables t and t̃ is guaranteed.

In Sec. 2.2.2 an equivalent representation of the standard form Eq. (2.1) with the
memory Eq. (2.2) in terms of the new variable t̃ will be presented, where a time-varying
delay distribution can appear. For this purpose, the instantaneous and the retarded
configurations of the original system Eq. (2.1), u(t) and u(t− τ), are expressed in terms
of the new independent variable t̃ as

u(t) = u
(

Φ
(

t̃
))

= ũ
(

t̃
)

, u(t− τ) = u
(

Φ
(

t̃− τ̃
(

t̃
)))

= ũ
(

t̃− τ̃
(

t̃
))

. (2.5)

From Eq. (2.5) it follows that the condition between the original constant delay τ and
the corresponding variable delay τ̃

(

t̃
)

in the new representation can be given by

Φ
(

t̃− τ̃
(

t̃
))

= Φ
(

t̃
)

− τ ↔ τ =

t̃
∫

t̃−τ̃(t̃)

Ω
(

t′
)

dt′. (2.6)

The condition Eq. (2.6) can be interpreted as a transport with the variable velocity Ω
(

t̃
)

over the constant distance τ . Time delays that are defined similar to Eq. (2.6) are called
variable transport delays [72, 94] or threshold-type delays [9, 19, 20, 21]. A block diagram
for a system with a distributed variable transport delay is given in Fig. 2.1a, where the
delay is generated by a transport over a conveyor belt with the time-varying velocity
Ω
(

t̃
)

. In this example, the independent variable t of the standard form Eq. (2.1) can
be interpreted as a spatial variable and the new variable t̃ can be interpreted as the
physical time. More precisely, t = Φ

(

t̃
)

specifies the absolute distance that has been
covered by the conveyor belt over time t̃. The square-shaped particles on the left end
of the conveyor belt are imprinted with the instantaneous configuration u(t) of the time
delay system and the configuration of the particles does not change during the transport
over the conveyor belt. This means that the configuration of the particles on the right
hand side of the conveyor belt represents retarded configurations u(t − τ) of the time
delay system. Specifically, in the system Eq. (2.1) the instantaneous configuration u(t)
is affected by the memory ru(t), which is, according to Eq. (2.2), a linear combination
of the imprinted configurations of the particles on the conveyor belt. Such systems with
a variable transport delay can be often found in engineering. For example, metal cutting
vibrations [70], material flows in reactors [71], FIFO buffers in electronic circuits [29]
or the fuel injection in automotive engineering [95, 96] can be described by DDEs with
variable transport delays. Note that there is also a specific Variable Transport Delay
block in MATLAB/Simulink for this type of delays [72]. In biology variable transport
delays are typically known as threshold-type delays and appear, for example, in struc-
tured population models [9, 19, 20, 21, 66]. More details on variable transport delays in
biological systems can be found in Sec. 2.3.2, where a PDE representation of the variable
transport in Fig. 2.1a is discussed.

Variable transport delays τ̃
(

t̃
)

, which are implicitly defined by Eq. (2.6), are equal to
the traveling time of the particles for a transport with the conveyor belt over the fixed
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2. System definition and equivalent systems

Figure 2.1.: a) A variable transport delay τ̃
(

t̃
)

as defined in Eq. (2.6) appears when
the delay is generated by a transport with the variable velocity Ω

(

t̃
)

over a
constant distance τ similar to the conveyor belt. b) Graphical interpretation
of the relationship Eq. (2.6) between the constant distance τ and the variable
traveling time τ̃

(

t̃
)

.

distance τ . The relationship between the variable traveling time τ̃
(

t̃
)

and the constant
distance τ is illustrated in Fig. 2.1b. The so-called internal clock t, which is the indepen-
dent variable of the standard form Eq. (2.1), is mapped to the physical time t̃ via the
function Φ

(

t̃
)

. A constant shift τ of the function Φ
(

t̃
)

in the vertical direction generates
a variable horizontal shift in the physical time t̃. The varying horizontal distance between
the two functions Φ

(

t̃
)

and Φ
(

t̃
)

− τ in Fig. 2.1b is equivalent to the variable transport
delay τ̃

(

t̃
)

. Variable transport delays can be explicitly calculated by

τ̃
(

t̃
)

= t̃− Φ−1
(

Φ
(

t̃
)

− τ
)

. (2.7)

In the literature only discrete variable transport delays were studied, which can be char-
acterized by the delay distribution K(τ) = K0δ(τ − τ0). However, distributed variable
transport delays are also possible. Distributed variable transport delays appear, for
example, in engineering for milling tools with non-uniform pitch or non-uniform helix
angles [40, 41] or in population dynamics if precursor cells are released into the mature
population at different maturity levels [20, 21]. For the representation of the system
dynamics in terms of the physical time t̃ in Sec. 2.2.2 a relationship between the memory
r of the standard form and the memory r̃ in terms of the new variables must be derived.
In general, for an arbitrary delay distribution the memory in the new variables can be
written as

r̃ũ
(

t̃
)

=

τ̃max(t̃)
∫

0

K̃
(

t̃, τ̃
)

ũ
(

t̃− τ̃
)

dτ̃ = ru(t). (2.8)

The maximum delay τ̃max

(

t̃
)

in the physical time can be calculated from Eq. (2.7) with
the corresponding constant maximum value τ = τmax of the original delay distribution.
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2.2. Equivalent time delay systems

The relationship between the time-invariant delay distribution K(τ) of the original sys-
tem and the time-varying distribution K̃

(

t̃, τ̃
)

of the tilded system can be identified
as

K̃
(

t̃, τ̃
)

= K
(

Φ
(

t̃
)

− Φ
(

t̃− τ̃
))

Ω
(

t̃− τ̃
)

. (2.9)

A detailed derivation of the relationship Eq. (2.9) is given in Appendix A.1. Thus, the
original delay distribution K(τ) with a constant density in the fixed interval [0, τmax]
is converted to a time-varying delay distribution K̃

(

t̃, τ̃
)

with a time-varying support
[0, τ̃max

(

t̃
)

].
For a homogeneous delay distribution K(τ) = K0, for example, the associated delay

distribution in the transformed system can be determined by

K̃
(

t̃, τ̃
)

= K0Ω
(

t̃− τ̃
)

. (2.10)

For a discrete delay τ0 in the original system with K(τ) = K0δ(τ − τ0), the delay
distribution K̃ in the transformed system can be written as

K̃
(

t̃, τ̃
)

= K0δ
(

Φ
(

t̃
)

− Φ
(

t̃− τ̃
)

− τ0
)

Ω
(

t̃− τ̃
)

, (2.11)

The argument of the delta distribution can be simplified by defining the function

g(τ̃ ) := Φ
(

t̃
)

− Φ
(

t̃− τ̃
)

− τ0, with g′(τ̃) = Ω
(

t̃− τ̃
)

, (2.12)

which leads to the expression K̃
(

t̃, τ̃
)

= K0δ (g (τ̃)) g′ (τ̃) for the delay distribution in
Eq. (2.11). Since according to Eq. (2.4) the function Φ

(

t̃
)

is strictly monotonic increasing
the argument g(τ̃ ) of the delta distribution has only one real root at τ̃ = τ̃0

(

t̃
)

, where
the root τ̃ = τ̃0

(

t̃
)

is defined by Eq. (2.7) with τ = τ0. If the properties for a composition
of the Dirac delta distribution are used the delay distribution Eq. (2.11) can be further
simplified to

K̃
(

t̃, τ̃
)

= K0δ
(

τ̃ − τ̃0
(

t̃
))

. (2.13)

Eq. (2.13) coincides with the known result for the transformation of a constant discrete
delay τ0 to a variable discrete delay τ̃0

(

t̃
)

via a nonlinear time scale transformation
Eq. (2.3) [23, 26, 94].

2.2.2. Equivalent DDEs with time- or state-dependent delay

With Eqs. (2.3), (2.4), (2.5), and (2.8) the original system Eq. (2.1) with a time-invariant
delay distribution K(τ) can be transformed into a system with a variable delay distribu-
tion

ũ′
(

t̃
)

= Ω
(

t̃
)

f
(

Φ
(

t̃
)

, ũ
(

t̃
)

, r̃ũ
(

t̃
))

, (2.14)

where the memory r̃ũ
(

t̃
)

and the corresponding variable delay distribution K̃
(

t̃, τ̃
)

in the
new variables are given by Eq. (2.8) and Eq. (2.9), respectively. The relationship between
the DDE Eq. (2.14) with a time-varying delay distribution and the DDE Eq. (2.1) with
a constant delay distribution is used in Sec. 7.2 for the analysis of machine tool chatter
in turning, where a variable transport delay appears and the variable transport velocity
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2. System definition and equivalent systems

Ω
(

t̃
)

is equivalent to a variable spindle speed. The state of the transformed system
Eq. (2.14) is defined by the vector function ũt̃ = ũ

(

t̃− τ̃
)

with 0 ≤ τ̃ ≤ τ̃max

(

t̃
)

. Thus,
the size τ̃max

(

t̃
)

of the interval of the state space typically varies with time. Nevertheless,
the following condition holds for the derivative of the maximum variable delay

τ̃ ′max

(

t̃
)

= 1−
Ω
(

t̃
)

Ω
(

t̃− τ̃max

(

t̃
)) < 1, (2.15)

which means that a discussion as in [64, 65] about the causality of the time delay sys-
tem is not necessary for DDEs with variable transport delays and a unique solution of
Eq. (2.14) exists if the initial function ũ0 is specified in the interval [−τ̃max(0), 0]. The
DDE Eq. (2.1) with constant delay and the DDE Eq. (2.14) with variable delay are
completely equivalent as long as the transformation Φ

(

t̃
)

is bijective and differentiable,
i.e. Φ

(

t̃
)

is a diffeomorphism. If the transformation depends on the configuration of
the DDE, i.e. Φ−1(t) = Φ−1

u (t,u(t)), state-dependent variable transport delays τ̃
(

t̃, ũt̃

)

appear. State-dependent variable transport delays can be found, for example, in machine
tool vibrations [25, 26], in automotive engineering [95, 96] and in biology [9, 19, 20, 21, 66].
Obviously, for state-dependent variable transport delays it is not clear a priori if the con-
dition Eq. (2.4) for a one-to-one mapping between the internal clock t and physical time
t̃ is fulfilled. However, the violation of the condition Eq. (2.4) typically corresponds to
unphysical situations, where both the original representation Eq. (2.1) in terms of the
internal clock and the new representation Eq. (2.14) in terms of the physical time are
not meaningful [26, 94].

In general, the transformation from constant delay distributions to time-varying or
state-dependent delay distributions is straightforward. However, the inverse problem is
much more complex because not every variable delay fulfills condition Eq. (2.6) or not
every delay distribution fulfills condition Eq. (2.9) for variable transport delays. Thus,
for a system with a given variable delay τ̃0

(

t̃
)

or variable delay distribution K̃
(

t̃, τ̃
)

it
is not clear if there exists a transformation to a system with a time-invariant delay τ0 or
time-invariant delay distribution K(τ), respectively. For variable discrete delays τ̃0

(

t̃
)

the identification of variable transport delays is possible by studying the relationship
Eq. (2.6) in more detail. The ongoing retarded access on delayed configurations in the
two delay systems Eq. (2.1) and Eq. (2.14) with discrete delay distributions can be
described by the iterated maps

ti+1 = a (ti) := ti − τ0, −∞ < ti < ∞, (2.16a)

t̃i+1 = ã
(

t̃i
)

:= t̃i − τ̃0
(

t̃i
)

, −∞ < t̃i < ∞. (2.16b)

The maps a and ã are called retarded access maps. Using the map definitions in Eq. (2.16),
the relationship Eq. (2.6) defines a topological conjugacy between the retarded access
maps

Φ ◦ ã = a ◦Φ, (2.17)

where ◦ denotes function composition. This means, that properties, which are invariant
under a topological conjugacy, must be the same for the two maps a and ã. In other
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2.2. Equivalent time delay systems

Figure 2.2.: Parameter regions for sinusoidal delays defined by the access map Eq. (2.18)
(T = 1) that are equivalent to variable transport delays are fractal (white).
The black regions correspond to the so-called Arnold tongues [99].

words the rotation number, the Lyapunov exponent or the invariant measure of the access
map ã of the system with variable delay τ̃0

(

t̃
)

can be used to check, whether the system
is equivalent to a system with constant delay τ0 or not. For the original system with
constant delay the corresponding retarded access map Eq. (2.16a) is simply a linear shift
map. For a sinusoidally varying delay, for example, the retarded access map is equivalent
to the well-known circle map

t̃i+1 = t̃i − τm −
AτT

2π
sin

(

2π
t̃i
T

)

, (2.18)

where the parameters τm, Aτ and T specify the mean, the amplitude and the period of
the delay variation. Circle maps similar to Eq. (2.18) and their topological conjugacy to
the linear shift map Eq. (2.16a) were extensively studied in the literature [97, 98, 99]. As
a result, in the parameter space of periodic continuous delays with Aτ < 1 corresponding
to the condition τ̃ ′

(

t̃
)

< 1, the set of variable transport delays, i.e. variable delays, which
are equivalent to constant delays, are a fractal [100].

For example, the type of the delay for sinusoidally varying delays Eq. (2.18) with
T = 1 is illustrated in Fig. 2.2. The black regions in the τm-Aτ -plane are equivalent to
the so-called Arnold tongues of the circle map. In these regions the Lyapunov exponent
of the access map is negative and the circle map Eq. (2.18) is not topological conjugate
to the linear shift map Eq. (2.16a). The delays corresponding to these parameters are
called dissipative delays [100]. Only for parameters in the white regions in Fig. 2.2, the
Lyapunov exponent of the corresponding circle map Eq. (2.18) is zero and is, therefore,
equivalent to the Lyapunov exponent of the linear shift map Eq. (2.16a). This means
that only these sinusoidal delays are variable transport delays. On closer inspection the
white region is a fractal, which implies that it is not advisable to model variable transport
delays by a parameter family in the physical time t̃ because it depends extremely sensitive
on the parameters of the time-varying delay whether it represents a variable transport
delay or a dissipative delay. In fact, a description in terms of the internal clock t similar
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2. System definition and equivalent systems

to Eq. (2.1) is recommended, where the discrete delay τ0 in the memory is constant.
More details on the dichotomy between variable transport delays with zero Lyapunov
exponent of the access map ã and dissipative delays with negative access map Lyapunov
exponent can be found in [100].

2.3. Equivalent spatially extended systems

In this section, spatially extended systems are presented, which are related to the stan-
dard form Eq. (2.1) with constant delay via a transformation of variables. The content
of this Section is not necessarily required for the presented analysis in the remaining
chapters of this thesis, similar to the content in Sec. 2.2. Nevertheless, the presented
transformations are useful in some biological and engineering applications.

2.3.1. Equivalent first order hyperbolic PDEs

In Sec. 2.2.2 it was shown, that DDEs with variable transport delays can be described in
terms of the physical time t̃ or the internal clock t with a time-varying or time-invariant
delay distribution, respectively. In this subsection, it is shown that these time delay
systems can be also described by hyperbolic PDEs. Specifically, these PDEs are related
to different PDE descriptions of the transport in Fig. 2.1a. PDE models for time delay
systems are often used in population dynamics [9, 19, 20, 21, 66] or in control theory
[101, 102]. In these representations of the time delay system the delays τ or τ̃ and the
instantaneous time t or t̃ are the space and the time variables of a hyperbolic PDE,
respectively. Thus, in the PDEs the time and the delay variables are decoupled from
each other. As a consequence, four equivalent PDE representations of the time delay
system Eq. (2.1) are possible, where both, the time and the space variable of the PDE,
can be specified either in terms of the internal clock or in terms of the physical time. In
the following, a systematic overview on the four equivalent PDE representations is given.
Later, in Sec. 2.3.2 more details on the biological interpretation of the PDE models are
given.

The most obvious PDE representation of the time delay system follows from Eq. (2.1)
with v (τ, t) = u(t− τ). In a delay system the vector u(t) specifies the configuration of
the particles at the left end of the conveyor belt in Fig. 2.1a and the configuration at
the right hand side of the conveyor belt is specified by retarded configurations u(t − τ)
dependent on the transport distance τ . In contrast, in the PDE representation the vector
v (τ, t) specifies the configuration of the particles on the conveyor belt at the location τ
at time t and no time-delayed arguments are necessary. The transport of the particles
with the conveyor belt is given by the advection equation [54, 62, 94]

∂

∂t
v (τ, t) +

∂

∂τ
v(τ, t) = 0. (2.19)

The PDE representation of the DDE Eq. (2.1) is completed by the boundary condition

∂v(τ, t)

∂τ

∣

∣

∣

∣

τ=0

= −f (t,v (0, t) , rv (t)) , (2.20)
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2.3. Equivalent spatially extended systems

and the initial condition v(τ, 0) = u(−τ) with 0 ≤ τ ≤ τmax. As was already reported
in [54], the boundary condition Eq. (2.20) for the PDE Eq. (2.19) is an interconnected
boundary condition, that depends on the configuration v(τ, t) of the PDE at the external
boundaries at τ = 0 and τ = τmax as well as on interior points 0 ≤ τ < τmax. The
dependence on the interior points is specified by the memory rv (t) as defined in Eq. (2.2)
with the time-invariant delay distribution K(τ). If Eq. (2.19) is interpreted as a transport
mechanism similar to the conveyor belt in Fig. 2.1, both the location τ and the time t
of the configuration v (τ, t) of the system is specified in terms of a distance, because the
internal clock t is a measure for the distance covered by the particles at the physical
time t̃. A representation similar to the PDE Eq. (2.19), where both the time and the
space variable of the PDE is measured in terms of the internal clock is only rarely used
in applications. Instead, a second representation can be found much more often in
applications. In the second representation the space variable of the PDE still describes
the physical space τ along the conveyor belt, whereas the time is measured in terms of
the physical time t̃. In this case the PDE can be written as

∂

∂t̃
ṽ
(

τ, t̃
)

+Ω
(

t̃
) ∂

∂τ
ṽ
(

τ, t̃
)

= 0. (2.21)

Here, the relationship ṽ
(

τ, t̃
)

= u
(

Φ
(

t̃
)

− τ
)

holds between the configurations of the
PDE Eq. (2.21) and the DDE Eq. (2.1). The corresponding interconnected boundary
condition can be specified as

∂ṽ
(

τ, t̃
)

∂τ

∣

∣

∣

∣

∣

τ=0

= −f
(

Φ
(

t̃
)

, ṽ
(

0, t̃
)

, rṽ
(

Φ
(

t̃
)))

. (2.22)

The representation Eq. (2.21) is the natural representation of the transport in Fig. 2.1a,
because the time and space variables t̃ and τ of the PDE correspond to the physical
interpretation of time and space of the transport. The third PDE representation is a
description, where both the time t̃ and the space variable τ̃ of the PDE are time variables
in the physical meaning of the transport. More precisely, the value τ̃ is the traveling time
for the particle transport on the conveyor belt over a distance τ , and therefore, can be
used to specify a location in the PDE system. The resulting PDE can be described by

∂

∂t̃
w̃
(

τ̃ , t̃
)

+
∂

∂τ̃
w̃
(

τ̃ , t̃
)

= 0, (2.23)

where the relationship w̃
(

τ̃ , t̃
)

= ũ
(

t̃− τ̃
)

holds between the configurations of the PDE
and the DDE with variable delay Eq. (2.14). The PDE Eq. (2.23) is the direct conversion
of the DDE Eq. (2.14) into a spatially extended system. The corresponding boundary
condition can be described by

∂w̃
(

τ̃ , t̃
)

∂τ̃

∣

∣

∣

∣

∣

τ̃=0

= −Ω
(

t̃
)

f
(

Φ
(

t̃
)

, w̃
(

0, t̃
)

, r̃w̃
(

t̃
))

, (2.24)

where the memory r̃ is defined by Eq. (2.8) with the time-varying delay distribution
Eq. (2.9). This implies that, in general, the boundary on the right hand side of the PDE
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2. System definition and equivalent systems

varies with time. The last representation of the system is a PDE description in terms of
the internal clock t on a temporal space τ̃ . This is completely contrary to the physical
interpretation of the transport, because the time in the PDE is measured in terms of
distance covered by conveyor belt and the space variable of the PDE is defined in terms
of the traveling time τ̃ of particles on the conveyor belt. The corresponding PDE can be
given by

∂

∂t
w (τ̃ , t) +

1

Ω (Φ−1(t))

∂

∂τ̃
w (τ̃ , t) = 0. (2.25)

The relationship between the configurations of the PDE and the configurations of the
DDE Eq. (2.14) can be given by w (τ̃ , t) = ũ

(

Φ−1(t)− τ̃
)

. Similar to Eq. (2.23) the size
of the state space of the PDE varies with time. The corresponding moving boundary
condition can be characterized by

∂w (τ̃ , t)

∂τ̃

∣

∣

∣

∣

τ̃=0

= −Ω
(

Φ−1(t)
)

f
(

t,w (0, t) , r̃w
(

Φ−1(t)
))

. (2.26)

The four hyperbolic PDE representations of the time delay system can be analyzed
by the method of characteristics. In general, the solution of a hyperbolic PDE can be
described by an ODE along the characteristic curves. The characteristic curves Cv, Cṽ,
Cw̃ and Cw for the four PDE representations are derived in Appendix A.1.2 and can be
given by the parametric curves

Cv = {(τ, t) : τ(s) = τ(0) + s, t(s) = t(0) + s},
Cṽ = {(τ, t̃) : τ(s) = τ(0) + Φ(s), t̃(s) = t̃(0) + s},
Cw̃ = {(τ̃ , t̃) : τ̃(s) = τ̃(0) + s, t̃(s) = t̃(0) + s},
Cw = {(τ̃ , t) : τ̃(s) = τ̃(0) + Φ−1(s), t(s) = t(0) + s}.

(2.27)

Some selected characteristic curves for each representation are illustrated in Fig. 2.3 by
the black dashed curves. The configurations v, ṽ, w̃, and w are constant along the
characteristic curves due to a zero right hand side of the four PDEs. For Eq. (2.19)
and Eq. (2.23) corresponding to Fig. 2.3a and Fig. 2.3d, where both the space and time
variables of the PDE are consistently specified in terms of space or time variables of
the transport, respectively, the velocity of the advection is constant. In contrast, for
the PDEs with a mixed physical interpretation of the space and time variables of the
PDE, i.e. Eq. (2.21) and Eq. (2.25) corresponding to Fig. 2.3c and Fig. 2.3b, respectively,
the velocity of the transport varies. This result is manifested in the nonlinear behavior
of the characteristic curves Eq. (2.27), i.e. the black dashed lines in Fig. 2.3. If the
space variable of the PDE coincide with the physical interpretation of the space in the
transport, the delay distribution K(τ) is time-invariant and has a constant support,
which means that the boundaries of the PDE are time-invariant. This is illustrated by the
red solid curves in Fig. 2.3a and Fig. 2.3c for the exemplary delays τ1, τ2 and τmax. Along
these curves the delay distribution is constant. In contrast, in Eq. (2.23) and Eq. (2.25)
corresponding to Fig. 2.3d and Fig. 2.3b, respectively, the delay distribution K̃

(

t̃, τ̃
)

varies with time. This is illustrated by the varying red solid curves specified by the time-
varying delays τ̃1

(

t̃
)

and τ̃2
(

t̃
)

, which are associated with the constant delays τ1 and τ2.
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2.3. Equivalent spatially extended systems

Figure 2.3.: Selected characteristic curves Eq. (2.27) (black, dashed) are presented for
each of the four PDE representations in Sec. 2.3.1. Specific delays corre-
sponding to a constant distance τ1 and τ2 and τmax are shown by red solid
lines.

Along these curves the delay distributions are time-invariant K̃
(

t̃, τ̃1
(

t̃
))

= K(τ1) and

K̃
(

t̃, τ̃2
(

t̃
))

= K(τ2). In general, a moving external boundary τ̃max

(

t̃
)

appears in the
PDE representations Eq. (2.23) and Eq. (2.25), where the space variable τ̃ of the PDE is
characterized by the traveling time of the transport. However, in the example the specific
periodicity condition Φ−1 (t− τmax) = Φ−1(t) − τ̃max holds, and therefore, the external
boundary τ̃max

(

t̃
)

= τ̃max is always time-invariant in Fig. 2.3.

2.3.2. PDE representations in population dynamics

In this section the connection between the basic PDE models in Sec. 2.3.1 and PDEs
with constant and moving boundaries as models for structured populations in biology is
presented. A model, which is widely used for the description of structured populations, is
the so-called McKendrick equation, Sharpe-Lotka-McKendrick equation or von Foerster
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equation [103, 104, 105]

∂

∂t̃
w̃p

(

τ̃ , t̃
)

+
∂

∂τ̃
w̃p

(

τ̃ , t̃
)

= −µw̃p

(

τ̃ , t̃
)

, (2.28)

with the boundary condition

w̃p

(

0, t̃
)

=

∞
∫

0

β (τ̃) w̃p

(

τ̃ , t̃
)

dτ̃ . (2.29)

In Eq. (2.28) w̃p

(

τ̃ , t̃
)

specifies the number of individuals of a population at time t̃
with age τ̃ , and µ is the mortality rate, which leads to an exponential decrease of the
population for increasing age τ̃ . With the scaling w̃p

(

τ̃ , t̃
)

= e−µt̃w̃
(

τ̃ , t̃
)

the PDE
Eq. (2.28) simplifies to Eq. (2.23), i.e. the third PDE representation in Sec. 2.3.1. In
the boundary condition Eq. (2.29), β (τ̃) is the birth rate of the population. In many
applications the population can be divided into the immature and the mature population
and the age τ̃ = τ̃0

(

t̃
)

for maturity is defined by a threshold condition that is exactly
equivalent to the condition Eq. (2.6) for a variable transport delay with the constant
threshold τ = τ0 [9, 19, 20, 21, 66]. In the biological context, the constant delay τ0 is a
constant amount of food or a constant size that must be reached for maturity and Ω

(

t̃
)

is the velocity of maturation, which can also depend on the configuration ũ
(

t̃
)

of the
system. In the general case of a state-dependent velocity of maturation, the boundary
between immature and mature population is state-dependent as well. It is assumed that
the birth rate is zero β (τ̃) = 0 for the immature population with τ̃ ≤ τ̃0

(

t̃
)

and constant
β (τ̃) = β0 for the mature population with τ̃ > τ̃0

(

t̃
)

. Thus, in scaled variables the
boundary condition Eq. (2.29) of the population model can be written as

w̃
(

0, t̃
)

= β0

∞
∫

τ̃0(t̃)

w̃
(

τ̃ , t̃
)

dτ̃ . (2.30)

The time derivative of the boundary condition Eq. (2.30) yields

∂

∂t̃
w̃
(

0, t̃
)

= β0
(

1− τ̃ ′0
(

t̃
))

w̃
(

τ̃0
(

t̃
)

, t̃
)

, (2.31)

where the PDE Eq. (2.23) has been used with w̃
(

∞, t̃
)

= w̃p

(

∞, t̃
)

= 0. Eq. (2.31) is
similar to the typical interconnected boundary condition Eq. (2.24) in the PDE repre-
sentation of time delay systems. With the relationship w̃

(

τ̃ , t̃
)

= ũ
(

t̃− τ̃
)

between the
configurations of the PDE Eq. (2.23) and the configuration of the DDE Eq. (2.14) with
variable delay, the corresponding time delay system can be given as

ũ′
(

t̃
)

= β0
(

1− τ̃ ′0
(

t̃
))

ũ
(

t̃− τ̃0
(

t̃
))

. (2.32)

By using the relationship Eq. (2.15) for the time derivative τ̃ ′0
(

t̃
)

of the variable delay,
the standard form Eq. (2.1) of the system with constant delay τ0 reads

u̇(t) =
β0

Ω (Φ−1 (t− τ0))
u (t− τ0) = f (t, ru(t)) , (2.33)
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2.4. Approximations for systems with variable delay distribution

where the delay distribution is given by N ×N dimensional matrix K(τ) = Iδ(τ − τ0).
This means that the McKendrick Eq. (2.28) with the specific boundary condition

Eq. (2.30) is equivalent to the standard form Eq. (2.33) with constant delay (cf. [94]).
Note that Eq. (2.33) is typically nonlinear because the relationship between the two time
scales typically depends on the configuration of the system Φ−1(t) = Φ−1

u (t,u(t)). In
this case, the representation Eq. (2.32) is also nonlinear, where the nonlinearity is hidden
in the associated state-dependent delay τ̃0

(

t̃
)

. From the standard form Eq. (2.33) the
four equivalent PDE representations in Sec. 2.3.1 can be derived, where the time and
the space variables of the PDE can be either described in terms of the internal clock
or the physical time, respectively. In the literature, typically, the PDE representation
Eq. (2.21) is used, where the time variable of the PDE is equivalent to the physical time
t̃ and the spatial variable of the PDE describes the level of maturity τ [9, 19, 20, 21, 66].
Whereas the four PDE representations in Sec. 2.3.1 are pure advection equations, where
the right-hand side of the PDE is zero and the configuration remains constant along the
characteristics Eq. (2.27), the examples in population dynamics are typically described by
advection-reaction equations similar to Eq. (2.28), where the right hand side of the PDE
is non-zero and the configuration changes along the characteristic curves. In particular,
for the McKendrick equation Eq. (2.28) the solution along the characteristic curves can
be described by (cf. Appendix A.1.2)

w̃p

(

τ̃(0) + t̃, t̃
)

= e−µt̃w̃p (τ̃(0), 0) . (2.34)

Thus, in general, advection-reaction systems similar to Eq. (2.28) with constant or moving
boundaries can be also described by time delay systems Eq. (2.1) with time-invariant
delay distributions.

2.4. Approximations for systems with variable delay

distribution

In addition to equivalent time delay systems in Sec. 2.2 and equivalent spatially extended
systems in Sec. 2.3, the standard form Eq. (2.1) can be also used as an approximation
of systems with a variable delay distribution. In particular, two approximations for
systems with fast and slowly time-varying delay are presented in Sec. 2.4.1 and Sec. 2.4.2,
respectively. In this thesis, approximations for systems with fast and slowly time-varying
delays are used in Sec. 7.1 for the investigation of diffusion-driven instabilities in delayed
reaction-diffusion systems.

2.4.1. Fast time-varying delays

Fast time-varying delays cannot be realized by variable transport delays because the
maximum slope of a variable transport delay is bounded, i.e. the condition Eq. (2.15)
must be fulfilled. In other words for decreasing periods of a variable transport delay,
the amplitude of the delay variation vanishes. This can be also seen, for example, for
sinusoidal delays as defined in Eq. (2.18). For sinusoidal variable transport delays it
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follows from Eq. (2.15) that an upper bound for the amplitude of the delay variation
can be characterized by Aτ < 1. This means that for small periods T → 0 the term
AτT
2π vanishes and according to Eq. (2.18) the delay approaches the constant mean delay
τ̃ → τm. In fact, this is the main reason why a slow continuous spindle speed variation in
metal cutting applications is more suitable than a fast variation because for fast spindle
speed variations the effective amplitude of the delay variation is only marginal [23]. As a
consequence, for a system with a fast time-varying delay typically no exact transformation
to a system with a constant delay is possible via a nonlinear time scale transformation
Eq. (2.3). Nevertheless, a system with a fast time-varying delay can be approximated by
a system with a time-invariant delay distribution K(τ) as it is demonstrated below.

For the sake of convenience, only systems with a periodic delay distribution Kvar(t, τ) =
Kvar(t + T, τ) and a small period T are considered, but the approximation is also pos-
sible for systems with aperiodic delay distributions. A system with fast time-varying
distributed delay can be described by

u̇(t) = f (t,u(t), rvar
u (t)) , (2.35)

where the memory is defined by

rvar
u (t) =

τmax
∫

0

Kvar(t, τ)u(t− τ)dτ. (2.36)

The exact solution of Eq. (2.35) over one period T can be formally determined by

u(t+ T ) = u(t) +

t+T
∫

t

f
(

t′,u(t′), rvar
u (t′)

)

dt′. (2.37)

For fast time-varying delays, i.e. delays with a vanishing period T , Eq. (2.37) can be
approximated by

u(t+ T ) = u(t) +

t+T
∫

t

f
(

t,u(t), rvar
u (t′)

)

dt′. (2.38)

In the approximation Eq. (2.38) it is assumed that the fluctuations of f are much slower
than the fluctuations of the memory rvar

u (t) due to a fast time-varying delay distribution
Kvar(t, τ). For small periods T Eq. (2.38) is similar to the Euler integration scheme with
step size T and the derivative

u̇(t) =
1

T

t+T
∫

t

f
(

t,u(t), rvar
u (t′)

)

dt′. (2.39)

Eq. (2.39) is the averaged system of Eq. (2.35), that is an adequate approximation of
Eq. (2.35) in case of a fast time-varying delay distribution. Eq. (2.39) can be further
simplified if f depends only linearly on the memory rvar

u (t), that is

f
(

t,u(t), rvar
u (t′)

)

= f0 (t,u(t)) + f1 (t,u(t)) r
var
u (t′). (2.40)

32



2.4. Approximations for systems with variable delay distribution

In this case the averaging over one period T takes place only in the delay distribution
and the averaged system Eq. (2.39) can be written as

u̇(t) = f0 (t,u(t)) + f1 (t,u(t)) r
av
u (t), (2.41)

where the averaged memory rav
u (t) and the averaged delay distribution Kav(τ) are spec-

ified by

rav
u (t) =

τmax
∫

0

Kav(τ)u(t− τ)dτ, and Kav(τ) =
1

T

t+T
∫

t

Kvar(t
′, τ)dt′. (2.42)

For the illustration of the approximation of a system with a fast time-varying delay by
a the averaged system the Hutchinson equation with a time-varying delay τ0(t) is studied
[106]

u̇(t) = u(t)(1 − u(t− τ0(t))). (2.43)

In Sec. 7.1 diffusion-driven instabilities of reaction-diffusion systems with delay are stud-
ied, where the Hutchinson equation with a variable delay is considered as an example
for the reaction term. The time-varying delay τ0(t) in Eq. (2.43) is specified by the
variable discrete delay distribution Kvar(t, τ) = δ(τ − τ1) for mod (t, T ) ≤ 0.5T and
Kvar(t, τ) = δ(τ − τ2) otherwise, where the delay switches uniformly between the two
values τ1 = 1 and τ2 = 7. In the Hutchinson equation Eq. (2.43) f depends only linearly
on the memory rvar

u , which means that the averaged system can be given by Eq. (2.41)
with the associated averaged delay distribution Kav(τ) = 0.5δ(t − τ1) + 0.5δ(t − τ2). In
Fig. 2.4 the solution of the Hutchinson equation Eq. (2.43) is presented for a period T = 2
(red), T = 1 (blue) and for the corresponding system with the averaged delay distribution
Kav(τ) (black,thick). It can be seen that the approximation with the distributed delay
comparison system Eq. (2.41) is the better, the smaller the period of the delay variation
is.

The concept behind the averaging of the delay distribution is similar to the classical
method of averaging for ODEs [107] and functional differential equations [108, 109]. In
these papers the fast time scale of the system was introduced due to a fast time-varying
parameter of the system, whereas no fast time-varying delays were considered. The
averaging method for time-varying delays was first shown for linear DDEs with time-
varying discrete delays [110]. The stability analysis of nonlinear time delay systems
with Lyapunov’s indirect linearization method results always in the analysis of a linear
DDE (cf. Sec. 3.3.2), which means that the approximation Eq. (2.41) with the averaged
delay distribution Eq. (2.42) can be always used for the stability analysis of nonlinear
DDEs with fast time-varying delay. In particular, the method was frequently used for
the stability analysis of time-delay feedback control with variable delays [27, 28, 29] and
the analysis of amplitude death in networks with time-varying coupling delays [33, 34].
However, whereas the stability of a specific solution of a nonlinear time delay system can
be analyzed from the distributed delay comparison system Eq. (2.41), the solution of a
system with a nonlinear dependence on the memory can be approximated, in general,
only with the more general averaged system Eq. (2.39).
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Figure 2.4.: The solution of the Hutchinson equation Eq. (2.43) is shown for a time-
varying delay with period T = 2 (red), T = 1 (blue) and for the correspond-
ing approximation with a time-invariant delay distribution (black). For de-
creasing period of the delay variation the solution converges to the solution
of the distributed delay comparison system.

2.4.2. Slowly time-varying delays

In contrast to systems with fast time-varying delays which are approximated in Sec. 2.4.1,
systems with a very slow variation of the delay distribution are also possible. For example,
the continuous spindle speed variation in turning and milling can be approximated very
well with a slowly time-varying delay because the frequency of the speed modulation is
typically much lower than the frequency of the chatter vibrations [23, 111]. Indeed, from
Sec. 2.2.1 it is known, that the delays in metal cutting are variable transport delays, and
the systems can be transformed to systems with a constant delay distribution. Neverthe-
less, the approximation of a slowly time-varying variable transport delay by systems with
a time-invariant delay distribution can help to get an understanding for the dynamics of
machine tool vibrations in case of a SSV [23]. In addition, the approximation for slowly
time-varying delay can be helpful for systems with a slowly time-varying dissipative de-
lay, which cannot be transformed to systems with a time-invariant delay with a nonlinear
time scale transformation Eq. (2.3) [100].

In general, time delay systems with a slowly time-varying delay can be described by
Eq. (2.35) with the memory Eq. (2.36). Similar to the analysis in Sec. 2.4.1 for fast time-
varying delays, the exact solution of the delay system can be determined by Eq. (2.37),
where the period T of the delay modulation in the upper boundary of the integration can
be replaced by a small but finite step size h. For a periodic delay with a large period T ,
the delay distribution can be assumed to be constant in the interval [t, t+h] with h ≪ T .
In this case the exact solution of the delay system can be approximated by

u(t+ h) = u(t) +

t+h
∫

t

f
(

t′,u(t′), rfroz
u (t, t′)

)

dt′, (2.44)
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2.4. Approximations for systems with variable delay distribution

where the memory rfroz
u (t, t′) is defined by

rfroz
u (t, t′) =

τmax
∫

0

Kvar(t, τ)u(t
′ − τ)dτ. (2.45)

In Eq. (2.44) with the frozen memory rfroz
u (t, t′) in Eq. (2.45) the variable delay distribu-

tion Kvar(t, τ) is assumed to be constant during the integration from time t to the next
step t+h. Thus, the DDE Eq. (2.35) with a slowly varying delay distribution Eq. (2.36)
can be approximated by a sequence of DDEs with time-invariant distributed delays

u̇(t) =

∞
∑

i=0

H(t− ti)H(ti+1 − t)f
(

t,u(t), rfroz
u (ti, t)

)

, (2.46)

where ti = ih are the discrete time steps, and H(x) is the Heaviside step function.
Eq. (2.46) is called frozen time approximation and represents a relation between the
dynamics of the system with a slowly time-varying delay distribution Kvar(t, τ) and
the dynamics of the system with all adopted ’frozen’ delay distributions Kvar(ti, τ). A
slow variation of the delay in Eq. (2.46) means there is only a small change of the de-
lay distribution from step ti to step ti+1, that is Kvar(ti+1, τ) − Kvar(ti, τ) → 0. As a
consequence, the system remains in its steady state, whereas the dynamic properties of
the steady state changes slightly from ti to ti+1. After a long time the continuous slight
change of the dynamic properties of the steady state due to a slow change of the delay
distribution becomes significant for the dynamic behavior of the system. Note that the
frozen time approach for systems with a slowly time-varying delay is closely related to
the adiabatic theorem [112]. More details on the frozen time approach for systems with
slowly time-varying delays can be found in [23].

The frozen time approach was used for the explanation of the stability behavior in
turning and milling with spindle speed variation (SSV), where a slowly time-varying
discrete delay appears [111]. In this case, the frozen time approach can be used to
develop a strategy for finding optimal parameters of the spindle speed variation [23]. In
particular, the stability lobes for a milling process with constant discrete delay (constant
spindle speed) and a slowly time varying delay due to a SSV are shown in Fig. 2.5.
The results of the approximation Eq. (2.46) (black, thick) for this example are close
to the exact numerical results (red, solid) and the experimental results (red, dashed)
obtained from metal cutting experiments with SSV. In general, the stability lobes that
separate stable from unstable behavior of the system with SSV (red) are an average of
the lobes for the system with constant spindle speeds (blue). This is a consequence of the
above-mentioned relationship to the adiabatic theorem. According to Eq. (2.46), for a
slow SSV the exponential behavior of the vibrations of the non-autonomous system with
time-varying delay is related to the exponential behavior of the steady state solution
of the autonomous systems with the successive time-invariant frozen delay distribution
Kvar(ti, τ). As a result, the exponential behavior of the system with the a slowly time-
varying delay distribution over one period of the delay variation can be approximated by
the average of the characteristic exponents of the autonomous systems with all adopted
frozen delays [23].
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Figure 2.5.: The stability lobes of a milling process with constant spindle speed (blue) and
with a slow SSV (red) with T = 0.5s are shown. The experimental results
(dashed) agree with the simulation results (solid), which can be approximated
with Eq. (2.46) (black, thick).

2.5. Summary

In Sec. 2.1 the standard form of the systems under investigation was defined in Eq. (2.1)
with the memory Eq. (2.2). In particular, the standard form is given by a DDE with
a time-invariant delay distribution but it is not only a representation for systems with
a constant delay distribution. In fact, in Sec. 2.2 the equivalence between the standard
form Eq. (2.1) and other time delay systems was shown. It turns out that the transforma-
tion from DDEs with a constant delay to DDEs with a time-varying or state-dependent
delay is possible. From the resulting conjugacy relation Eq. (2.17) between the retarded
access maps ã and a of the variable delay and the constant delay, it can be concluded
that not all variable delays can be generated from a constant delay by a nonlinear time
scale transformation. For example, only sinusoidal delays that corresponds to circle maps
with irrational rotation numbers are conjugate to constant delays and are called variable
transport delays, whereas delays with parameters in the region of Arnold tongues, i.e. de-
lays corresponding to circle maps with rational rotation numbers, cannot be transformed
to constant delays. In this thesis, the concept of variable transport delays was extended
to distributed delays. The relationship between the delay distribution of a system with
a time-invariant and a variable delay distribution is given in Eq. (2.9). Further results
on variable transport delays can be found in [26, 94, 100].

In Sec. 2.3 the equivalence between the standard form Eq. (2.1) and spatially extended
systems was derived. In particular, it has been shown that there are four different types
of advection equations with interconnected boundaries that are equivalent to the original
DDE Eq. (2.1) with time-invariant distributed delay. Moreover, it was shown that some
advection-reaction equations which are often used as models for structured population
dynamics are equivalent to the considered time delay system, which is defined in Sec. 2.1.
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2.5. Summary

In addition to the concept of variable transport delays and the resulting equivalence
between time delay systems with constant and variable delay distributions and hyperbolic
PDEs with constant and moving boundaries, the standard form Eq. (2.1) can be used as
an approximation of DDEs with a slowly and fast time-varying delay distribution as it was
shown in Sec. 2.4. In particular, the concept of averaging for fast time-varying discrete
delays was extended to systems with variable distributed delays. The relation between
the original variable delay distribution and the time-averaged delay distribution in the
distributed delay comparison system is given in Eq. (2.42). On the other hand, for slowly
time-varying delays a possible approximation by a series of autonomous systems based
on the adiabatic theorem was presented in Eq. (2.46). This method was successfully used
in applications to explain the behavior of metal cutting processes with SSV [23, 111].

In summary, it was shown in this chapter that systems with a time-varying delay
distribution, systems with a state-dependent delay distribution as well as first-order
hyperbolic PDEs with constant and moving boundaries can be described by a DDE
with a time-invariant delay distribution. The results are useful for applications, where
typically variable delays appear. Specific examples with variable delays are presented in
Chapter 7.1 and Chapter 7.2.
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3. Analysis of nonlinear time delay

systems

In this section, the mathematical theory and numerical methods for the analysis of time
delay systems are briefly introduced. It gives a framework for the theory, which is pre-
sented in this thesis. Specifically, Lyapunov’s indirect linearization method, which is
presented in Sec. 3.3.2, is considered in this thesis and provides the basis for the pre-
sented methods in Chapter 4, Chapter 5 and Chapter 6.

3.1. Mathematical background

DDEs for the description of the dynamics of time delay systems belong to the class of
functional differential equations. They are also known as retarded differential equations
or retarded functional differential equations or differential equations with aftereffect. If
the memory contains a delay distribution, the systems are called DDEs with distributed
delay, delay-integro-differential equations or Volterra integral equations. The mathemat-
ical theory for autonomous DDEs with discrete delays is well developed [62], [63]. One
of the main difference between DDEs and ODEs is their dimension. Whereas ODEs are
finite dimensional systems, DDEs are infinite dimensional systems. The infinite dimen-
sion in a DDE shows up in the necessity of an initial function for the characterization of
the initial state of the DDE, whereas the initial state of an ODE is specified by a finite
dimensional initial condition. The existence and uniqueness of the solution of DDEs for
a given initial function is shown in [62], [63]. There are well-established results on the
smoothness, boundedness and numerical calculation of the solutions of DDEs [113, 114].
For delay-integro differential equations some results on the mathematical theory and the
numerical solution can be found in [115, 116]. For periodic DDEs with a constant de-
lay the classical Floquet theory for ODEs with periodic coefficients was generalized to
DDEs [62, 75, 76]. In this case small solutions, which are solutions that decay faster than
exponentially can exist [117]. For DDEs with a time-varying delay, problems with the
definition of the state space, reachability of an arbitrary state and causality can appear
[64, 65]. For DDEs with state-dependent delay the classical theory is not applicable. In
this case, some questions related to the existence, uniqueness and smooth dependence
on the initial data of the solution of DDEs with state-dependent delay are still open
[66, 67]. Nevertheless, the systems with a state-dependent delay distribution, which are
presented in Sec. 2.2, can be transformed to systems with a constant delay distribution,
which means that the classical theory is applicable.
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3. Analysis of nonlinear time delay systems

3.2. Numerical methods

One of the first papers on the numerical solution of DDEs are the presentations of the
so-called method of steps for DDEs with constant and time-varying delay [118, 119].
The method of steps is characterized by a stepwise integration of the delay system and
is presented in more detail in Sec. 4.2. Until now a vast number of methods for the
numerical integration of DDEs has been proposed. A nice overview on the methods for
the numerical solution of DDEs can be found in [114]. They are typically based on Runge-
Kutta methods for a finite dimensional ODE approximation of the DDE. For example,
a common solver for the numerical solution of DDEs is given in [113] and implemented
in the MATLAB function dde23. In addition to the classical solvers, which are often
restricted to DDEs with constant delays, there are numerical integrators for DDEs with
time-varying and state-dependent delays. For examples, the MATLAB function ddesd
[120] or the Fortran code RADAR5 [121] can be used for the numerical calculation of
the solution for DDEs with state-dependent delay. In engineering MATLAB/Simulink is
often used for the numerical integration of time delay systems in the time domain, which
provides only numerical solvers for ODEs. In this environment time delay systems can
be implemented by using the so-called Transport Delay-block, where the history of the
input values are stored in a buffer. As mentioned already in Sec. 2.2.1 there is also a
Variable Transport Delay-block for systems with variable transport delays as defined in
Eq. (2.6) [72].

In general, numerical solvers can be used to for an effective calculation of the asymp-
totic solution of time delay systems but the numerical integration of the DDE cannot be
used to find unstable periodic solutions of nonlinear systems. In [122] a spectral element
method for the numerical calculation of periodic solutions of nonlinear DDEs with a sin-
gle constant delay from the solution of a boundary value problem is presented, which can
be also used for the determination of unstable periodic orbits. Apart from the numerical
calculation of the solution, often some additional information is necessary for a detailed
analysis of the dynamic behavior, such as the stability and bifurcation of specific solu-
tions. For this purpose, powerful software packages such as DDE-Biftool [123] and Knut
[124] are designed. In particular, the packages can be used for the numerical calculation
of equilibria and periodic orbits of nonlinear DDEs and for the numerical continuation of
these solutions for parameter changes. In addition, the stability, bifurcations and much
more properties of the solutions can be determined. The software package DDE-Biftool
was used for the calculation of periodic solutions in a network of Hodgkin-Huxley neurons
with heterogeneous coupling delays in Sec. 7.3, whereas for the stability analysis of the
transversal eigenmodes of the network a separate stability analysis was performed.

3.3. Stability analysis

In this section two fundamental different methods for the stability analysis of nonlinear
time delay systems are presented. Lyapunov’s direct method, which is briefly described
in Sec. 3.3.1, is suitable for the robust stability analysis of nonlinear DDEs, whereas

40



3.3. Stability analysis

Lyapunov’s indirect linearization method in Sec. 3.3.2 can be used to obtain a precise
result on the stability behavior for specific solutions of nonlinear DDEs.

3.3.1. Lyapunov’s direct method

The global stability of nonlinear ODEs can be analyzed by Lyapunov’s direct method [49],
where global means that the stability information is independent of the specific solution
of the system. Lyapunov’s approach is based on a scalar positive function, which is now
known as Lyapunov function. It depends on the state ut of a nonlinear system and is
a generalization of the energy concept to arbitrary systems. The system is stable if the
time derivative of the Lyapunov function is negative for an arbitrary state of the system,
i.e. the Lyapunov function decreases to zero.

There are two main approaches for the extension of Lyapunov’s direct method to time
delay systems. On the one hand, due to the infinite dimension of time delay systems,
Lyapunov functionals instead of Lyapunov functions can be studied, which is known as
Lyapunov-Krasovskii functional approach. On the other hand, classical Lyapunov func-
tions can be constructed for time delay systems, which is known as Lyapunov-Razumikhin
approach. More details on the robust stability analysis of DDEs based on Lyapunov’s
direct method can be found in [125, 126].

The direct method can be used to guarantee the global stability of a nonlinear system
independent of the size of the perturbation or the specific initial condition. However, with
the direct method typically only a conservative bound for the stability of the system can
be obtained because the stability information is independent of the specific solution. A
more precise and specific information on the stability can be obtained with Lyapunov’s
first linearization method, which is considered in this thesis and presented next.

3.3.2. Lyapunov’s indirect linearization method

The stability for a specific reference solution u∗(t) of a nonlinear system can be obtained
with Lyapunov’s indirect linearization method. In particular, the reference solution is
called locally stable if small perturbations x(t) = u(t) − u∗(t) around the reference
solution are bounded forward in time. Here, local stability means that the system is stable
around the solution u∗(t) for small perturbations x(t) but not necessarily stable with
respect to large perturbations x(t). More precisely, in Lyapunov’s indirect linearization
method only infinitesimal small perturbations x(t) are considered, and therefore, the
dynamics of the perturbations can be described by a linear system. Since the stability
of a linear system does not depend on its specific solution, a precise information on the
stability of the reference solution can be obtained. However, the reference solution u∗(t)
may be unstable with respect to a finite perturbation x(t), which drives the system to
another attractor with a different stability behavior.

The linearized dynamics corresponding to the standard form Eq. (2.1) can be derived
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3. Analysis of nonlinear time delay systems

from the linear Taylor approximation for the solution u(t) = u∗(t) + x(t) as

u̇∗(t) + ẋ(t) =f (t,u∗(t) + x(t), ru∗+x(t)))

≈f (t,u∗(t), ru∗(t))

+Df2 (t,u
∗(t), ru∗(t))x(t) +Df3 (t,u

∗(t), ru∗(t)) rx(t),

(3.1)

where Df2 and Df3 refer to the Jacobian matrices of the vector field f with respect to
the second and third argument. If the dynamics of the reference solution u∗(t) is sub-
tracted from both sides of Eq. (3.1), a linear DDE for the dynamics of the perturbations
x(t) is obtained

ẋ(t) = A(t)x(t) +B(t)rx(t). (3.2)

The N ×N dimensional coefficient matrix A(t) and the N ×Nτ dimensional coefficient
matrix B(t) are defined as

A(t) = Df2 (t,u
∗(t), ru∗(t)) , and B(t) = Df3 (t,u

∗(t), ru∗(t)) . (3.3)

The methods for the stability analysis in this thesis are based on Lyapunov’s lineariza-
tion method. In particular, the methods, which are presented in Chapter 4, Chapter 5
and Chapter 6, focus on the analysis of the linearized dynamics Eq. (3.2). Specific exam-
ples for Lyapunov’s indirect linearization method are presented in Chapter 7, where the
local stability of equilibria and periodic solutions of some applications with time delays
are analyzed.

3.4. Summary

A very brief overview on the theory for the analysis of time delay systems was given in
Sec. 3.1. Since the considered time delay systems with state-dependent delay distribu-
tions in Sec. 2.2 are equivalent to DDEs with constant delay distributions, the classical
mathematical theory, which is given in [62], [63], can be also applied to these systems.
Specific numerical methods for the analysis of nonlinear DDEs were presented in Sec. 3.2.
Especially, the software packages for the numerical bifurcation analysis are powerful tools
for the investigation of the dynamics of nonlinear DDEs. Nevertheless, in some situations
it is suitable to use a separate method for the stability analysis.

Two main concepts for the stability analysis of nonlinear DDEs are briefly introduced
in Sec. 3.3. Whereas Lyapunov’s direct method provides an information on the global
stability behavior, and is, therefore, suitable for the robust stability analysis, it gives,
in general, only a conservative bound on the stable parameter regions. In contrast, the
results from Lyapunov’s indirect linearization method are only valid for specific solutions
of the nonlinear DDE but the linearization method can be used to obtain precise results
on the parameter regions, where the specific solution is stable or unstable.
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4. Analytical solution of linear time delay

systems

In this section an overview on the standard analytical methods for the solution of linear
DDEs is given. The existing analytical approaches for the analysis of linear DDEs are
often presented only for discrete delays or scalar DDEs, whereas the extension to dis-
tributed delays and vector-valued DDEs is, in general, not straightforward. In this thesis
the standard analytical techniques for time delay systems are extended for the applica-
tion to vector-valued DDEs with distributed delay. The solution based on the Laplace
transform of the DDE in Sec. 4.1 is closely related to the frequency domain approach
in Chapter 6. Specifically, the eigenmode decomposition for linear autonomous DDEs,
which is presented in Sec. 4.4, is used to provide a better understanding of the newly
introduced Hill-Floquet method in Chapter 6.

4.1. Laplace transform

Formally, the Laplace transform can be used to solve the linear DDE Eq. (3.2). In this
thesis, the Laplace transform and its inverse for a quantity v is defined by

v̄(s) =

∞
∫

0

v(t)e−stdt , v(t) =

∫

(Γ)

v̄(s)estds, (4.1)

where the Bromwich integral is abbreviated by

∫

(Γ)

dsv̄(s)est =
1

2πi
lim
T→∞

γ+iT
∫

γ−iT

dsv̄(s)est. (4.2)

In Eq. (4.2) the integration in the complex plane is done along a vertical contour Re(s) =
γ such that all singularities of v̄(s) are to the left of this contour. The basic theory for the
solution of autonomous DDEs with discrete delay via the Laplace transform is presented
in [50]. The formal Laplace transform of the linear non-autonomous DDE Eq. (3.2) with
distributed delay can be given by

sx̄(s)− Ā(s) ∗ x̄(s)− B̄(s) ∗ (K̄(s)x̄(s)) = Ψ(0) + Ψ̄(s), (4.3)

where ∗ denotes convolution and K̄(s) is the Laplace transform of the delay distribution
K(τ). A separate definition for the initial function is given by Ψ(t) = x(t)H(−t), which
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4. Analytical solution of linear time delay systems

means that Ψ(t) = 0 for t > 0 and Ψ(t) = x(t) for t ≤ 0. Furthermore, the weighted
Laplace transform Ψ̄(s) of the initial memory is defined by

Ψ̄(s) =

∞
∫

0

dtB(t)rΨ(t)e−st. (4.4)

Note that due to the definition of the function Ψ(t) only retarded configurations x(t −
τ) = Ψ(t − τ) in the region of the initial function with t − τ < 0 contribute to the
weighted Laplace transform of the memory in Eq. (4.4). A detailed derivation of the
Laplace transform representation Eq. (4.3) of the linear DDE with distributed delay
Eq. (3.2) can be found in Appendix A.2.1.

The structure of the Laplace transform Eq. (4.3) can be understood by defining the
inverse of the propagator in the Laplace domain

T̄
−1

(s, s′) = Is′δ(s − s′)− Ā(s− s′)− B̄(s− s′)K̄(s′), (4.5)

which means that the Laplace transform of the linear DDE Eq. (3.2) can be written as
∫

(Γ)

ds′T̄
−1

(s, s′)x̄(s′) = Ψ(0) + Ψ̄(s). (4.6)

The left hand side of Eq. (4.6) can be interpreted as the application of the inverse
propagator on the Laplace domain representation x̄(s′) of the solution and the right
hand side of Eq. (4.7) is the Laplace domain representation of the initial data of the time
delay system. In general, for the non-autonomous system with the inverse propagator
Eq. (4.5) the inversion of the propagator in the Laplace domain is not straightforward.
However, it is shown in detail in Appendix A.2.2 that the Laplace domain solution can
be rearranged to

x̄(s′′) =

∫

(Γ)

dsT̄ (s′′, s)
(

Ψ(0) + Ψ̄(s)
)

, (4.7)

and therefore, it can be concluded that the application of the inverse Laplace transform
to Eq. (4.7) leads to a formal solution of the DDE for t ≥ 0 as

x(t) = T (t, 0)Ψ(0) +

τmax
∫

0

dθT (t, θ)B(θ)rΨ(θ). (4.8)

In Eq. (4.7) and Eq. (4.8) T̄ (s′′, s) and T (t, t′) are the Laplace domain and the time
domain representations of the propagator, respectively. In general, the propagator is
also known as Green’s function or fundamental matrix solution.

Only for time-invariant coefficient matrices A(t) = A0 and B(t) = B0 an explicit
definition of the Laplace domain representation T̄ (s′′, s) of the propagator is given in
this thesis as (see Appendix A.2.2)

T̄ (s′′, s) =
(

Is−A0 −B0K̄(s)
)−1

δ(s′′ − s). (4.9)
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4.2. Method of steps

The calculation of the propagator for the non-autonomous case is not straightforward and
outside the scope of this thesis. After applying the inverse Laplace transform to Eq. (4.9),
the time domain representation of the propagator Eq. (4.9) for the autonomous case can
be formally given by (cf. Appendix A.2.2)

T (t, t′) =

∫

(Γ)

ds
(

Is−A0 −B0K̄(s)
)−1

es(t−t′)H(t− t′) = T (t− t′). (4.10)

From Eq. (4.10) it follows that for time-invariant coefficients the propagator is translation
invariant T (t, t′) = T (t− t′), which means that the propagator depends only on the step
size t − t′ as one would expect for autonomous systems. An explicit expression for the
propagator in the time domain can be derived by the method of steps [118, 119], that
is the successive integration of the DDE. This is shown in Sec. 4.2. A second method is
a series expansion of the propagator T̄ (s, s′) in the Laplace domain and a step by step
inverse Laplace transform of the series. This method is used in [50] and [89] to obtain
the propagator for autonomous DDEs with multiple discrete delays. Alternatively, the
inverse Laplace transform of the propagator can be performed with residue theory, which
is shown in Sec. 4.3. The connection between the propagator and the eigenmodes of the
time delay system is presented in [88] for a scalar autonomous DDE. The extension of
the eigenmode expansion to vector-valued autonomous DDEs with distributed delay is
presented in Sec. 4.4.

4.2. Method of steps

In this subsection the method of steps is used to derive an explicit expression for the
propagator T (t, t′) of the linearized time delay system Eq. (3.2). If τmin specifies a lower
bound on the delay distribution K(τ) in the memory rΨ(t) of the time delay system,
for t ∈ [0, τmin) the DDE Eq. (3.2) with distributed delay can be interpreted as a non-
homogeneous ODE

ẋ(t) = A(t)x(t) +B(t)rΨ(t). (4.11)

The fundamental matrix solution M(t, t′) for the homogeneous part of the ODE Eq. (4.11)
satisfies

Ṁ(t, t′) = A(t)M (t, t′), M(t′, t′) = I, (4.12)

and the variation of constants formula can be used to solve Eq. (4.11) in the first interval
with t ∈ [0, τmin) as

x(t) = M(t, 0)Ψ(0) +

t
∫

0

dθM(t, θ)B(θ)rΨ(θ). (4.13)

Comparison of Eq. (4.13) and Eq. (4.8) in combination with T (t, θ) = 0 for θ ≥ t
reveals the equivalence M(t, t′) = T (t, t′) in the first interval. The solution x(t) in the
first interval can be assumed to be the new initial condition for the calculation of the
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4. Analytical solution of linear time delay systems

solution in the second interval with t > τmin. As a consequence the stepwise application
of Eq. (4.13) can be used to construct the propagator T (t, t′) of the time delay system.
This method was originally proposed by Bellman in [118] for the numerical solution of
time delay systems with constant delays and was later extended to the solution of DDEs
with variable delays [119]. Nowadays, the method is commonly known as method of steps
[114].

Here, for the sake of convenience an explicit expression for the propagator T (t, t′),
which can be obtained with the method of steps, is only given for systems with one
discrete delay τ0, i.e. systems with a delay distribution K(τ) = K0δ(τ−τ0). In particular,
the recursive application of Eq. (4.13) leads to an expression with the same structure as
Eq. (4.8), where the propagator T (θk, t

′) with θk ∈ [t′ + kτ0, t
′ + (k + 1)τ0) for the

calculation of the solution in the kth interval can be identified as (see Appendix A.2.3)

T (θk, t
′) =

k
∑

n=0







n
∏

j=1

θk−j+1−τ0
∫

t′+(n−j)τ0

dθk−jM(θk−j+1, θk−j + τ0)BK(θk−j + τ0)






M(θk−n, t

′),

(4.14)
with BK(t) = B(t)K0. From Eq. (4.14) one can see, that for k < 0 the propagator
of the DDE T (θk, t

′) = 0, because in this case θk < t′. In the first interval (k =
0) the propagator of the time delay system defined by Eq. (4.14) is equivalent to the
propagator of the ODE part T (θ0, t

′) = M (θ0, t
′), which is consistent with Eq. (4.13). If

the coefficient matrices are time-invariant, i.e. A(t) = A0 and B(t) = B0, the propagator
M(t, t′) of the ODE part of the delay system can be specified by M(t, t′) = e(t−t′)A0 .
If, in addition, the coefficient matrices commute, i.e. A0 (B0K0) = (B0K0)A0, the
propagator T (θk, t

′) = T (θk − t′) of the time delay system can be simplified to

T (θk − t′) =

k
∑

n=0

e(θk−t′−nτ0)A0 (B0K0)
n

n
∏

j=1

θk−j+1−τ0
∫

t′+(n−j)τ0

dθk−j. (4.15)

With the substitution θ′k−j = θk−j− t′−(n−j)τ0 for 1 ≤ j ≤ n the integrals in Eq. (4.15)
can be simplified to

T (θk − t′) =

k
∑

n=0

e(θk−t′−nτ0)A0 (B0K0)
n

θk−t′−nτ0
∫

0

dθ′k−1

n
∏

j=2

θ′
k−j+1
∫

0

dθ′k−j, (4.16)

which leads to the following compact form of the propagator

T (θk − t′) =

k
∑

n=0

e(θk−t′−nτ0)A0 (B0K0)
n (θk − t′ − nτ0)

n

n!
. (4.17)

In fact, the explicit expression for the propagator T (θk − t′) in Eq. (4.17) satisfies
the above-mentioned translation invariance for autonomous systems. Results similar
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4.3. Inverse Laplace transform via residue theory

to Eq. (4.17) for scalar autonomous systems can be found, for example, in [89, 127, 128]
and were obtained either with the method of steps or by inverse Laplace transform.

In fact, Eq. (4.14) is the basis of the expressions for the construction of the monodromy
matrix in one step via semidiscretization, which are given in the book [3]. Moreover, a
systematic structure can be found in the equations for the propagator. In particular,
Eq. (4.14) and Eq. (4.17) can be interpreted as a path integral, that is, the propagator is
specified by an integration over all possible paths from the initial time t′ to the finite time
θk. The paths are composed of delay steps BK of length τ0 or ODE steps M of arbitrary
length. With this interpretation it is possible to generate the propagators of time delay
systems without the excessive calculations in Appendix A.2.3 simply by considering all
possible paths from t′ to θk. For example, for constant coefficient matrices all paths that
contain exactly n delay steps are specified by the coefficient (B0K0)

n in the sum in
Eq. (4.17). In this case, the corresponding ODE steps are of length θk − t′ − nτ0. The
remaining term (t − nτ0 − t′)n/n! is a measure for the number of combinations of the
ODE steps with n delay steps between the initial time t′ and the finite time θk.

The calculation of the propagator with Eq. (4.14) or Eq. (4.17) is suitable for the
analysis of the short term behavior of the solution. However, the upper bound of the
sum and the number of integrations in Eq. (4.14) increases with increasing k, which
means that for the characterization of the asymptotic behavior of time delay systems
with k → ∞ the expressions in Eq. (4.14) and Eq. (4.17) are not suitable. In this case
the spectral representation of the propagator is much more suitable, which can be derived
from the inverse Laplace transform as shown in the next section.

4.3. Inverse Laplace transform via residue theory

In this section, the spectral representation of the propagator for the autonomous case
with constant coefficient matrices A0 and B0 is derived by the inverse Laplace transform
via residue theory. According to Eq. (4.10), the Laplace domain representation T̄ (s) of
the propagator for the linearized DDE Eq. (3.2) with constant coefficients can be written
as

T̄ (s) =

∞
∫

0

dtT (t)e−st =
(

Is−A0 −B0K̄(s)
)−1

. (4.18)

The inverse Laplace transform of Eq. (4.18) can be performed via residue calculation,
which has been shown in [89] for scalar DDEs with a discrete delay τ0. For the sake of
convenience only first order poles sk of the propagator T̄ (s) are assumed. In this case,
the propagator in the Laplace domain can be given by [129]

T̄ (s) =

∞
∑

k=0

1

s− sk
Rk, (4.19)

where the matrices Rk are the residues. If the propagator is given by Eq. (4.19) the
inverse Laplace transform is straightforward and the propagator in the time domain can
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4. Analytical solution of linear time delay systems

be expressed as

T (t− t′) =
∞
∑

k=0

esk(t−t′)Rk. (4.20)

Eq. (4.20) is the spectral representation of the propagator T (t− t′) in the time domain.
The spectral representation is suitable for the characterization of the asymptotic behavior
of the DDE because for t → ∞ the sum in Eq. (4.20) is dominated only by one or two
summands with the poles sk with the largest real part. Hence, the calculation of the
poles or characteristic exponents sk is sufficient for the identification of the stability of
the linearized system Eq. (3.2). In particular, the poles sk of the propagator are the
solutions of the characteristic equation

det
(

Is−A0 −B0K̄(s)
)

= 0. (4.21)

In general, Eq. (4.21) is a transcendental equation, and leads to a discrete set of infinitely
many characteristic exponents sk [62]. There are many numerical methods for the calcu-
lation of the characteristic exponents sk of time delay systems [110]. For example, for a
scalar system with discrete delay τ0, that is for K(τ) = δ(τ − τ0), the exponents sk can
be calculated with the Lambert W function [130, 131, 132]. A more detailed overview on
different methods for the calculation of the characteristic exponents sk of autonomous
time delay systems is presented in Sec. 5.1.

With Eq. (4.8) the spectral representation Eq. (4.20) of the propagator can be also
used for the calculation of the exact form of the perturbations x(t) for a given initial
condition, i.e. the solution of the linearized system Eq. (3.2). For this purpose a method
for the calculation of the residues Rk is presented, which is an extension of the method
presented in [129]. At first a spectral representation of the propagator T̄ (s) in the Laplace
domain is defined as

T̄ (s) =

N
∑

l=1

ql(s)d
T
l (s)

σl(s)
, (4.22)

where dl(s)
T , ql(s) and σl(s) are the left, the right eigenvectors and the inverse eigenval-

ues of the matrix T̄ (s) as a function of s. According to Eq. (4.18), these functions are
defined by

(

Is−A0 −B0K̄(s)
)

ql(s) = σl(s)ql(s), (4.23a)

dT
l (s)

(

Is−A0 −B0K̄(s)
)

= dT
l (s)σl(s). (4.23b)

Note that the left and the right eigenvectors of the matrix function T̄ (s) are biorthonor-
mal, i.e. dT

k (s)ql(s) = δkl. If Eq. (4.22) is substituted in Eq. (4.19) and multiplied with
(s − sn) one obtains

N
∑

l=1

ql(s)d
T
l (s)

σl(s)
(s− sn) =

∞
∑

k=0

s− sn
s− sk

Rk, (4.24)

where sn is one specific pole of the propagator with σl(sn) = 0. If the limit s → sn is
taken, only one term in each of the two sum in Eq. (4.24) is non-zero. In particular,
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4.4. Eigenmode expansion for DDEs

these are the terms, where the denominators σl(s) and s − sk vanish. This means that
Eq. (4.24) becomes

Rn = lim
s→sn

ql(s)d
T
l (s)

s− sn
σl(s)

, (4.25)

where l is defined by σl(sn) = 0. Using L’Hopital’s rule and denoting the left and the
right eigenvectors at the poles as dT

n = dT
l (sn) and qn = ql(sn), Eq. (4.25) for the

calculation of residues simplifies to

Rn =
qnd

T
n

dT
n

(

I −B0K̄
′
(sn)

)

qn

, (4.26)

where K̄
′
(sn) is the derivative of the Laplace transform of the delay distribution at the

pole s = sn. Substituting Eq. (4.26) in Eq. (4.20) for the case of a scalar DDE with a
discrete delay, i.e. K̄(s) = e−sτ0 , the spectral representation of the propagator in the
time domain simplifies to

T (t− t′) =

∞
∑

k=−∞

esk(t−t′)

1 +B0τ0e−skτ0
, (4.27)

which coincide with the known results for the spectral representation of the propagator
in [88, 89].

4.4. Eigenmode expansion for DDEs

The eigenmode expansion for a scalar DDE with a single discrete delay is presented by
Amann et al. in [88]. In this paper, the eigenmodes and the dual eigenfunctions are
defined and used to derive the spectral representation of the propagator T (t, t′) in the
time domain. Amann et al. do not provide a systematic approach for the construction
of the dual eigenfunctions or the residues Rn, which might be used to derive the dual
eigenfunctions for vector-valued DDEs with distributed delay. However, in this thesis
the spectral representation of the propagator in the time domain Eq. (4.20) was already
derived in Sec. 4.3 from the Laplace transform of vector-valued DDEs with distributed
delay, which was presented in Sec. 4.1. As a result, in this subsection the eigenmode
expansion for vector-valued DDEs with distributed delay is derived from the spectral
representation Eq. (4.20) of the propagator, which provides a systematic approach for
the construction of the eigenmode expansion for time delay systems.

The solution of an autonomous DDE Eq. (4.8) in terms of the propagator can be
rearranged to

x(t) = T (t)



Ψ(0) +

τmax
∫

0

dτ

0
∫

−τ

dθ′T (−(θ′ + τ))B0K(τ)Ψ(θ′)



 , (4.28)

49



4. Analytical solution of linear time delay systems

where Eq. (2.2) was substituted for rΨ(θ) and the variable transformation θ = θ′ + τ
was made. If the spectral representation of the propagator Eq. (4.20) with the residues
Eq. (4.26) is put into Eq. (4.28) the solution can be expressed as

x(t) =
∞
∑

k=−∞

eskt
qkd

T
k

Nk

0
∫

−τmax

dθ



Iδ(θ + 0) +B0

τmax
∫

0

dτK(τ)e−sk(θ+τ)H(θ + τ)



Ψ(θ),

(4.29)
where the notation δ(t + 0) = lim

ǫ→0
δ(t + ǫ) is used and the normalization constant Nk is

equal to the denominator of the residues in Eq. (4.26)

Nk = dT
k

(

I −B0K̄
′
(sk)

)

qk. (4.30)

Eq. (4.29) can be decomposed by defining the kth eigenmode of the DDE

xk(t) = qke
skt ∈ R

N , (4.31)

and the corresponding dual eigenfunction

yT
k (t) =

dT
k

Nk



Iδ(t+ 0) +B0

τmax
∫

0

dτK(τ)e−sk(t+τ)H(t+ τ)



 . (4.32)

With these definitions the solution of the DDE can be given by a superposition of the
infinitely many eigenmodes

x(t) =

∞
∑

k=−∞

xk(t)ck =

∞
∑

k=−∞

qke
sktck, (4.33)

where the time-invariant coefficients ck are determined by the dual eigenfunctions as

ck =

0
∫

−τmax

dθyT
k (θ)Ψ(θ). (4.34)

This means that the characteristic exponents sk together with the right eigenvectors qk

specify an infinite set of fundamental solutions xk(t) of the DDE Eq. (3.2) with constant
coefficients. They are called eigenmodes because the right eigenvectors qk specify time-
invariant eigendirections in the N dimensional space for the configurations x of the DDE,
and the time evolution along these fixed eigendirections is specified by the scalar term eskt.
This means that the dynamics becomes decoupled if a superposition of the eigenmodes
Eq. (4.31) are put in the linearized DDE Eq. (3.2). In other words, the eigenmodes xk(t)
and the dual eigenfunctions yT

k (t) form a biorthonormal system in the interval of the
initial function of the DDE, that is

0
∫

−τmax

dθyT
j (θ)xk(θ) = δjk. (4.35)
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The proof of Eq. (4.35) is given in Appendix A.2.4. The eigenmodes xk(t) are linearly
independent functions, and the superposition of the infinitely many eigenmodes can be
used to specify the state of the DDE similar to Eq. (4.33)1. In Sec. 5.1.1 the eigenmodes
Eq. (4.31) are used to derive the characteristic equation Eq. (4.21) of an autonomous
DDE with distributed delay and in Sec. 6 the derivation of the eigenmodes for periodic
DDEs with distributed delays with the Hill-Floquet method is presented.

4.5. Summary

The fundamental analytical approaches for the solution of linear DDEs were presented
in this Chapter. In particular, in Sec. 4.1 the Laplace transform of the linearized DDE
was used for the formal definition of the propagator of DDEs with distributed delay and
for the representation of the solution Eq. (4.8) in terms of the propagator of the time
delay system. Eq. (4.8) is the basic representation for solutions of non-autonomous linear
DDEs with distributed delay and can be used to construct the solution operator for such
systems. This fills some open gaps in the existing literature, where typically only systems
with one or multiple discrete delays or only scalar systems are considered [50, 88, 89].

In general, there are different methods for the determination of an explicit expression
of the propagator for time delay systems. The first approach is based on the method
of steps, which was used in Sec. 4.2 to derive a new expression for the propagator of
non-autonomous DDEs with one discrete delay in terms of multiple nested integrals in
Eq. (4.14). The analytical solution of the nested integrals is, in general, only possible
for the case of constant commuting coefficient matrices resulting in Eq. (4.17), which is
closely related to the known result for scalar systems. In Sec. 4.2 it was also shown, that
the propagator for time delay systems can be interpreted as a path integral, where the
paths are composed of all possible combinations of ODE steps and delay steps between the
starting and the end time. This interpretation is very useful for the direct determination
of the propagator by summing up all paths directly, where no extensive calculations are
necessary.

A second method for obtaining a time domain representation of the propagator for
time delay system is the direct application of the inverse Laplace transform, which is
useful for autonomous DDEs. In particular, in Sec. 4.3 the inverse Laplace transform of
linear DDEs with constant coefficients and distributed delay via residue theory is used
to calculate the spectral representation Eq. (4.20) of the propagator in the time domain.
Whereas, the time domain representation of the propagator Eq. (4.14) from the method
of steps is suitable for the characterization of the short term behavior of the solution of
linear DDEs, the spectral representation Eq. (4.20) is suitable for the characterization of
the long term behavior of the solution because for large times t → ∞ only one summand
dominates the propagator.

The different summands in the spectral representation of the propagator Eq. (4.20) can
be interpreted as eigenmodes of the time delay system. In Sec. 4.4, the eigenmode ex-

1Note that according to the assumptions in Sec. 4.3 only the generic case of non-degenerate poles sk is
discussed in detail here.
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4. Analytical solution of linear time delay systems

pansion for autonomous vector-valued DDEs with distributed delay was presented. This
is an extension to the results in [88]. In addition, the Laplace transform of the DDE and
the inverse Laplace transform of the spectral representation of the propagator provides
a systematical way for the derivation of the eigenmode decomposition of autonomous
DDEs with distributed delay.

The results in Chapter 4 show the limits of the analytical approaches for the solution
of time delay systems. In general, either the numerical solution of nested integrals in
Eq. (4.14) or the determination of the characteristic roots in Eq. (4.20) is necessary for the
calculation of the solution of linear DDEs. This emphasizes the necessity for numerical
or semi-analytical methods for the analysis of non-autonomous DDEs with distributed
delay. For the analysis in this thesis, especially the asymptotic behavior of the solution
of time delay systems is relevant. Thus, the remaining theory for the analysis of linear
DDEs, which is presented in Chapter 5 and Chapter 6, is focused on the determination
of the most dominant characteristic roots of the time delay system for the autonomous
as well as the non-autonomous case.
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5. Frequency domain approach

In this chapter frequency domain methods for the analysis of linear time delay systems
Eq. (3.2) with the memory Eq. (2.2) are presented. In Sec. 5.1 some detailed remarks on
the calculation of the characteristic roots of autonomous DDEs with distributed delay
based on the characteristic Eq. (4.21) are given. In Sec. 5.2 the theory is extended to
DDEs with periodic coefficients, which leads to an infinite dimensional characteristic
equation, the so-called Hill’s infinite determinant. This method is mainly used for the
calculation of the stability chart in a parameter space based on the D-subdivision method,
which is presented in Sec. 5.3.

5.1. Autonomous systems

The characteristic Eq. (4.21) for autonomous DDEs with distributed delay was already
derived in Sec. 4.3 for the calculation of the poles of the Laplace domain representation
T̄ (s) of the propagator. It is the basis for the frequency domain approach for the stability
analysis of autonomous time delay systems, which is presented in this Section. Note that
especially the numerical methods for the calculation of the characteristic roots for linear
autonomous systems, which are presented in Sec. 5.1.4 can be combined with the Hill-
Floquet transformation for the analysis of linear DDEs with periodic coefficients, which
is introduced in Chapter 6.

5.1.1. Characteristic equation

The autonomous case is characterized by constant coefficient matrices A(t) = A0 and
B(t) = B0 in the linearized system Eq. (3.2). In this case the dynamics of the perturba-
tions can be given by

ẋ(t) = A0x(t) +B0

τmax
∫

0

K(τ)x(t− τ)dτ. (5.1)

From the eigenmode decomposition in Sec. 4.4 it is known, that the dynamics can be
decoupled by expanding the solution in eigenmodes of the form xk(t) = qke

skt. Putting
this ansatz x(t) = xk(t) in Eq. (5.1) results in the characteristic equation

skqk =
(

A0 +B0K̄(sk)
)

qk. (5.2)

The typically complex eigenvalues sk = λk + iωk of Eq. (5.2) are called characteristic
exponents and are the poles of the Laplace domain representation T̄ (s) of the propaga-
tor as defined in Eq. (4.18). They are also known as characteristic roots because they
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are equivalent to the roots of the characteristic Eq. (4.21), which was given already in
Sec. 4.3. The real part λk and the imaginary part ωk of the characteristic exponents
specify the exponential behavior and the frequency of the eigenmode xk(t). The real and
the imaginary part of the characteristic Eq. (4.21) can be split into two scalar equations.
For fixed coefficient matrices A0, B0 and a fixed delay distribution K(τ) there are two
unknowns λk and ωk, which means that the problem is well-defined and the solution
of the characteristic Eq. (4.21) yields the discrete spectrum sk of the DDE [54, 62]. In
the following it is assumed that the characteristic exponents sk are ordered according
to their real part with λk > λk+1 and k ≥ 0, that is, s0 is the root with the maximum
real part. The largest real part λ0 determines the stability of the DDE. For λ0 > 0 the
system is unstable with exponentially diverging solutions and for λ0 < 0 the system is
stable because the amplitude of all eigenmodes xk(t) converges exponentially to zero.

In general, the characteristic Eq. (4.21) of a DDE with distributed delay is a transcen-
dental equation and has infinitely many roots sk. This can be seen easily for a discrete
delay distribution K(τ) = K0δ(τ − τ0). In this case the characteristic equation becomes

det
(

Is−A0 −B0K0e
−sτ0

)

= 0. (5.3)

Other examples for typical delay distributions K(τ), which result in a transcendental
equation can be found in [110]. The infinite number of characteristic exponents sk is due
to the infinite dimension of a DDE. It can be proven, that the spectrum of autonomous
DDEs is discrete and that there are always only a finite number of characteristic expo-
nents sk with positive real part λk > 0 [62].

5.1.2. Linear chain trick

There exist specific delay distributions, where only a finite number of characteristic ex-
ponents appears. These delay distributions are given by the gamma distribution

K(τ) = K0
βjτ j−1e−βτ

(j − 1)!
, τ ≥ 0, (5.4)

where j ∈ N
+ and β ∈ R

+ are arbitrary shape and rate parameters. The Laplace
transform of the gamma distribution Eq. (5.4) is given by [10]

K̄(s) = K0
βj

(s+ β)j
, (5.5)

which results in the characteristic equation

det
(

(Is−A0)(s+ β)j −B0K0β
j
)

= 0. (5.6)

Eq. (5.6) is a polynomial with only a finite number of characteristic roots sk. Hence,
a DDE with a delay distribution equal to the gamma distribution Eq. (5.4) is only
finite dimensional, which means that such a DDE is equivalent to an ODE system. The
transformation of a DDE with a gamma distribution Eq. (5.4) to an ODE is known as
linear chain trick and is often used in models for population dynamics [10, 38]. In this
thesis the form of the delay distribution is not restricted to the gamma distribution and
the generic case of a transcendental characteristic equation is studied.
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5.1.3. Lambert W approach

In addition, to the linear chain trick, where an analytical solution of the polynomial
characteristic Eq. (5.6) is possible, a semi-analytical solution of the characteristic Eq. (5.2)
can be obtained for the specific case of an autonomous DDE with a discrete delay K(τ) =
K0δ(t − τ0) and commuting coefficient matrices, i.e. A0(B0K0) = (B0K0)A0. In this
case the characteristic equation Eq. (5.2) can be written as

(Is−A0) τ0e
(Is−A0)τ0qj = B0K0τ0e

−A0τ0qj , (5.7)

where qj denotes the jth eigenvector of the coefficient matrices A0 and B0K0. Eq. (5.7)

has a structure similar to the equation W (z)eW (z) = z, where the function W (z) is
called Lambert W function and has infinitely many branches [131]. As a consequence,
for commuting coefficient matrices A0 and B0K0 the characteristic exponents sj,l can
be calculated directly by

sj,l = σj (A0) +
1

τ0
Wl

(

σj
(

B0K0τ0e
−A0τ0

))

, (5.8)

where σj(X) denotes the jth eigenvalue of an arbitrary matrix X corresponding to the
jth eigenvector qj , and Wl denotes the lth branch of the Lambert W function [130].

The advantage of the Lambert W approach relies in the fact, that the Lambert W-
function defines a clear relationship between the infinitely many characteristic exponents
of the system, and therefore, is suitable for the control of the infinite dimensional delay
system with a finite number of parameters. If the coefficient matrices do not commute,
in general, a calculation of the characteristic exponents sk with the Lambert W function
is no longer possible [54, 130, 133]. In this case the characteristic exponents must be
calculated numerically.

5.1.4. Numerical methods

The calculation of the roots of the characteristic equation for linear autonomous DDEs is
a standard technique in the analysis of time delay systems, which is described for exam-
ple in [52, 53]. In particular, the software package TRACE-DDE is a numerical tool for
the calculation of the characteristic exponents based on the solution of the characteristic
Eq. (4.21) [134]. Furthermore, there are many more numerical methods for the solution
of the characteristic equation of autonomous DDEs, which is, in general, the solution of
a nonlinear eigenvalue problem. A nice overview can be found in [54]. Many of these
methods can be interpreted as a polynomial approximation of the exponential term e−sτ0

in the characteristic Eq. (5.3) or a polynomial approximation of the Laplace transform of
the delay distribution K̄(s) in the characteristic Eq. (4.21) for the general case of a con-
tinuous delay distribution. In practice, this polynomial approximation is often obtained
by a finite approximation of the state of the DDE Eq. (3.2) xt by a finite dimensional
vector instead of a function. In general, the finite dimensional approximation of the state
xt, i.e. the function x(t + θ) of the DDE in one delay interval θ ∈ [−τmax, 0], can be
described by an expansion in terms of a finite number of basis functions. The resulting

55



5. Frequency domain approach

finite dimensional representation of the solution operator or the finite dimensional ap-
proximation of the infinitesimal generator of the DDE in terms of the basis functions can
be used to approximate the most dominant characteristic exponents sk of the DDE.

The classification of these methods can be done similar to the related methods for
the analysis of partial differential equations (PDEs) [135]. On the one hand, there are
finite difference methods, where one basis function determines the solution in a small
subinterval, i.e. the basis functions are local functions. Classical examples for finite
difference methods are the Semidiscretization [3, 136], the Full-Discretization method
[137] or the Continuous Time Approximation [138]. On the other hand, there are spectral
methods, where the basis functions are global functions with non-zero values in the whole
delay interval. Spectral methods based on Chebyshev polynomials, Legendre polynomials
or a mixed Fourier basis can be found in [73, 139, 140, 141]. In addition, there are spectral
element methods, which combine the advantages of the finite difference and the spectral
approach and use extended high-order polynomials in several subintervals of the delay
interval for the basis functions [74, 142]. In the context of time delay systems, these
methods are also known as time finite element approach [143]. Another classification is
possible according to the method for the minimization of the residual function, that is, the
minimization of the error between the finite dimensional approximation and the original
infinite dimensional system by using different test functions [135]. Some examples for
a different minimization of the residual function are known as Galerkin or spectral-tau
method [73, 140, 141], where the test functions are equivalent to the basis functions,
spectral least squares method [140] and pseudospectral or collocation methods [73, 139],
where the test functions are Dirac delta functions. Specifically, the Chebyshev collocation
method is presented in more detail in Sec. 6.3, where the method is combined with the
Hill-Floquet transformation for the calculation of the Floquet exponents of linear DDEs
with periodic coefficients.

5.2. Periodic systems

The periodic case is characterized by T -periodic coefficient matrices A(t + T ) = A(t)
and B(t + T ) = B(t). Such a situation occurs, for example, if the stability of periodic
solutions of the standard form Eq. (2.1) are analyzed. In particular, in Sec. 7.3 the
stability of periodic solutions of a Hodgkin-Huxley neuronal network with heterogeneous
coupling delays is studied. Other examples are DDEs with periodic parametric excitation,
which often occur in engineering and are characterized by a periodic variation of one or
more parameters of the system. An application of a periodic parametric excitation is
studied in Sec. 7.2, where the stability of mechanical vibrations in a turning process with
a periodically varying spindle speed is investigated. In Sec. 5.2.1 the extension of the
characteristic equation to periodic systems is presented, which is known as Hill’s infinite
determinant method. In Sec. 5.2.2 some remarks on alternative numerical methods for
the calculation of the characteristic roots for periodic DDEs are given.
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5.2.1. Hill’s infinite determinant method

Dynamical systems with periodic coefficients can be analyzed with Floquet theory, which
states that the eigenmodes of a periodic system can be written as [75, 76]

xk(t) = pk(t)e
skt, pk(t+ T ) = pk(t), (5.9)

where pk(t) is a T -periodic coefficient and sk is the characteristic exponent or Floquet
exponent. Putting the ansatz (5.9) into the linearized DDE Eq. (3.2) yields

ṗk(t) + skpk(t) = A(t)pk(t) +B(t)

τmax
∫

0

K(τ)e−skτpk(t− τ)dτ. (5.10)

The Fourier transform is used to put Eq. (5.10) in the frequency domain. In this thesis
the Fourier transform of an arbitrary vector v(t) and its inverse are defined by

v̂(ω) =

∞
∫

−∞

v(t)e−iωtdt, v(t) =
1

2π

∞
∫

−∞

v̂(ω)eiωtdω. (5.11)

The frequency domain representation of the linear periodic DDE Eq. (5.10) can be written
as

(sk + iω)p̂k(ω) =

∞
∫

−∞

(

Â(ω − ω′) + B̂(ω − ω′)K̄(sk + iω′)
)

p̂k(ω
′)dω′. (5.12)

Since the vector pk(t) and the matrices A(t) and B(t) are T -periodic functions, their
Fourier transforms are discrete with peaks at multiples of the basic frequency Ω = 2π/T

p̂k(ω) =
∞
∑

l=−∞

p̂k,lδ(ω − lΩ), Â(ω) =
∞
∑

l=−∞

Âlδ(ω − lΩ), B̂(ω) =
∞
∑

l=−∞

B̂lδ(ω − lΩ).

(5.13)
If Eq. (5.13) is put in Eq. (5.12) and the harmonics are balanced, an infinite dimensional
characteristic equation can be obtained as

detC∞(s) = 0. (5.14)

The infinite dimensional matrix C∞ is composed of the N×N dimensional matrix blocks

{C∞(s)}kl = I(s+ ikΩ)δkl − Âk−l − B̂k−lK̄(s+ ilΩ), (5.15)

with k, l = −∞, ...,∞. The matrix C∞ is called Hill’s infinite matrix and the determinant
in Eq. (5.14) is called Hill’s infinite determinant.

The Hill’s infinite determinant method was initially presented in the original work of
Hill in 1886 for the analysis of the periodic lunar motion [77]. One year later, a general-
ized form of this method for the stability analysis of mechanical vibrations was presented
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in [78]. Apart from the dimension of the matrix C∞(s), the characteristic Eq. (5.14) for
systems with periodic coefficients has the same structure as the characteristic Eq. (4.21)
for systems with constant coefficients. It is a transcendental equation and the typically
complex-valued roots sk = λk + iωk of Eq. (5.14) are the characteristic exponents or
Floquet exponents. Similar to the characteristic roots of Eq. (4.21), the Floquet expo-
nents sk are ordered according to their real part with λk > λk+1 and k > 0. Thus, the
real part λ0 of the dominant Floquet exponent determines the stability of the DDE. For
λ0 > 0 the linearized system Eq. (3.2) is unstable with exponentially diverging solutions
and for λ0 < 0 the system is stable and all solutions converge to zero. The convergence
of the Hill’s infinite determinant Eq. (5.14) for the delay-free case, i.e for B(t) = 0, is
studied in [144, 145, 146, 147, 148]. For DDEs some results on the convergence of the
Hill’s infinite determinant can be found in [149]. For the delay-free case, that is, where
Eq. (3.2) reduces to an ODE, the Floquet exponents sk are simply the eigenvalues of the
matrix1

A∞ =



















. . .
...

...
... . .

.

· · · Â0 − IiΩ Â−1 Â−2 · · ·

· · · Â1 Â0 Â−1 · · ·

· · · Â2 Â1 Â0 + IiΩ · · ·

. .
. ...

...
...

. . .



















. (5.16)

The method is used, for example, for the analysis of vibrations in engineering [150, 151],
for the analysis of periodic solutions in spatially extended systems [152, 153], or for the
calculation of energy bands for electrons in periodic crystals [79, 80] 2. However, in
general, for the DDE case a nonlinear eigenvalue problem appears and the calculation of
the Floquet exponents sk from the infinite dimensional characteristic Eq. (5.14) is not
straightforward. A generalization of the Hill’s infinite determinant method is shown later
in Chapter 6 by the introduction of the Hill-Floquet transformation, which can be used
for the calculation of Floquet exponents sk of time delay systems.

5.2.2. Numerical methods

Since the Hill’s infinite determinant method as presented in Sec. 5.2.1 is not suitable
for the calculation of Floquet exponents for time delay systems, the analysis of DDEs
with periodic coefficients is often performed in the time domain. In fact, the finite
difference methods, the spectral methods and the spectral element methods, which are
presented for the autonomous case in Sec. 5.1.4, can be also used for the calculation of the
Floquet exponents for DDEs with periodic coefficients. An overview on these methods
is given in [55]. For periodic systems the above-mentioned time domain methods require
the construction of the solution over one period. In particular, the finite dimensional
approximation of the solution operator of the system over the principle period in terms

1In practive, the numerical implementation of the Hill’s infinite determinant method is typically applied
by truncating the bi-infinite Hill matrix.

2In solid state physics Floquet theory is commonly known as Bloch theory
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of the basis functions is called monodromy matrix. The eigenvalues of the monodromy
matrix are approximations of the dominant Floquet multipliers eskT and the system is
stable if the modulus of all Floquet multipliers is smaller than one.

In addition to these methods, there is the method of characteristic matrices [154, 155].
In this approach the retarded configuration in the formal solution of the system over
the principle period is expressed in terms of the unknown Floquet multiplier eskT , which
describes the time evolution of one eigenmode over the principle period T . The resulting
algebraic equation can be interpreted as the characteristic equation of the periodic system.
Note that the method requires the numerical approximation of the monodromy matrix
or alternatively the calculation of the propagator for a system with periodic coefficients,
which is, in general, not trivial as discussed in Chapter 4.

Whereas, the Hill’s infinite determinant method as presented in Sec. 5.2.1 is not suit-
able for the calculation of Floquet exponents, the method can be used for the calcu-
lation of stability charts in parameter space. In general, this technique is known as
D-subdivision method and is presented next.

5.3. D-subdivision method

In many applications the computation of a stability chart in the parameter space, which
separates stable from unstable behavior is useful. For this purpose the real part of the
characteristic exponents is set to zero λk = 0, which means that at least one characteris-
tic root crosses the imaginary axis. In this case, only one free parameter ωk is left in the
characteristic Eq. (5.14). As a result, in a parameter space with at least one additional
free parameter of the system the solution of the characteristic Eq. (5.14) with sk = iωk

results in hyperplanes that separate different domains with a different number of charac-
teristic exponents sk with positive real part λk > 0. The dimension of the hyperplanes
is equal to the dimension of the parameter space minus one because the characteristic
Eq. (5.14) are practically two scalar equations, one for the real part and one for the imag-
inary part of the determinant, and one free parameter is given by the frequency ωk of the
eigenmode. In other words, for one free parameter, there are points where the character-
istic exponents sk = iωk cross the imaginary axis. For two parameters, the hyperplanes
that separate the parameter regions with a different number of unstable eigenmodes are
curves in the parameter space and so on. This method is called D-subdivision and the
curves in the parameter space are called D-curves [47, 52]. The D-curves that separate
the domains of stable and unstable behavior are the ones with λ0 = 0, i.e. the solution
where the largest real part of the characteristic exponents becomes zero. An example
for a stability chart with the D-curves is presented in Fig. 7.1, where the D-curves for
equilibria of single species delayed reaction-diffusion systems were calculated.

5.3.1. Autonomous systems

An example of the analytical calculation of the D-curves and the stability chart of an
autonomous DDE with distributed delay from the characteristic equation is shown for
single species delayed reaction-diffusion systems in Sec. 7.1. Already for the autonomous
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case, the analytic construction of the stability chart from the characteristic Eq. (4.21)
becomes very complex if the dimension of the systems increases [156]. As a consequence,
the D-curves in Fig. 7.7a for the non-trivial equilibrium of the Hodgkin-Huxley neu-
ronal network with heterogeneous delay couplings in Sec. 7.3 are calculated numerically.
A very efficient numerical method for the calculation of the stability chart with the
D-subdivision method for metal cutting vibrations is presented in the parallel turning
example in Sec. 7.2.2.

Another elegant way for the calculation of stability charts for autonomous DDEs, which
is also applicable for DDEs with multiple delays is called Cluster Treatment of the Char-
acteristic Roots [157, 158]. It makes use of the Rekasius substitution for the exponential
term in the characteristic equation, e−sτ0 = 1−sT0

1+sT0
, which holds for purely imaginary

characteristic roots s = iω. As a result, the transcendental characteristic equation of a
DDE for the calculation of the D-curves can be transformed to a polynomial character-
istic equation with a finite number of solutions. Nevertheless, the infinite dimensional
nature of the time delay system is preserved because an infinite number of delays τ0 is
associated to one critical parameter T0(τ0) associated with the D-curves. The advantage
of this method is that standard methods for ODEs can be used for the calculation of
the D-curves from the polynomial characteristic equation and a clear relationship be-
tween the infinitely many critical delays τ0 corresponding to one T0 is defined. However,
this method can be only used for the identification of the D-curves with s = iω, where
the characteristic roots cross the imaginary axis, but no information on the exponential
behavior of the solution for arbitrary parameters of the system is available.

5.3.2. Periodic systems

For time delay systems with periodic coefficients the Hill’s infinite determinant method
Eq. (5.14) can be used for the calculation of the D-curves. A semi-analytic way for the
construction of the D-curves is possible for some specific examples with harmonically
varying coefficients [59, 81]. This method is typically also used in solid state physics for
the calculation of energy bands in a sinusoidal potential [79, 80]. In general, a numerical
algorithm is necessary for finding the roots of the system of two nonlinear equations for
the real and the imaginary part of Eq. (5.14) in a high dimensional parameter space.
Specific examples, where the D-curves are calculated numerically from the Hill’s infinite
matrix, can be found in [41, 42, 82, 159, 160]. Some of the numerical methods are based
on the calculation of the eigenvalues of the Hill’s infinite matrix [159], the Nyquist sta-
bility criterion [82] or the application of a multi-dimensional bisection method [42]. In
particular, the multi-dimensional bisection method is a general method for the calcula-
tion of the roots of an arbitrary system of nonlinear equations in a multi-dimensional
parameter space [161]. In general, the above mentioned numerical methods based on the
Hill’s infinite determinant method must be carefully adapted for the specific problem.

For the numerical solution of the infinite dimensional characteristic Eq. (5.14) a trun-
cated version of the matrix C∞ with a finite number n of higher harmonics must be used.
The number of harmonics should be chosen in such a way, that the interval [−nΩ, nΩ]
covers all dominant internal frequencies of the systems. For example, in metal cutting
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applications these internal frequencies are the dominant eigenfrequencies of the machine-
tool structure. Due to the structure of the matrix C∞ defined in (5.15), the following
condition holds for n → ∞

detC∞(s) = detC∞(s+ iΩ). (5.17)

Moreover, due to the existence of complex conjugate characteristic exponents only posi-
tive imaginary parts of the exponents ω ≥ 0 must be taken into account. Both conditions
can be used to reduce the considered space for a numerical frequency sweep to the inter-
val ω ∈ Iω := [0,Ω/2). Thus, the most effective and accurate solution can be obtained
by choosing a large number of harmonics n and only a small interval Iω for the sweep for
the frequencies ω. However, for small excitation frequencies Ω the number of harmonics
n for the interval [−nΩ, nΩ] that covers all dominant internal frequencies becomes very
large. In this case a second strategy is suitable, where the number of higher harmonics
n is reduced but solutions of Eq. (5.14) are searched in larger intervals of ω around the
internal frequencies of the system. This is the common strategy that is proposed in [2]
for the calculation of the stability lobes in metal cutting.

5.3.3. Aperiodic systems

The Hill’s infinite determinant method can be extended to systems with quasiperiodic
coefficient matrices by balancing the Fourier coefficients of all emerging frequency peaks.
This method was used for the stability analysis of the Mathieu equation, where the
parametric excitation is composed of two periodic terms with irrational frequency ratio
[162]. A quite similar approach was used for the stability analysis of milling with contin-
uous spindle speed variation, where the nominal spindle rotation period and the speed
variation period can become irrational [22].

In contrast to quasiperiodic coefficient matrices, in the case of chaotic dynamics of the
nonlinear DDE Eq. (2.1) the Fourier transform is no longer discrete but rather continuous
[99]. Since a chaotic signal can be interpreted as a periodic signal with an infinite period,
an approximation of the Lyapunov exponents3 for chaotic signals is possible by assuming
periodic coefficient matrices with a very large period. In this case a discrete spectrum
appears and the known method for periodic systems presented in Sec. 5.2 can be used. In
fact, the same approximation is done during the calculation of the Lyapunov exponents
of chaotic systems with the standard method in the time domain [163], because the
chaotic solution is calculated only in a finite time interval. For large periods the number
of harmonics and therefore the size of the truncated matrix C∞ can become very large
for obtaining accurate results. In this case one strategy is the fragmentation of the
(infinitely) large period into smaller subintervals. For the evolution of the perturbations
in the smaller subintervals a solution operator based on the Hill-Floquet method can
be obtained (see Sec. 6.6). Then, the Lyapunov exponents can be calculated from the
sequential application of the solution operator with the known QR-algorithm [163]. In

3Lyapunov exponents specify the relaxation rates of perturbations of a chaotic attractor. For a periodic
solution they are equivalent to the real part of the Floquet exponents.
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the following frequency domain methods are only studied for time-invariant or periodic
systems, because in this scenarios frequency domain methods are suitable.

5.3.4. Floquet exponents from D-subdivision

In principle, the numerical methods for the calculation of the D-curves can be also used
to calculate the characteristic exponents sk = λk + iωk if the real part λk is chosen as
an additional parameter of the system. If all other parameters of the system are fixed
there are two free variables, the real λk and the imaginary part ωk of the characteristic
exponents, and two equations, the real and the imaginary part of Eq. (5.14). Thus, a
vanishing Hill’s infinite determinant yields the discrete set of characteristic exponents
of the DDE in the complex plane. However, for DDEs there are, in general, infinitely
many characteristic exponents and it is difficult to find them from the numerical solution
of Eq. (5.14). Moreover, the parameter range for the real part λ0 of the most unstable
eigenmode is not clear a priori. As a consequence, it is not clear if the most dominant
exponents, i.e. the exponents with the largest real part are found from the numerical
solution of the system of nonlinear equations Eq. (5.14). In Chapter 6, the Hill-Floquet
method is introduced which can be used for a reliable and accurate calculation of the
most dominant characteristic exponents of periodic time delay systems.

5.4. Summary

Different methods for the stability analysis of linear DDEs were presented in this chapter.
On the one hand, there are time domain methods. For systems with periodic coefficients
the time domain methods typically require the calculation of the solution operator over
one period of the system and the stability is obtained from the eigenvalues of the solu-
tion operator. On the other hand, there are frequency domain methods based on the
characteristic equation. The Hill’s infinite determinant method represents a generaliza-
tion of the frequency domain approach to periodic systems with an infinite dimensional
characteristic Eq. (5.14). Frequency domain methods are very efficient for the calcula-
tion of stability charts because the stability can be obtained directly from the solution
of an eigenvalue problem. However, at the moment no frequency domain method for the
calculation of the Floquet multipliers of periodic DDEs can be found in the literature. A
method, which fills this gap, is introduced in the next Chapter 6.
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The calculation of Floquet exponents from Hill’s infinite determinant Eq. (5.14) for sys-
tems with periodic coefficients is not suitable as discussed in Chapter 5. In fact, no
strategy for the calculation of Floquet exponents from Hill’s infinite determinant for
time delay systems can be found in the literature. Here, a new method based on Hill’s
infinite determinant method is presented for the solution of this problem. It is called
Hill-Floquet method because Hill’s infinite determinant method and the Floquet decom-
position of the solution is used to transform a finite dimensional time-periodic system to
an infinite dimensional time-invariant system. As a result, after a truncation to a finite
number of higher harmonics n, the standard methods for the analysis of autonomous
DDEs can be used for the calculation of the Floquet exponents.

6.1. The Hill-Floquet transformation

The substitution of the Floquet ansatz Eq. (5.9) into the eigenmode decomposition
Eq. (4.33) for linear DDEs with distributed delay yields

x(t) =

∞
∑

k=−∞

xk(t)ck =

∞
∑

k=−∞

pk(t)e
sktck. (6.1)

The Hill’s method, i.e. the Fourier expansion of the periodic part pk(t) of the eigenmodes
xk(t), can be written as a matrix-vector product

pk(t) = F i(t)q∞,k, (6.2)

where the N ×∞-dimensional matrix F i(t) is related to the inverse Fourier transform

F i(t) =
(

. . . , Ie−iΩt, I, IeiΩt, . . .
)

. (6.3)

The infinity dimensional vector q∞,k contains the infinitely many N -dimensional Fourier
coefficients p̂k,l with l = −∞, . . . ,∞ from Eq. (5.13) for the periodic part pk(t) of the
kth eigenmode of the periodic DDE

q∞,k =
(

. . . , p̂k,−1, p̂k,0, p̂k,1, . . .
)T

. (6.4)

Putting Eq. (6.2) in Eq. (6.1) leads to

x(t) = F i(t)x∞(t), (6.5)
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where the infinite dimensional configuration x∞(t) can be specified by

x∞(t) =
∑

k

x∞,k(t)ck =
∑

k

q∞,ke
sktck ∈ R

∞. (6.6)

Whereas the Floquet decomposition Eq. (6.1) for a periodic DDE has the same dimen-
sion N compared to the eigenmode decomposition Eq. (4.33) of an autonomous DDE, for
the periodic DDE the corresponding N -dimensional coefficient vector is time-dependent
pk(t), and therefore, the Floquet decomposition Eq. (6.1) is qualitatively different to the
eigenmode decomposition Eq. (4.33). In contrast, Eq. (6.6) with the infinitely many time-
invariant Fourier coefficients q∞,k of the periodic part pk(t) has the same structure than
the eigenmode expansion Eq. (4.33) of an autonomous DDE with infinite dimension. This
means that the vector x∞(t) is the configuration of an infinite dimensional autonomous
DDE, which is equivalent to the original N -dimensional periodic DDE Eq. (3.2). The
infinite dimensional representation x∞(t) of the configuration x(t) is called Hill-Floquet
representation and Eq. (6.5) specifies the transformation between the Hill-Floquet rep-
resentation and the original representation of the configuration. In the following, the
infinite dimensional autonomous DDE corresponding to the Hill-Floquet representation
x∞(t) is derived.

If Eq. (6.5) is substituted in the linearized DDE Eq. (3.2), the time delay system is
given in terms of the Hill-Floquet representation x∞(t) of the configuration as

Ḟ
i
(t)x∞(t)+F i(t)ẋ∞(t) = A(t)F i(t)x∞(t)+

τmax
∫

0

dτB(t)K(τ)F i(t−τ)x∞(t−τ). (6.7)

From Fourier analysis it is known that the time derivative and the time shift of the matrix
F i(t) can be expressed as

Ḟ
i
(t) = F i(t)DF , F i(t− τ) = F i(t)SF (τ), (6.8)

where the matrices DF and SF (τ) are block diagonal matrices that contain the ma-
trix blocks IilΩ and Ie−ilΩτ with l = −∞, . . . ,∞ on their main diagonal, respectively.
Moreover, from the convolution theorem the following relationship can be derived

A(t)F i(t) = F i(t)AF , B(t)K(τ)F i(t) = F i(t)BF (τ), (6.9)

where the matrices AF and BF (τ) are called the Hill-Floquet representation of the
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coefficient matrices A(t) and B(t)K(τ), and are specified by

AF =
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BF (τ) =
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,

(6.10)

where Âk and B̂k are the Fourier coefficients of the periodic matrices A(t) and B(t)
from Eq. (5.13), respectively. If Eq. (6.8) and Eq. (6.9) are substituted in Eq. (6.7) the
linearized DDE Eq. (3.2) can be written as

F i(t)



ẋ∞(t)− (AF −DF )x∞(t)−

τmax
∫

0

dτBF (τ)SF (τ)x∞(t− τ)



 = 0. (6.11)

In Eq. (6.11) the periodic part of the configuration and the periodic part of the coefficients
remains only in the term F i(t) related to the inverse Fourier transform. By balancing
the Fourier coefficients in Eq. (6.11), the infinite dimensional autonomous DDE corre-
sponding to the eigenmode expansion Eq. (6.6) can be obtained as

ẋ∞(t) = A∞x∞(t) +

τmax
∫

0

dτB∞(τ)x∞(t− τ), (6.12)

where the time-invariant coefficient matrices are defined by A∞ = AF −DF equivalent
to Eq. (5.16) and B∞(τ) = BF (τ)SF (τ). The infinite dimensional autonomous DDE
Eq. (6.12) contains the complete information of the original DDE Eq. (3.2) with periodic
coefficients. In the rest of this thesis, Eq. (6.12) will be called Hill-Floquet representation
of the original DDE Eq. (3.2) or simply Hill-Floquet representation. The configuration
x(t) of the original system x(t) can be obtained from the solution of the Hill-Floquet
representation x∞(t) by applying the inverse Hill-Floquet transformation Eq. (6.5).

The difference between the original representation Eq. (3.2) with periodic coefficients
and the higher dimensional Hill-Floquet representation Eq. (6.12) with constant coeffi-
cients is, that the Hill-Floquet representation describes the periodic part pk(t) of the
eigenmodes in terms of its time-invariant Fourier coefficients qk according to Eq. (6.6).
As a consequence, the time evolution of the Hill-Floquet representation x∞(t) with the
Fourier expanded periodic part of the eigenmodes can be described by the autonomous
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DDE Eq. (6.12). In other words, in Eq. (6.12) the periodic part of the solution of the
original linearized system Eq. (3.2) is expanded in a Fourier series, but the exponential
behavior of the eigenmodes eskt is still described in the time domain by an autonomous
DDE. In other words, the Hill-Floquet transformation is equivalent to a separate Fourier
transform of the periodic part pk(t) of the eigenmodes xk(t), whereas the exponential
behavior of the solution remains unchanged. Please note that this is not equivalent to
the Fourier transform to the original linearized DDE Eq. (3.2) because in this case the
exponential part of the solution is not separated from the dynamics. In fact, in general
the Hill-Floquet transformation can be obtained as described in this section. At first, the
original configuration x(t) is expressed in terms of its Hill-Floquet transformation x∞(t)
via Eq. (6.5). Secondly, the properties of the Fourier transform, given in Eq. (6.8) and
Eq. (6.9), are used to obtain a relationship equal to Eq. (6.11). Then, the Hill-Floquet
transformation can be obtained by balancing the Fourier coefficients in Eq. (6.11), which
results in the infinite dimensional Hill-Floquet representation Eq. (6.12).

If one eigenmode x∞,k(t) = q∞,ke
skt is substituted into the Hill-Floquet representation

Eq. (6.12) the following eigenvalue equation is obtained

skq∞,k =
(

A∞ + B̄∞(sk)
)

q∞,k, (6.13)

where B̄∞(sk) is the Laplace transform of the matrix B∞(τ). In particular, Eq. (6.13)
is the eigenvalue problem corresponding to the characteristic Eq. (5.14) with the infinite
Hill matrix C∞ defined in Eq. (5.15). Thus, the Hill-Floquet representation Eq. (6.12)
is an infinite dimensional DDE with distributed delay and time-invariant coefficients
matrices with a characteristic equation similar to Hill’s infinite determinant Eq. (5.14).

If no delay appears, i.e. B(t) = 0, the eigenvalue equation for the non-autonomous
ODE simplifies to

skq∞,k = A∞q∞,k, (6.14)

with the characteristic equation

det (Isk −A∞) = 0. (6.15)

Note that the characteristic equation Eq. (6.15) of the delay-free Hill-Floquet representa-
tion is also known as central equation in solid state physics [79]. In this application, t is a
location on a lattice, the principal period T and frequency Ω are the lattice constant and
the reciprocal lattice constant, respectively, the eigenvalues sk are related to the energy
eigenvalues, the eigenvector qk contains the Fourier coefficients of the wavefunction, and
the matrix A∞ contains the Fourier coefficients of a periodic potential.

Eq. (6.12) with the nonlinear eigenvalue problem Eq. (6.13) is a bi-infinite dimensional
system. On the one hand, the system is infinite dimensional due to the delay term and on
the other hand the coefficient matrices are infinite dimensional. Even, the Hill-Floquet
representation for the delay-free case with the linear eigenvalue problem Eq. (6.14) is
infinite dimensional due to the infinite dimension of the coefficient matrix A∞. In prac-
tice, a finite dimensional approximation of the coefficient matrices in the Hill-Floquet
representation Eq. (6.12) is considered. If n higher harmonics are used for the Fourier
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expansion qk of the periodic part pk(t) of the eigenmodes, the coefficient matrices A∞

and B∞(τ) in the truncated system are N(2n + 1)×N(2n+ 1) dimensional. A similar
truncation is already described in Sec. 5.3 for the calculation of stability charts from
the Hill’s infinite determinant. A rough estimate for the number of eigenmodes, which
are necessary for an accurate description of the original dynamics can be obtained by
following the argumentation in Sec. 5.3, that is either the interval [−nΩ, nΩ] covers all
dominant eigenfrequencies of the system or only the Fourier coefficients around the domi-
nant eigenfrequencies of the system are considered. Moreover it is shown in the following
section that the redundant nature of the Hill-Floquet representation can be used to check
the accuracy of a finite dimensional approximation of Eq. (6.12).

6.2. Non-uniqueness of the Hill-Floquet transformation

The Hill-Floquet transformation is not bijective. This can be seen already in the dis-
crepancy of the dimension of the original representation Eq. (3.2) and the Hill-Floquet
representation Eq. (6.12). In fact, the inverse Hill-Floquet transformation Eq. (6.5) that
transforms the configuration x∞(t) from the Hill-Floquet representation to the configu-
ration x(t) in the original representation is surjective. In other words, there are various
possibilities for the vector x∞(t) specifying one and the same configuration x(t) via the
transformation given by Eq. (6.5). This can be understood by considering one eigenmode
xk(t) of the original system. Due to the non-uniqueness of the Floquet exponents, there
are infinitely many different possibilities for the Floquet decomposition of this eigenmode

xk(t) = pk(t)e
skt = pk,l(t)e

sk,lt, (6.16)

where the corresponding Floquet exponents and eigenvectors are defined as sk,l = sk+ilΩ
and pk,l(t) = pk(t)e

−ilΩt with l ∈ Z, respectively. In particular, an additional coefficient
in the periodic part can be compensated by a shift in the imaginary part of the Floquet
exponents. Note that, indeed, the Floquet exponents are not unique but the Floquet
multipliers esk,lT corresponding to the Floquet exponents with fixed k but varying l are
unique

esk,lT = e(sk+ilΩ)T = eskT . (6.17)

In Eq. (6.17) sk = sk,0 are called the N reference Floquet exponents with an imaginary
part ωk in the reference interval ωk ∈ [−Ω/2,Ω/2). All redundant exponents correspond-
ing to the kth Floquet multiplier have the same real part λk but their imaginary part is
shifted by a multiple of the basic frequency Ω. In solid state physics, where the period
T is equal to the lattice constant of a one dimensional lattice, and Ω is the reciprocal
lattice constant, the reference interval [−Ω/2,Ω/2) is the first Brillouin zone [79, 80].

In the original system the direction of the eigenvectors pk,l(t) does not depend on l.
In contrast, this property does no longer hold for the eigenvectors q∞,k,l with fixed k but
varying l in the Hill-Floquet representation corresponding to different representations
pk,l(t) of the periodic part pk(t). In fact, if q∞,k = col

(

. . . , p̂k,−n, . . . , p̂k,n, . . .
)

is an
eigenvector in the Hill-Floquet representation associated with a reference Floquet expo-
nent sk, then also the vector q∞,k,l = col

(

. . . , p̂k,−n+l, . . . , p̂k,n+l, . . .
)

, where the entries

67



6. Hill-Floquet method

−0.2 −0.1 0

−20

−10

0

10

20

Real part λ

Im
ag

in
ar

y 
pa

rt
 ω

/Ω

(a)

−0.2 −0.1 0
−1.5

−0.5

0.5

1.5

λ
k,l

ω
k,l

/Ω

(b)

5 10 15 20

−0.2

−0.1

0

(c)

index k

λ
k

l=−1

l=0

l=1

Figure 6.1.: a) Floquet exponents λk,l for a limit cycle of the DDE Eq. (6.19) calculated
from a truncated version of the Hill-Floquet system Eq. (6.12). b) Reference
Floquet exponents in the first Brillouin zone (l = 0) and redundant exponents
in the neighboring Brillouin zones (l = ±1). c) Real part λk of the reference
Floquet exponents (Lyapunov spectrum).

are shifted by l positions, is an eigenvector of the system associated with the Floquet
exponent sk,l. This relationship can be derived from the characteristic Eq. (6.13) and
the specific structure of the matrices A∞ and B∞(τ) and follows from the fact that the
vector q∞,k,l contains the Fourier coefficients of the periodic function pk,l(t). A similar

relation holds for the left eigenvectors dT
∞,k,l defined by the eigenvalue equation

sk,ld
T
∞,k,l = dT

∞,k,l

(

A∞ + B̄∞(sk)
)

, (6.18)

which are also shifted versions of some reference left eigenvectors dT
∞,k = dT

∞,k,0. Since,
the eigenvectors q∞,k,l corresponding to one reference Floquet exponent with fixed k but
varying l does not point to the same direction, the redundant Floquet exponents sk,l and
eigenvectors q∞,k,l appear as separate eigenvalues and eigenvectors in the Hill-Floquet
representation. This means, that the eigenvalue problem Eq. (6.13) of the Hill-Floquet
representation reveals infinitely many reference Floquet exponents sk in the first Brillouin
zone because of the transcendental structure of the equation, and in addition, infinitely
many redundant Floquet exponents sk,l, −∞ < l < ∞ associated with one and the same
reference Floquet exponent sk.

If a finite number n of higher harmonics are taken into account, an N(2n + 1) dimen-
sional approximation of the Hill-Floquet system can be obtained, which means that, in
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practice, not infinitely many redundant exponents can be calculated. In fact, most of the
numerical methods for the calculation of the Floquet exponents can be interpreted as
a polynomial approximation of the Laplace transform of the coefficient matrix B̄∞(sk),
which results only in a finite number of reference Floquet exponents sk. For the illus-
tration of the two finite dimensional approximations of the bi-infinite dimensional sys-
tem Eq. (6.12), the characteristic exponents for a periodic solution of a nonlinear DDE
Eq. (2.1) were calculated numerically from the truncated Hill-Floquet representation
Eq. (6.12) with n harmonics by using the Chebyshev collocation method, which is pre-
sented in Sec. 6.3.In particular, the Mackey-Glass equation was used for the calculation
[1]

u̇(t) =
αu(t− τ0)

1 + u(t− τ0)γ
− βu(t). (6.19)

The parameters α = 0.2, β = 0.1 and γ = 10 were taken from [164]. For the discrete
delay τ0 = 12 the attractor of Eq. (6.19) is a limit cycle, and the corresponding Floquet
exponents for n = 50 higher harmonics are shown in Fig. 6.1. In Fig. 6.1a it can be
seen that there are bands of Floquet exponents with the same real part generated by
the redundant exponents. In particular, the redundant Floquet exponents with large
positive or large negative imaginary parts (|l| > 15) are disturbed by finite size effects of
the matrix truncation. Nevertheless, as can be seen in Fig. 6.1b, the redundant exponents
around the first Brillouin zone, i.e. around the interval [−Ω/2,Ω/2), are nearly perfect
copies of the reference Floquet exponents sk shifted parallel to the imaginary axis by
multiples of the frequency Ω. The real part of the reference exponents, i.e. the Lyapunov
spectrum for the limit cycle, is shown in Fig. 6.1c.

The redundant Floquet exponents can be used to check whether the number n of higher
harmonics is large enough for an accurate approximation of the periodic part pk(t) of
the eigenmodes. A band of Floquet exponents sk,l similar to the bands in Fig. 6.1a with
redundant exponents with the same real part means that the corresponding eigenvectors
qk,l, which are shifted versions of each other, are not disturbed by the matrix truncation.
In this case, the entries of the vectors qk,l at the boundaries, i.e. the Fourier coefficients
p̂k,−n and p̂k,n for the nth harmonics, are approximately zero. Thus, if there are more
than one Floquet exponents with the same real part λk around the first Brillouin zone,
the number n of higher harmonics is large enough for an accurate approximation of the
corresponding reference Floquet exponent sk.

As a consequence of the redundant nature of the Hill-Floquet representation, there are
also (2n+1) linear independent possibilities for the presentation of a specific configuration
x(t) of the original system

x∞(t) = F l(t)x(t), −n ≤ l ≤ n. (6.20)

Eq. (6.20) can be used, for example, to specify the initial function x∞(t) of the Hill-
Floquet representation Eq. (6.12), which is equivalent to a specific initial function x(t)
of the original non-autonomous linear DDE Eq. (3.2) with t ≤ 0. For example, the
matrices F l(t) can be given by

F l(t) =
(

. . . ,0, Ie−ilΩt,0, . . .
)T

, (6.21)
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which means that the lth block of the matrix F l(t) is the inverse of the lth block of
the matrix F i(t) in Eq. (6.3), and all the other blocks are zero. Alternatively, any
scaled linear combination of the matrices F l(t) can be used for a transformation of the
configuration x(t) from the original representation to the Hill-Floquet representation
x∞(t). For example, an alternative transformation can be given by

x∞(t) =
1

2n+ 1

n
∑

l=−n

F l(t)x(t). (6.22)

Note that the inverse Hill-Floquet transformation Eq. (6.5) of Eq. (6.20) does always
yield the original vector x(t), whereas the opposite is not true, i.e.

F i(t)F l(t) = I, but F l(t)F
i(t) 6= I. (6.23)

Eq. (6.23) is a direct consequence of the redundant nature of the Hill-Floquet represen-
tation. In other words, different matrices F l(t) can be used to obtain a Hill-Floquet
representation x∞(t) of the configuration x(t). After applying the inverse Hill-Floquet
transformation F i(t) always the same configuration x(t) in the original representation
will be obtained. On the other hand, if the inverse Hill-Floquet transformation F i(t)
is applied at first on the configuration x∞(t) in the Hill-Floquet representation, some
information on the specific structure of the Fourier coefficients is lost and the information
can, in general, not be recovered by a multiplication with a matrix F l(t) from Eq. (6.20).
Nevertheless, since the Hill-Floquet representation contains the redundant eigenvalues
and eigenvectors, the specific structure of the Fourier coefficients in the configuration
x∞(t) is not important for the dynamics in the original system. As a consequence, an
arbitrary matrix F l(t) can be used, for example, for specifying the initial condition in
the Hill-Floquet representation.

6.3. Chebyshev expansion of the Hill-Floquet system

In general, an arbitrary method can be used for the analysis of the autonomous Hill-
Floquet representation Eq. (6.12). There are many established methods for the calcu-
lation of the characteristic exponents sk and the corresponding eigenvectors qk for au-
tonomous DDEs. Some of them are listed in Sec. 5.1. In this thesis, a very efficient collo-
cation method is presented for the analysis of the Hill-Floquet representation Eq. (6.12),
which can be used for an arbitrary DDE with time-invariant coefficients [54, 165]. In
this section, the method is also used to demonstrate some properties of the Hill-Floquet
representation and to get more insight into the Hill-Floquet method.

Collocation methods for the analysis of time delay systems can be interpreted as an
approximation of a DDE by a higher dimensional ODE. In particular, the vector z∞(t)
is used to approximate the state of the Hill-Floquet representation Eq. (6.12) by the
storing the configuration x∞(t − τ) at the discrete nodes τj, j = 1, . . . ,M with τ1 = 0,
τj+1 > τj and τM = τmax as

z∞(t) = (x∞(t− τ1), . . . ,x∞(t− τM ))T (6.24)
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6.3. Chebyshev expansion of the Hill-Floquet system

Specifically, the N(2n + 1)M dimensional vector z∞(t) contains the 2n + 1 Fourier
coefficients of dimension N at M different collocation points. With Eq. (6.24) the past
configurations x∞(t− τ) of the autonomous DDE Eq. (6.12) can be expressed in terms
of the present configuration z∞(t) of the higher dimensional system. With a discrete
M − 1 × M -dimensional differentiation matrix DM that depends on the choice of the
collocation points and the specific differentiation scheme the autonomous DDE Eq. (6.12)
can be approximated by the autonomous ODE

ż∞(t) = H∞z∞(t) =





A∞

τ2
∫

τ1

B∞(τ)dτ · · ·
τM
∫

τM−1

B∞(τ)dτ

DM ⊗ IN(2n+1)



 z∞(t). (6.25)

The matrix blocks in the first row of the coefficient matrix in Eq. 6.25 are N(2n + 1) ×
N(2n + 1) dimensional, whereas the Kronecker product DM ⊗ IN(2n+1) in the second
row results in a (M − 1)N(2n+ 1)×MN(2n+ 1) dimensional matrix block. A suitable
choice for the collocation points are the Chebyshev nodes with the Chebyshev spectral
differentiation matrix DM [166]. In this case the dominant characteristic exponent sk of
the autonomous DDE Eq. (6.12) can be approximated very accurately by the eigenvalues
of the matrix H∞ [54]. Note that Eq. (6.25) can be interpreted as a discretization
of the PDE representation Eq. (2.19) of the DDE. The first block row of dimension
N(2n+1)×N(2n+1)M corresponds to the boundary condition equivalent to Eq. (6.12)
and the last block row of dimension N(2n + 1)(M − 1) × N(2n + 1)M corresponds to
the PDE Eq. (2.19).

In Fig. 6.2 the convergence of the Hill-Floquet method for the Floquet exponents of
the limit cycle of the Mackey-Glass Eq. (6.19) is shown. The parameters are equal to
Fig. 6.1, that is, the discrete delay τ0 = 12 is used and the other parameters are taken
from [164]. The convergence of the real part λ0 of the most dominant Floquet exponent
for increasing n is shown in Fig. 6.2a. It can be seen that the real part converges
exponentially with an increasing number of higher harmonics n, whereas an increasing
number of the Chebyshev nodes from M = 5 (red crosses) to M = 10 (black solid) does
not increase the accuracy. In fact, the results for M = 5 are better than for M = 10. In
Fig. 6.2b the convergence of the real part of the other Floquet exponents is shown. A
reference spectrum was calculated for n = 200 and M = 20 (black solid). For n = 20
and M = 10 (blue solid) roughly ten exponents are converged to the reference spectrum.
Letting n constant and increasing the number of Chebyshev nodes to M = 20 (blue
circles) does not change the number of converged exponents. However, for an increasing
number of higher harmonics to n = 40 with M = 10 (red solid) nearly twenty exponents
are converged to the reference spectrum. Again a further duplication of the number of
Chebyshev nodes to M = 20 (red circles) does not change the spectrum significantly.
This means that, in general, a further increase of the quality of the approximation of the
eigenmodes xk(t) and the Floquet exponents sk is only possible by increasing the number
of higher harmonics n, which increases the accuracy of the approximation of the periodic
part pk(t) of the eigenmodes. This is analyzed in more detail below in Fig. 6.3, where
one can see that, indeed, the approximation of the Floquet exponents and eigenmodes
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Figure 6.2.: a) Spectral convergence of the maximum Lyapunov exponent λ0 of a periodic
DDE for increasing number of higher harmonics n. The convergence does
not significantly depend on the number of Chebyshev nodes M . b) The con-
vergence of the other exponents λk with k > 0 can be increased by increasing
the number of higher harmonics n, whereas increasing M has no significant
influence.

of the DDE is limited by a the accuracy of the Fourier expansion for the periodic part
of the eigenmodes. As a result, a small number of Chebyshev nodes (5 ≤ M ≤ 10) is
sufficient for the accurate approximation of the Floquet exponents sk.

Another important point in Fig. 6.2b is the fact, that the maximum number of con-
verged reference exponents for the Mackey-Glass equation, which is a scalar DDE (N =
1), is not limited to the number M of Chebyshev nodes. For example, for the red solid
curve with n = 40 and M = 10 more than ten exponents are converged to the refer-
ence spectrum. From the theory in Sec. 6.2 one might deduce that the number M of
Chebyshev nodes is a limit for the maximum number of the converged reference Floquet
exponents sk of the infinite dimensional DDE, and, in addition, 2n + 1 redundant expo-
nents with the same real part λk with k = 1, . . .M appear. However, in practice, in finite
dimensional approximations of infinite dimensional systems, the eigenfunctions with the
lowest frequencies are approximated best by the finite dimensional approximation. In-
deed, in the Hill-Floquet representation the frequency components of the periodic part
pk,l(t) of the redundant eigenmodes corresponding to one reference Floquet exponent is
shifted to higher values for increasing l as shown in Sec. 6.2. As a consequence, there are
some reference eigenvectors q∞,k and corresponding eigenvalues sk with k > M , which
are well-approximated by the Fourier expansion, whereas some redundant eigenvectors
q∞,k,l and exponents sk,l with k < M but l ≫ 0 cannot be well-approximated by the trun-
cated Fourier series. Thus, with the Hill-Floquet method the finite number of converged
exponents is not limited by the number of Chebyshev nodes M .

The eigenvectors q∞,k in Eq. (6.13) determine the periodic part of the eigenmode
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pk(t) via the relationship Eq. (6.2). The eigenmodes x∞,k(t) are typically complex. In
nonlinear dynamics, the real parts Re(x∞,k(t)) of the eigenmodes are equivalent to the
covariant Lyapunov vectors of the dynamical system [167, 168]. The exponential part of
the eigenmodes is determined by the Floquet exponents. The periodic part pk(t) can be
calculated from the eigenvectors hk of the matrix H∞

h∞,k = col
(

q∞,k, q∞,ke
−skτ2 , . . . , q∞,ke

−skτM
)

. (6.26)

The structure of the eigenvectors h∞,k in Eq. (6.26) follows immediately from Eq. (6.6)
and the definition of z∞(t) in Eq. (6.24). The periodic part of the eigenmodes pk(t) in
the original representation can be calculated from the eigenvector h∞,k as

pk,j(t) = F i(t)h∞,k,je
skτj = pk(t), j = 1, . . . ,M, (6.27)

where h∞,k,j = q∞,ke
−skτj is related to the Fourier coefficients, which are stored at the

jth Chebyshev node. Thus, in the matrix H∞ not only a redundancy due to the non-
uniqueness of the Floquet exponent sk,l appears, but also an additional redundancy due
to the Chebyshev expansion appears. In particular, the eigenvector h∞,k contains the
kth eigenvector q∞,k of the Hill-Floquet representation at M different Chebyshev nodes
t − τj, j = 1, . . . ,M . The redundant information can be used to verify the accuracy of
the Chebyshev collocation method for the Hill-Floquet representation Eq. (6.12).

In Fig. 6.3 the periodic part pk,j(t) of the eigenmodes for the Mackey-Glass equation
with the same parameters as in Fig. 6.2 is shown for two different numbers of higher
harmonics, n = 20 (blue) and n = 40 (red). It is assumed that for n = 40 the considered
reference eigenvectors q∞,9 and q∞,10 are very close to the exact eigenvectors because
for n = 40 higher harmonics the Floquet exponents s9 and s10 are converged to the
reference spectrum in Fig. 6.2b. The deviations in the periodic part of the eigenmodes in
Fig. 6.3a for k = 9 are moderate but increase significantly for k = 10 in Fig. 6.3b. As a
consequence, the eigenvalues sk with k ≥ 10 in Fig. 6.2b are not well-approximated by the
Hill-Floquet method with n = 20 higher harmonics. In contrast, the deviations between
the periodic part pk,j(t), calculated at two different Chebyshev nodes j = 1 and j = M
for k = 9 and k = 10, are by orders of magnitude smaller as can be seen in Fig. 6.3c
and Fig. 6.3d, respectively. This means that the exponential part of the eigenmodes is
approximated very well for M = 10, whereas the approximation of the periodic part of
the eigenmodes by a truncated Fourier series with n harmonics limits the accuracy of the
finite dimensional approximation of the bi-infinite dimensional system Eq. (6.12).

6.4. The alternative method

An alternative possibility for obtaining an autonomous ODE from a periodic DDE is,
at first, the approximation of the original N dimensional periodic DDE Eq. (3.2) by an
NM dimensional periodic ODE via the Chebyshev expansion

˙̃z(t) = H̃(t)z̃(t) =





A(t) B(t)
τ2
∫

τ1

K(τ)dτ · · · B(t)
τM
∫

τM−1

K(τ)dτ

DM ⊗ IN



 z̃(t). (6.28)
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Figure 6.3.: The difference between the periodic part pk(t) for n = 20 (blue) and n = 40
(red) higher harmonics increases significantly from a) k = 9 to b) k = 10,
which leads to the deviations in the spectrum in Fig. 6.2b. In contrast, the
tiny difference between the periodic part pk,j(t) at two different Chebyshev
nodes j = 1 and j = M for the same eigenvectors a) k = 9 and d) k = 10
shows that the exponential part of the eigenmodes is accurately approxi-
mated for M = 10 Chebyshev nodes.

Now, in the first row of the coefficient matrix in Eq. 6.28 the matrix blocks are N × N
dimensional, whereas the Kronecker product DM ⊗ IN in the second row results in a
(M − 1)N × MN dimensional matrix block. In Eq. (6.28) the state xt of the original
representation in one delay interval is approximated by the configurations of the system
at the M Chebyshev nodes

z̃(t) = (x(t− τ1), . . . ,xM (t− τM ))T . (6.29)

After that the Hill-Floquet transformation can be applied to the ODE Eq. (6.28) with
the periodic coefficient matrix H̃(t) = H̃(t + T ), which results in the NM(2n+ 1)
dimensional system

˙̃z∞(t) = H̃∞z̃∞(t) =



















. . .
...

...
... . .

.

· · · Ĥ0 + IiΩ Ĥ−1 Ĥ−2 · · ·

· · · Ĥ1 Ĥ0 Ĥ−1 · · ·

· · · Ĥ2 Ĥ1 Ĥ0 − IiΩ · · ·

. .
. ...

...
...

. . .



















z̃∞(t), (6.30)
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Figure 6.4.: a) Spectral convergence of the maximum Lyapunov exponent λ0 of a peri-
odic DDE for varying M . For Eq. (6.25) (black), i.e. the Hill-Floquet trans-
formation is applied at first, the convergence is faster than for Eq. (6.30)
(red), where the Chebyshev expansion is applied at first. b) Similarly, the
exponents λk with k > 0 converges better for the Hill-Floquet transfor-
mation (black solid and blue circles) than for the Chebyshev method (red
crosses, green stars, magenta dots), where only roughly M/2 of the exponents
converge.

where Ĥ l denotes the lth Fourier coefficient of the matrix H̃(t). The relationship between
the configurations of the time-variant system Eq. (6.28) and the time-invariant system
Eq. (6.30) can be given by z̃(t) = F i(t)z̃∞(t). According to Eq. (6.8) and Eq. (6.9) the
relationship between the transition matrices of the two systems is given by

F i(t)H̃∞ = H̃(t)F i(t)− Ḟ
i
(t). (6.31)

In Fig. 6.4 the convergence of the Floquet exponents for the Mackey-Glass exam-
ple with the same parameters as in Sec. 6.3 is presented for a fixed number of higher
harmonics n = 60 and a varying number of Chebyshev nodes M for the two differ-
ent methods. The Chebyshev expansion of the autonomous Hill-Floquet representation
Eq. (6.12), which is presented in Sec. 6.3, is referred to as Hill-Floquet method, whereas
the alternative method based on the Chebyshev expansion of the original DDE Eq. (3.2)
with periodic coefficients and the Hill-Floquet transformation of the resulting periodic
ODE Eq. (6.28) is referred to as Chebyshev method. As can be seen from Fig. 6.4a, for
increasing M the real part λ0 of the dominant eigenvalue converges exponentially, which
is known as spectral convergence [54, 135]. Specifically, the dominant eigenvalue of the
Hill-Floquet method (black) converges faster than the eigenvalue from the Chebyshev
method (red). Moreover, by comparison of the black curve in Fig. 6.4a with Fig. 6.2a
it can be concluded that the exponential rate of convergence with respect to M is much
higher than the rate of convergence with respect to n, which is consistent with the conver-
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Figure 6.5.: The periodic part pk(t) is calculated from the eigenvectors of the matrix

H̃∞ at two different Chebyshev nodes j = 1 (blue) and j = M (red) with
M = 10. The difference increases significantly from a) k = 3 to b) k = 4,
which is the reason for the deviations in the spectrum in Fig. 6.4b.

gence of the spectra in Fig. 6.2b and the convergence of the eigenvectors in Fig. 6.3. In
Fig. 6.4b one can see that the other exponents λk with k > 0 converge much better for the
Hill-Floquet method than for the Chebyshev method. In particular, for the Hill-Floquet
method with M = 5 (blue, circles) roughly 30 exponents are converged to the exponents
of the reference spectrum with M = 30 (black solid). In contrast, for the Chebyshev
method with M = 5 (red crosses), M = 10 (green stars) and M = 20 (magenta dots)
only 2, 4 and 10 exponents are converged to the reference spectrum, respectively. This
means that for the Chebyshev method Eq. (6.30) the number of Chebyshev nodes M
is also a relevant limiting parameter for the approximation. The reason for that is the
qualitative difference between the different chronological order for the expansions. In
fact, in the Chebyshev expansion Eq. (6.25) of the Hill-Floquet representation only the
exponential part eskt of the eigenmodes must be approximated via the Chebyshev collo-
cation method, where a small number of Chebyshev nodes M is sufficient for an accurate
approximation. On the other hand, in the Chebyshev method Eq. (6.30) the complete
eigenmodes xk(t) = pk(t)e

skt in one delay interval including the periodic part pk(t) are
approximated via the Chebyshev collocation method. In this case, a larger number of
Chebyshev nodes is necessary for a comparable accuracy of the approximation, because
in addition to the exponential behavior also the periodic part of the eigenmodes must be
approximated via the Chebyshev expansion.

This can be also seen in the redundant information on the periodic part pk(t) of the
eigenmodes, which is contained in the eigenvectors of the matrix H̃∞ in Eq. (6.30).
Specifically, the periodic part pk,j(t) of the eigenmodes of the original system, which are

defined similar to Eq. (6.27) but are now calculated for the matrix H̃∞ with the fixed
number of Chebyshev nodes M = 10, is presented for k = 3 and k = 4 at different
Chebyshev nodes j = 1 and j = M = 10. In Fig. 6.5a for k = 3 the information on the
periodic function at the most distant Chebyshev nodes j = 1 (blue) and j = 10 (red) is
nearly equivalent, whereas in Fig. 6.5b for k = 4 there is a significant difference between
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the periodic part p4,1(t) (blue) and p4,M (t) (red) at the first and the last Chebyshev
node. This indicates that an accurate approximation with the Chebyshev expansion
with M = 10 nodes is not possible for eigenmodes with k ≥ 4. In fact, the deviations are
by orders of magnitude larger than the deviations in Fig. 6.3c and Fig. 6.3d calculated
from the eigenvectors of the matrix H∞ from Eq. (6.25) with M = 10, where the
collocation method is used for the autonomous DDE Eq. (6.12). The deviations are also
qualitatively consistent with the results on the corresponding Floquet spectrum, i.e. the
green stars in Fig. 6.4b, where for M = 10 the approximation of the fourth exponent
k = 3 is acceptable, whereas the exponent for k = 4 deviates already significantly from
the reference spectrum. Thus, it is advisable to apply the Hill-Floquet transformation at
first and use the autonomous DDE Eq. (6.12) for the stability analysis of periodic DDEs.

6.5. Discussion of the two separate expansions

In this thesis two separate expansions for the reduction of a periodic DDE to an au-
tonomous ODE are proposed. The Hill-Floquet method in Sec. 6.1 transforms the DDE
with periodic coefficients Eq. (3.2) to the autonomous DDE with constant coefficients
Eq. (6.12), whereby the dimension of the system is increased by a factor (2n+ 1). In
a second step, a collocation method is used in Sec. 6.3 for the approximation of the au-
tonomous DDE Eq. (6.12) by an autonomous ODE Eq. (6.25). The collocation method
further increases the dimension of the system by a factor M . At first, it should be made
clear why a second expansion of the Hill-Floquet representation Eq. (6.12) is necessary.
In fact, the configuration x∞(t) of the Hill-Floquet representation Eq. (6.12) at time t
contains some information on the solution not only at time t but also at the delayed
times t − τ . In particular, the complete information on the periodic part pk(t) of the
eigenmodes for 0 ≤ t < ∞ is stored in the vectors q∞,k(t). However, this information is
not sufficient to specify the past solution x∞(t− τ) of the DDE because no information
on the exponential behavior eskt of the eigenmodes is available.

On the other hand, the question arises why not only one expansion is used for the
reduction of the periodic DDE Eq. (3.2) to an autonomous ODE? In fact, such meth-
ods exists and are commonly used for the stability analysis of linear periodic DDEs (see
Sec. 5.2.2). For example, the Chebyshev collocation method can be used for a finite
dimensional approximation of the solution x(t) of the original non-autonomous system
Eq. (3.2) in one delay interval similar to Eq. (6.29). Then, in contrast to the additional
Hill-Floquet transformation of the non-autonomous ODE Eq. (6.28), which is presented
in Sec. 6.4, the Floquet exponents can be also calculated from the eigenvalues of the
monodromy matrix. The monodromy matrix is the transition matrix for the evolution
of the solution of the non-autonomous ODE Eq. (6.28) over one period. In this case, the
dimension of the system increases only by a factor M but an additional numerical effort
is necessary for the calculation of the monodromy matrix for the periodic ODE Eq. (6.28),
which can become very time-consuming if the principle period is much larger than the
maximum delay T ≫ τmax. Moreover, as can be seen already from the results in Sec. 6.4
the number of Chebyshev nodes M for the expansion of the original non-autonomous
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system Eq. (3.2) must be larger than the number of Chebyshev nodes for the expansion
of the autonomous Hill-Floquet system Eq. (6.12) for obtaining comparable convergence
rates. Nevertheless, the direct application of the Chebyshev collocation method is suit-
able for the specific case, where only a single discrete delay τ0 appears that is equal to
the principle period τ0 = T , because in this case a simple and accurate expression can be
derived for the monodromy matrix of the system [73]. Nevertheless, the main advantage
of the Hill-Floquet method lies in the fact that a construction of the monodromy matrix
is not necessary. In fact, there exists a large variety of efficient methods for the analysis of
linear autonomous DDEs, which can be combined with the Hill-Floquet method. Some of
them are listed in Sec. 5.1.4. Moreover, it should be emphasized that the FFT algorithm
can be used for the expansion of the periodic coefficients of the DDE in a Fourier se-
ries, which makes the numerical implementation of the Hill-Floquet transformation very
efficient.

6.6. Solution operator from the Hill-Floquet method

In this section the approximation of the solution operator based on the Hill-Floquet
method is presented for periodic time delay systems. This is useful in applications,
where the explicit form of the perturbations must be known. Moreover, the solution
operator gives a relationship between the Hill-Floquet transformation and the Lyapunov-
Floquet transformation and can be used for a comparison of the Hill-Floquet method
with existing methods for the stability analysis, which are based on the construction of
the monodromy matrix.

6.6.1. Fundamental matrix solution

The fundamental matrix solution MH of the autonomous ODE Eq. (6.25) is translation
invariant and can be given by

z∞(t) = MH(t)z∞(0) = etH∞z∞(0). (6.32)

The initial condition z∞(0) can be specified by using Eq. (6.24) and Eq. (6.20) for the
determination of the initial configurations of the Hill-Floquet representation x∞(−τj) at
the Chebyshev nodes j = 1, . . . ,M . In the Chebyshev expanded Hill-Floquet representa-
tion with the solution operator Eq. (6.32) the evolved state of the original system xt at
time t is approximated by the configurations of the Hill-Floquet system at the Chebyshev
nodes x∞(t−τj), j = 1, . . . ,M . The solution x(t) of the original system at time t can be
calculated with the inverse Hill-Floquet transformation Eq. (6.5). Typically, the matrix
H∞ is diagonalizable and the spectral representation of the fundamental matrix solution
can be given as

MH(t) = PHetS∞P−1
H , (6.33)

where the matrices PH , P−1
H contain the right and the left eigenvectors of the matrix H∞,

and the matrix S∞ is a diagonal matrix with the eigenvalues. Thus, the columns of the
matrix PH are equal to the eigenvectors h∞,k defined in Eq. (6.26). The corresponding
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eigenvalues are the Floquet exponent sk of the DDE. The matrices S∞ and PH contain
the eigenvalues and the eigenvectors associated with the reference and the redundant
Floquet exponents of the system (see Sec. 6.2).

The transformation between the fundamental solution MH(t) of the Hill-Floquet rep-
resentation Eq. (6.25) and the fundamental solution M(t, 0) of the original representation
can be obtained by

z∞(t) = FHz(t), and z(t) = F i
H(t)z∞(t), (6.34)

where, according to the definition Eq. (6.24) of the vector z∞(t), the matrices FH and
F i

H(t) are specified by

FH =











F 0 0 · · · 0

0 F 0 · · · 0

...
...

. . .
...

0 0 · · · F 0











, and F i
H(t) =











F i(t) 0 · · · 0

0 F i(t− τ2) · · · 0

...
...

. . .
...

0 0 · · · F i(t− τM )











,

(6.35)
where the matrix blocks are given by Eq. (6.20) and Eq. (6.5), respectively. The vector
z(t) contains the configurations of the original system at the Chebyshev nodes similar
to the definition of z̃(t) in Eq. (6.29) for the alternative method. However, in contrast
to the alternative method with the configuration z̃(t) the solution z(t) in Eq. (6.34) is
not obtained via the alternative method from Sec. 6.4, but rather via the solution of the
autonomous ODE Eq. (6.25) and an additional inverse Hill-Floquet transformation with
the matrix F i

H(t). If Eq. (6.32) is multiplied with F i
H(t) from the left and Eq. (6.34) is

used, the fundamental matrix solution M (t, 0) in the time domain can be expressed as

z(t) = F i
H(t)MH(t)FHz(0) = M(t, 0)z(0). (6.36)

If the spectral representation Eq. (6.33) of the matrix MH(t) is substituted in Eq. (6.36),
the solution operator can be written as

M(t, 0) = P∞(t)etS∞P i
∞(0), (6.37)

where the matrices of the right and the left eigenvectors are defined as

P∞(t) = F i
H(t)PH , and P i

∞(0) = P−1
H FH . (6.38)

The eigenvector matrices P∞(t) and P i
∞(0) still contain the redundant eigenvectors and

are, in general, no square matrices, which means that P i
∞(0) is not the inverse of the

matrix P∞(0). In fact, due to the redundant nature of the Hill-Floquet representation,
similar to Eq. (6.23) only the identity condition P∞(t)P i

∞(0) = I holds, whereas the
opposite is not true.

A further simplification of the fundamental matrix solution is possible if only the ref-
erence eigenvectors P (t) and exponents S are used. In particular, the matrix S contains
only the NM reference Floquet exponents of the matrix S∞ on the main diagonal, and
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the matrix P (t) contains only the NM columns of the matrix P∞(t) with the reference
eigenvectors. In this case, the spectral representation of the matrix fundamental solution
can be written as

M(t, 0) = P (t)etSP−1(0), (6.39)

where now P−1(0) is the inverse of the NM ×NM dimensional square matrix P (0).

6.6.2. Monodromy matrix

The monodromy matrix of a periodic DDE Eq. (3.2) is given by the transition matrix
M(T, 0) over one period of the system. In particular, by combining Eq. (6.32) and
Eq. (6.36) the monodromy matrix can be given by

M(T, 0) = F i
H(T )eTH∞FH . (6.40)

Eq. (6.40) can be used for the calculation of the characteristic exponents of the periodic
delay system. In contrast to the N(2n + 1)M dimensional eigenvalue problem for the
matrix H∞ in Eq. (6.25), the NM dimensional matrix M(T, 0) contains only NM
Floquet multipliers eskT and no redundant information. However, there is no advantage
in the computing time because for the determination of the lower dimensional matrix
M(T, 0) with Eq. (6.40) the matrix exponential of the matrix H∞ must be calculated,
which is typically based on the eigenvalue decomposition of the high dimensional matrix
H∞. Alternatively, the monodromy matrix can be also calculated from Eq. (6.39) with
t = T , where only the reference Floquet exponents and the associated eigenvectors of the
matrix H∞ are used.

6.6.3. Lyapunov-Floquet transformation

The Hill-Floquet method converts a system with periodic coefficients to a system with
constant coefficients. A closely related transformation is the Lyapunov-Floquet transfor-
mation. The Lyapunov-Floquet transformation is based on the Floquet theory, that is a
factorization of the fundamental matrix solution M(t, 0) of a linear periodic ODE in a
periodic part Q(t) = Q(t+ T ) and a matrix exponential of the time-invariant matrix R

as [169]
M(t, 0) = Q(t)etR, with Q(0) = I. (6.41)

If the factorization Eq. (6.41) is put into Eq. (4.12), the following ODE can be derived
for the evolution of the periodic matrix Q(t) [75]

Q̇(t) = A(t)Q(t)−Q(t)R. (6.42)

As a consequence, a linear periodic ODE ẋ(t) = A(t)x(t) can be converted with the
Lyapunov-Floquet transformation into the system

ẋR(t) = RxR(t), (6.43)

where x(t) = Q(t)xR(t) is substituted in the periodic ODE. The emerging N dimen-
sional configuration xR(t) in the linear time-invariant ODE Eq. (6.43) contains only the
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information on the exponential behavior of the eigenmodes xk(t) of the original periodic
system. The periodic part of the eigenmodes pk(t) is encoded in the periodic coordinate
transformation Q(t).

A relationship between the Hill-Floquet transformation and the Lyapunov-Floquet
transformation can be obtained by considering the monodromy matrix Eq. (6.41) of a
periodic ODE for the time evolution over one period

M(T, 0) = Q(T )eTR = eTR. (6.44)

The comparison of the monodromy matrix Eq. (6.44) from the Lyapunov-Floquet repre-
sentation with the monodromy matrix Eq. (6.39) from the Hill-Floquet representation
together with the periodicity condition P∞(T ) = P∞(0) leads to

R = P (0)SP−1(0), and Q(t) = P (t)P−1(0). (6.45)

Eq. (6.45) can be used for the calculation of the Lyapunov-Floquet transformation from
the solution operator of the Hill-Floquet representation.

6.7. Summary

In this chapter, the so-called Hill-Floquet transformation was introduced in Sec. 6.1. It is
based on Hill’s method and transforms non-autonomous systems with periodic coefficients
Eq. (3.2) to autonomous systems with constant coefficients Eq. (6.12). In particular,
Floquet theory was used to decompose the solution of a periodic system into a periodic
part and an exponential part similar to Eq. (6.1). The periodic part is expanded into a
Fourier series, whereas the exponential behavior of the Fourier coefficients is described
in the time domain by the autonomous DDE Eq. (6.12).

In Sec. 6.2 it was shown that the Floquet exponents and the corresponding eigenvec-
tors, which can be obtained from the Hill-Floquet representation are not unique. This
means that multiple eigenvalues of the matrix H∞ in combination with the correspond-
ing eigenvectors describe the same eigenmode xk(t) of the original time delay system.
This is equivalent to the Brillouin zones in solid state physics. In fact, the information
in the first Brillouin zone is sufficient for a complete description of the periodic crystal.
Here, the Floquet exponents sk in the first Brillouin zone, which are called reference
Floquet exponents, are sufficient for the description of the solution of the periodic sys-
tem. The redundant information in the eigenvalue decomposition of the matrix H∞ can
be used to check the accuracy of a finite dimensional approximation of the Hill-Floquet
transformation.

After applying the Hill-Floquet transformation to a DDE with periodic coefficients,
the resulting autonomous DDE can be analyzed by existing methods for autonomous
DDEs. In Sec. 6.3, the Chebyshev collocation method was used for the stability analy-
sis of the autonomous Hill-Floquet system Eq. (6.12), which transform the autonomous
DDE to an autonomous ODE Eq. (6.25). In particular, the dominant Floquet exponents
of the original system are approximated by the eigenvalues of the coefficient matrix H∞
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of the Chebyshev-expanded Hill-Floquet representation Eq. (6.25). It is shown that the
presented Hill-Floquet transformation in combination with the Chebyshev collocation
method is an efficient and reliable method for the calculation of the Floquet exponents
for periodic DDEs with distributed delay. Only the number of higher harmonics n and
the number of Chebyshev nodes M for the two expansions must be specified. The corre-
sponding coefficient matrices A∞ and B∞(τ) of the autonomous DDE can be calculated
very efficiently with the FFT algorithm and an algorithm for the construction of the
Chebyshev spectral differentiation matrix DM can be taken from [166]. The eigenvalues
of the matrix H∞ approximate automatically the most dominant Floquet exponents of
the original periodic DDE, which is the main advantage of the Hill-Floquet method in
contrast to root finding algorithms for the infinite dimensional characteristic equation (cf.
[42]), where it is not clear whether the dominant characteristic roots are found. In ad-
dition, the Hill-Floquet method does not require the calculation of the solution operator
or the monodromy matrix, which is the main advantage in comparison to time domain
approaches for the analysis of periodic DDEs such as, for example, the semidiscretization
method [3].

82



7. Applications

In this chapter the methods for the analysis of time delay systems, which are presented in
this thesis, are applied for specific time delay systems in biology, engineering and physics.
In particular, in Sec. 7.1 diffusion-driven instabilities in delayed reaction-diffusion systems
are studied, in Sec. 7.2 the stability lobes for machine tool vibrations are calculated and
in Sec. 7.3 the stability of synchronized solutions of a Hodgkin-Huxley neuronal network
is analyzed. For the delayed reaction-diffusion systems and the machine-tool models
the results from Chapter 2 on the approximations of systems with variable delays and
the transformation from variable delays to constant delays are used. In all examples,
the D-subdivision method from Sec. 5.3 is used for the calculation of stability charts of
equilibria. Moreover, the Hill-Floquet method from Chapter 6 for periodic time delay
systems is used for the stability analysis of turning with spindle speed variation and for
the stability of synchronized periodic solutions in the Hodgkin-Huxley neuronal network.

7.1. Delayed reaction-diffusion systems

Reaction-diffusion systems are typical models for pattern formation. It has been shown
in 1952 that, counterintuitively, a stable equilibrium of a system without diffusion, can
become unstable in the presence of diffusion [170]. If a dominant characteristic exponent
s0 crosses the imaginary axis through the origin with s0 = 0 due to the presence of
diffusion, the instability is called Turing instability and the resulting spatially inhomoge-
neous time-invariant pattern is known as Turing pattern. If there is a complex-conjugate
pair of characteristic exponents which crosses the imaginary axis, the instability is called
wave instability. The resulting patterns that occur from a wave instability are traveling
or standing waves [171]. Whereas in classical reaction-diffusion systems the reaction de-
pends instantaneously on the concentration of the reactants, it is often more realistic that
the effect of time delays play a significant role in the reaction dynamics. For example,
time-delayed population models can describe the oscillations in single species dynamics
very well [38]. Delayed reaction-diffusion systems have been studied in [172, 173, 174]. In
addition, time-delayed feedback control of spatially inhomogeneous structures in reaction-
diffusion systems has been investigated [175]. In the classical paper about the Turing
instability [170] it has been proved that a Turing or a wave instability is only possible for
reaction-diffusion systems with at least two or at least three components, respectively.
However, it is known that the introduction of time delays leads to an infinite dimension
of the system. This was the motivation for studying the existence of diffusion-driven in-
stabilities in single species reaction-diffusion systems with delay. The results are closely
related to the work on the occurrence of Turing pattern in a high-dimensional system
with one diffuser [176], because as mentioned above in Sec. 6.3 a time delay system can
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be approximated by a high dimensional system of ODEs. Recently, some interesting re-
sults on delay-induced Turing-like waves for reaction-diffusion models on a network were
published [90]. It is shown that a diffusion-induced instability cannot occur if there is
only a single delay in the reaction term but diffusion-induced traveling waves were found
if there is a time delay in a discrete diffusion process on a complex network.

7.1.1. Stability analysis for homogeneous equilibria

In this thesis the possibility for the occurrence of diffusion-driven instabilities for single
species reaction-diffusion systems with a distributed delay or a time-varying delay in
the reaction term is investigated. Detailed results on this study are presented in [177].
In the following, the stability of time-invariant homogeneous solutions of the system
are analyzed, which are spatially homogeneous equilibria of the delay partial differential
equation

∂u(θ, t)

∂t
= f(u(θ, t), ru(θ, t)) +D∆u(θ, t). (7.1)

In Eq. (7.1), u(θ, t) is the population density of a species at time t and location θ,
the function f describes the reaction dependent on the instantaneous density u and the
delayed density r of the population, D is the diffusion coefficient, and ∆ is the Laplace
operator. For brevity, only one spatial dimension is considered, but the extension to
more spatial dimensions is straightforward. According to Sec. 3.3.2, the dynamics of
infinitesimal perturbations x around an equilibrium u(θ, t) = u∗ of Eq. (7.1) can be
described by the linear delay partial differential equation

∂x(θ, t)

∂t
= (A+D∆)x(θ, t) +Brx(θ, t), (7.2)

where the scalars A and B are the derivatives of the function f at the equilibrium u∗

with respect to the first and the second argument, respectively. If the Fourier transform
Eq. (5.11) with respect to the spatial variable θ is applied to Eq. (7.2), the Laplace
operator is decomposed into its eigenmodes. The dynamics of the Fourier modes x̂(k, t)
dependent on the wavenumber k is characterized by

ẋ(t) =
(

A−Dk2
)

x(t) +Brx(t), (7.3)

where the additional argument k and the hat were immediately dropped from the Fourier
modes x̂(k, t) = x(t). Thus, the dynamics of the Fourier modes, i.e. the eigenfunctions
of the Laplace operator, can be described by the scalar autonomous DDE Eq. (7.3),
where −k2 are the eigenvalues of the Laplace operator. In practice, the possible value for
the wavenumber k depends on the boundary condition of the reaction-diffusion system.
For example, for periodic boundary conditions only a discrete set of wavenumbers k is
possible. For the analysis of diffusion-driven instabilities in this thesis, the more general
case of a continuous set of wavenumbers k ∈ R is considered.

A stability chart for the reaction-diffusion system Eq. (7.3) can be calculated with
the D-subdivision method as described in Sec. 5.3. The characteristic equation for the
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D-curves with s = iω is given by

iω −A+Dk2 −BK̄(iω) = 0, (7.4)

where K̄(iω) is the Laplace transform of the delay distribution K(τ) in the memory r(xt)
of the system. The Laplace transform of the delay distribution is written as

K̄(iω) = e−iωτ0

τmax−τ0
∫

−τ0

K(τ0 + τ)e−iωτdτ = RK(ω)ei(φK (ω)−ωτ0), (7.5)

where τ0 is a delay offset, RK(ω) is the modulus and φK(ω) the phase of the typically
complex valued Laplace transform of the τ0-shifted delay distribution. If the offset τ0
for symmetric delay distributions K(τ0 − τ) = K(τ0 + τ) is equal to the mean delay, the
Laplace transform of the τ0-shifted delay distribution is real, which means that the phase
φK(ω) can adopt only the two values 0 and π. Without loss of generality the mean delay
is set to one τ0 = 1, which can be obtained by rescaling the parameters A, B and D of
the system. After substituting Eq. (7.5) with τ0 = 1 in Eq. (7.4) the D-curves can be
determined by

B = Dk2 −A, for ω = 0,

A−Dk2 = ω
tan(ω−φK(ω))

B = − ω
Rk(ω) sin(ω−φK(ω))

}

, for ω 6= 0.
(7.6)

If a delay distribution is specified by the functions RK(ω) and φK(ω), the D-curves can
be determined from Eq. (7.6) in a two dimensional parameter space by sweeping the
frequency ω and calculating the corresponding values for the parameters A −Dk2 and
B, where one characteristic exponent of the system crosses the imaginary axis.

7.1.2. Diffusion-driven instabilities

The stability chart for the homogeneous equilibria u∗ of the reaction-diffusion system
Eq. (7.1) for a discrete delay K(τ) = δ(τ − τ0), where RK(ω) = 1 and φK(ω) = 0, is
shown in Fig. 7.1a. The D-curves (blue curves) specify the parameters, where one or two
complex conjugated characteristic exponents cross the imaginary axis. Parameters in the
white region corresponds to a stable equilibrium, where all characteristic exponents have a
negative real part. The shaded area indicates an unstable equilibrium, where at least one
characteristic exponent has a positive real part. A diffusion-driven instability is possible
if an equilibrium is stable for k = 0 and unstable for k > 0. Such a situation occurs if a
parameter point in the white region of Fig. 7.1a, corresponding to a stable equilibrium
with k = 0 and fixed parameters A and B, crosses a D-curve for increasing k or decreasing
A − Dk2, respectively. Obviously, this is not possible in Fig. 7.1a for a single discrete
delay and can be proven rigorously if a series expansion of the Lambert W function
in Eq. (5.8) is used for the the description of the characteristic roots (see [90]). Note,
that the stability chart in Fig. 7.1a holds, in general, for an arbitrary equilibrium of an
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(a) (b)

Figure 7.1.: General stability chart for equilibria of a single species reaction-diffusion
system Eq. (7.1) for a) a single discrete delay, and b) the asymmetrically
distributed delay Eq. (7.7).

arbitrary single species reaction-diffusion system Eq. (7.1) with discrete delay. Switching
between the equilibria of a system, changing the nonlinear function f that describes the
reaction of the system, or changing the discrete delay τ0 does only change the parameters
A, B and D in Eq. (7.6).

Similar stability charts can be calculated from Eq. (7.6) for any other distributed delay.
As mentioned above, for symmetric delay distributions the phase φK(ω) can only adopt
the values 0 and π. As a consequence, for the D-curves the dependence of A−Dk2 := α
on the frequency ω is the same as for a single discrete delay. Moreover, according to
Eq. (7.6) it can be shown that the condition α′(ω) ≤ 0 holds for the derivative of the
parametric function. This might be the reason why in extensive numerical simulations
with various symmetrical delay distributions no Turing or wave instabilities were detected.
For asymmetric delay distributions the situation is different. In this case also loops of
the D-curves with α′(ω) > 0 are possible. If such a loop appears in the D-curve that
separates stable from unstable behavior, diffusion-driven instabilities are likely to be
possible. In fact, a Turing or wave instability is only possible if an initially stable system
becomes unstable after moving on a horizontal line to the left in the stability charts
similar to Fig. 7.1. An appropriate example for a diffusion-driven instability is shown in
Fig. 7.1b. In this case the distributed delay is composed of two asymmetrically weighted
delta peaks, where the delay distribution is given by

K(τ) = 0.7δ(τ − 0.48) + 0.3δ(τ − 1.52). (7.7)

The inlet in Fig. 7.1b shows an enlarged version of the loop that is responsible for a wave
instability. The non-monotonic behavior of the D-curve, which separates stable from
unstable regions, enables the occurrence of a diffusion-induced instability. In particular,

86



7.1. Delayed reaction-diffusion systems

for A = 0 and −6.2 < B < −6 slightly above the loop of the specific D-curve, the
system is stable for k = 0 but becomes unstable for some k > 0. In this case, a pair of
complex conjugated characteristic exponents with ω 6= 0 crosses the imaginary axis in
the complex plane at a finite wavenumber k > 0, which means that a wave instability
appears. In general, classical Turing instabilities with ω = 0 are not possible in one
component reaction-diffusion systems with delay because according to Eq. (7.6) the D-
curve for ω = 0 is a strictly decreasing function independent of the delay distribution.

7.1.3. Turing-like traveling waves

An example of the corresponding oscillatory Turing-like pattern is shown for the Hutchin-
son equation with distributed delay and diffusion. The Hutchinson equation is typically
used as a model for single species dynamics that can describe oscillatory behavior [106].
Originally, it was defined with a single discrete delay and without diffusion. The Hutchin-
son equation with a distributed delay similar to Eq. (7.7) and with diffusion is given by

∂u(θ, t)

∂t
= −Bu(θ, t)(1− 0.7u(θ, t− 0.48) − 0.3u(θ, t− 1.52)) +D∆u(θ, t). (7.8)

Eq. (7.8) can be also interpreted as a generalization of the Fisher-KPP equation to a
system with distributed delay [178, 179]. A realistic population model implies a positive
growth rate with B < 0. In this case the trivial equilibrium u(θ, t) = 0 of Eq. (7.8) is
always unstable. For the non-trivial equilibrium u∗ = 1 the linear variational system in
Fourier space can be given by

ẋ(t) = −Dk2x(t) +B (0.7x(t − 0.48) + 0.3x(t− 1.52)) . (7.9)

According to the stability chart Fig. 7.1b the growth rate B = −6.1 is chosen, where
the equilibrium is stable for k = 0 and becomes unstable for perturbations with some
wavenumber k > 0. The emerging pattern with D = 0.1 in one space dimension with pe-
riodic boundary condition is shown in Fig. 7.2. Indeed, a traveling wave can be observed.
From the linear stability analysis of Eq. (7.3) for D = 0.1 it follows that, theoretically, the
most unstable Fourier mode that occurs for periodic boundary conditions with a spatial
period 32 is the mode with the wavenumber ku = π (cf. black dotted curve in Fig. 7.3).
The frequency ωu of this most unstable Fourier mode is ωu = 4.55. In fact, these values
from the linear theory coincide very well with the numerical values for the wavenumber
ks = π and the frequency ωs = 4.56 that can be extracted from the resulting traveling
wave in the nonlinear system Eq. (7.8) in Fig. 7.2.

7.1.4. Diffusion-driven instabilities in systems with time-varying delay

In Sec. 2.4.2 it was shown that a system with slowly time-varying delay can be approx-
imated by a sequence of systems with discrete delays similar to Eq. (2.46). Therefore,
the dominant Floquet exponent of the system with a slowly time-varying delay can be
approximated by an average of the dominant characteristic exponents for the system
with all adopted discrete delays. Since one-component reaction-diffusion systems with
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Figure 7.2.: Turing-like traveling wave that appears in the Fisher-KPP equation Eq. (7.8)
with the delay distribution Eq. (7.7), where diffusion leads to an instability
of the homogeneous equilibrium u∗ = 1. The parameters D = 0.1, B = −6.1,
and one spatial dimension with periodic boundary conditions u(θ, t) = u(θ+
32, t) are used.

an arbitrary time-invariant discrete delay does not admit Turing or wave instabilities,
it follows immediately that diffusion-induced instabilities cannot occur in systems with
slowly time-varying delays (cf. [177]).

However, a system with fast time-varying delay can be approximated by the same sys-
tem with a time-averaged delay distribution as described in Sec. 2.4.1. Thus, a wave insta-
bility should be possible in a single species reaction-diffusion system with an asymmetric
fast time-varying delay, where the corresponding averaged delay distribution Kav(τ) is
equivalent to Eq. (7.7) that admits diffusion-driven instabilities. Such an asymmetric
delay distribution, can be given by

Kvar(t, τ) =

{

δ(τ − 0.48), if mod(t, T ) < 0.7T
δ(τ − 1.52), otherwise.

(7.10)

In Eq. (7.10) T denotes the period of the delay variation. In Fig. 7.3 the largest real
part λ0 of the characteristic exponents of the reaction-diffusion system with time-varying
delay distribution Eq. (7.10) as a function of the value Dk2 of the harmonic perturbation
is shown for various periods T of the delay variation. The parameter B = −6.1 is chosen
equal to Fig. 7.2, where a wave instability is possible for the system with distributed
delay. The curves in Fig. 7.3 are an illustration of the dispersion relation λ0(k) on a
quadratic abscissa scaled by the diffusion coefficient D. The curves are calculated with
the semidiscretization method [180], because the linear DDE Eq. (7.3) with time-varying
rectangular delay cannot be put into the standard form Eq. (3.2) for the stability analysis
with the Hill-Floquet method. Nevertheless, the dispersion relation for the case T → 0
(black dotted curve in Fig. 7.3), that corresponds to the distributed delay comparison
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Figure 7.3.: Maximum growth rate λ0 of the perturbations Eq. (7.3) for varying periods
T of the periodically-varying delay Eq. (7.10) as a function of Dk2 (A = 0,
B = −6.1). For decreasing T the curves converge to the black dotted curve
from the system with the distributed delay Eq. (7.7). A wave instability is
possible if λ0 < 0 for k = 0 and λ0 > 0 for some wavenumber with k > 0.

system with the time-invariant delay distribution Eq. (7.7), can be calculated with the
frequency domain methods for autonomous DDEs, which are described in Sec. 5.1.4.

As can be seen from Fig. 7.3, in fact, for decreasing periods of the delay variation the
curves converge to the dispersion relation of the distributed delay comparison system.
However, for T > 0.1 the convergence is not uniform and the specific behavior depends
sensitively on the exact value of the period T . In particular, the discrepancy between
the curve for T = 0.24 (red) and the asymptotic behavior is smaller than the discrepancy
between the curve for T = 0.20 (magenta) and the asymptotic behavior, even though
the delay variation for T = 0.20 is faster than for T = 0.24. Moreover, similar to the
asymptotic behavior for a distributed delay, a wave instability is possible for the variable
delay with T = 0.24 (red) and T = 0.16 (purple) but not possible for T = 0.20 (magenta)
and T = 0.12 (blue). For T ≤ 0.1 the curves are very close to the dispersion relation of
the distributed delay comparison system, which can be seen from Fig. 7.3 for T = 0.08
(dark green) and T = 0.04 (crosses).

7.2. Metal cutting vibrations

Metal cutting processes are one of the most important manufacturing processes in indus-
try. The efficiency and productivity of metal cutting processes is often limited by machine
tool chatter, which are periodic, quasi-periodic or chaotic large-amplitude vibrations be-
tween the cutting tool and the workpiece. Chatter leads to noise, bad surface finish and
increased tool wear. Numerical simulations of the dynamic interactions between the cut-
ting tool and the workpiece can be used for increasing the productivity of machine-tools
and the quality of the parts. In particular, the prediction of the so-called stability lobes
are used for an optimization of the cutting process. The stability lobes are the stability
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chart in the parameter plane of spindle speed Ω0 and chip width b. Since more than 50
years, it is well-accepted in industry that the dynamics of the machine tool vibrations
depends not only on the current position of the cutting tool but also on time-delayed
positions of the tool, which are relevant due to the waviness of the outer surface of the
chip (see Fig. 1.1). This is also known as regenerative effect [4, 5]. Roughly speaking,
machine tool chatter occurs if the wavy outer surface of the chip due to vibrations at
the previous cut generates significant dynamic variations of the cutting force, and the
amplitude of the vibrations due to the force variations at the present cut is larger than
the amplitude at the previous cut.

An overview on the stability lobe theory for different metal cutting and grinding
processes is given in [2, 181]. Current research in the field is dedicated, but not lim-
ited, to the stability analysis of parallel turning [91, 92, 182] and milling processes
[183, 184, 185, 186], and the effect of a variable spindle speed on the stability lobes
in metal cutting [23, 26, 180]. In this thesis, the stability analysis of metal cutting vibra-
tions is presented for two examples. The efficient numerical calculation of the stability
charts with the D-subdivision method from Sec. 5.3 is shown for a parallel turning process
with multiple delays, and the implementation of the Hill-Floquet method from Chapter 6
is shown for turning processes with a variable transport delay due to an active spindle
speed variation.

7.2.1. Parallel turning

The simplified kinematics of a parallel turning process is illustrated in Fig. 7.4a. Two
inserts are cutting simultaneously the same surface at different angular positions of the
workpiece. Hence, the coupled regenerative effect at the two cuts must be taken into
account for an accurate stability analysis of the parallel turning process. A common
and reasonable approximation is made by the two assumptions that the angular velocity
Ω0 of the spindle is perfectly constant, and that vibrations in the y-z plane does not
affect the cutting force. As a consequence, only the vibrations in x-direction are self-
excited vibrations and are relevant for the stability analysis, whereas the vibrations in
the y-z-plane are only forced vibrations.

The modulus of the cutting force Fi(t) at the ith cut can be determined by

Fi(t) = bfc(hi(t)), i = 1, 2, (7.11)

where b specifies the depth of cut and hi(t) is the chip thickness at the ith cut. The
function fc characterizes the cutting force law. An overview on some realistic cutting
force laws can be found in [187]. The chip thicknesses at the two cuts can be given by

h1(t) = vfτ1 + u2(t− τ1)− u1(t), h2(t) = vf τ2 + u1(t− τ2)− u2(t). (7.12)

where vf is the feed velocity and u1 and u2 are the relative displacements in x-direction
between the workpiece and the first and the second tool tip, respectively. The time delays
τ1 and τ2 can be given by

τ1 =
γ

Ω0
, τ2 =

2π − γ

Ω0
, (7.13)
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Figure 7.4.: a) Kinematics of a parallel turning process with two tools cutting the same
surface. b) The angle γ between the two tools determines the time delays τ1
and τ2 at the first and second tool.

which means that they are equal to the time for the rotation of the workpiece by the
angles γ and (2π−γ), respectively. As can be seen in Fig. 7.4b γ is the angle between the
second and the first tool. For γ = π as it was assumed in [182], the two delays are equal
τ1 = τ2 = π/Ω0. For the theoretical analysis in this thesis an arbitrary angle γ between
the two tools is considered. The structural dynamics of the tool tip displacements in
response to a cutting force are assumed to be linear and can be specified in the frequency
domain by

û(ω) = G(ω)F̂ (ω),
(

û1(ω)
û2(ω)

)

=

(

G11(ω) G12(ω)
G21(ω) G22(ω)

)(

F̂1(ω)

F̂2(ω)

)

.
(7.14)

The frequency response function Gij(ω) specifies the x-displacements at the ith tool tip
in response to a harmonic excitation with frequency ω at the jth cut. The excitation
at the jth cut is considered in the cutting force direction, which means that Gij(ω) is
a matrix of oriented transfer functions [2, 181]. In the time domain Eq. (7.14) can be
described by a system of harmonic oscillators, where the mass, damping and stiffness
parameters of the oscillators are equal to the modal parameters of the eigenmodes of the
structure at the tool tip.

The system has a non-trivial equilibrium u∗ = col (u∗1, u
∗
2), which is desired to be

stable for a high-quality implementation of the parallel turning process. The equilibrium
specifies the static displacements of the tools during cutting and can be derived from the
solution of the system of nonlinear equations

u∗ = G(0)F stat(u
∗), F stat(u

∗) = b

(

fc(vf τ1 + u∗2 − u∗1)
fc(vf τ2 + u∗1 − u∗2)

)

. (7.15)

The vector F stat(u
∗) determines the static part of the cutting force that appears if the

perturbations x(t) = u(t) − u∗ at the non-trivial equilibrium can be neglected. In
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general, the static stiffness G(0) and the static forces F stat are different for the first and
the second tool, which means that there is also a difference in the static displacements
of the structure u∗1 and u∗2 at the two cuts. The linearization around the equilibrium as
described in Sec. 3.3.2 leads to the dynamic cutting force

F dyn(t) = b

(

P1(x2(t− τ1)− x1(t))
P2(x1(t− τ2)− x2(t))

)

, (7.16)

where P1 and P2 are the specific cutting pressures at the first and the second cut. The
specific cutting pressures Pi are equal to the slope of the cutting force law at the static
chip thickness h∗i , and are defined by

P1 = f ′c(vf τ1 + u∗2 − u∗1), P2 = f ′c(vfτ2 + u∗1 − u∗2). (7.17)

The dynamic cutting force F dyn(t) is the part of the cutting force that is induced only
by the perturbations x(t) = col (x1(t), x2(t)) of the equilibrium u∗.

7.2.2. Stability lobes for parallel turning

The D-subdivision method that is described in Sec. 5.3 is used for the stability analy-
sis, which means that the parameters are identified, where the eigenmodes are periodic
functions xk(t) = qke

iωkt. If Eq. (7.13) is used for the time delays and Eq. (7.16) is
transformed into the frequency domain and put into Eq. (7.14), an eigenvalue equation
can be obtained for the eigenmodes of the time delay system

qk = bG(ωk)P (ωk,Ω0)qk, P (ω,Ω0) =

(

−P1 P1e
−iγ ω

Ω0

P2e
−i(2π−γ) ω

Ω0 −P2

)

, (7.18)

where the matrix P is the force coefficient matrix. In Eq. (7.18) there are three free
parameters b, ωk and Ω0 and two scalar equations for the real and the imaginary part
of the eigenvalue equation. The stability lobes in the Ω0-b-plane for the parallel turning
process can be calculated very efficiently with the method described in [188], that can
be described as follows. At first, the two eigenvalues σ1/2(ω,Ω0) of the matrix product
G(ω)P (ω,Ω0) are calculated analytically. Then, a spindle speed Ω0 is selected. Since
b is a real parameter, the frequencies ωk of the eigenmodes are a discrete set, where
the imaginary part of one of the two eigenvalues vanishes, Im

(

σ1/2(ωk,Ω0)
)

= 0. If the
frequencies ωk of the eigenmodes are identified, the corresponding critical chip widths b
can be calculated from the real part of the eigenvalues as b = 1/Re

(

σ1/2(ωk,Ω0)
)

. This
method can be also applied if the chip width is different at the two different cuts. The
method is much simpler than the method proposed in [92, 182], where an additional
numerical search algorithm is used to find the solutions of the eigenvalue Eq. (7.18).
Moreover, the method can be also used for milling with variable pitch or variable helix
tools because in both cases the stability lobes can be approximated very well with time-
invariant force coefficient matrices P [40, 41].

In some situations it is reasonable that the cross FRFs are much smaller than the direct
FRFs and can be neglected G12(ω) = G21(ω) = 0. This means that a cutting force at
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7.2. Metal cutting vibrations

Table 7.1.: Structural parameters for the parallel turning process

FRF Eigenfrequency (Hz) Damping (N s/m) Mass (kg)

G11(ω) 120 1800 30
G22(ω) 130 1800 30
G12(ω) 477 1800 10
G21(ω) 477 1800 10

the first tool does not lead to a structural response at the second tool and vice versa. In
this case the two eigenvalues σ1/2(ω,Ω0) can be given by

σ1/2 =
1

2

(

G1P1 +G2P2 ±

√

(G1P1 −G2P2)
2 + 4G1G2P1P2e

−i2π ω
Ω0

)

. (7.19)

For the sake of clarity, the arguments of the transfer functions were dropped in Eq. (7.19).
It turns out that for an uncoupled structural behavior, where the cross FRFs are zero, only
the product of the off-diagonal terms of the matrix P (ω,Ω0) appears in the eigenvalues
in Eq. (7.19). As a consequence, the angular displacement γ between the two cutting
tools does not affect the stability, even though the process is coupled and the two tools
are cutting the same surface. Nevertheless, for a significant structural coupling between
the displacements at the two cutting tools, G12(ω) 6= 0 and/or G12(ω) 6= 0, the angle γ
between the two tools does also affect the stability lobes.
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Figure 7.5.: Stability lobes for parallel turning with parameters from Table 7.1. a) For
P1 = P2 = 1800N/mm2 a varying angle γ between the two tools does not
change the stability lobes significantly. b) The process can be stabilized
(destabilzed) by decreasing (increasing) the cutting force pressure P1 at the
first cut as can be seen from the blue (red) lobes.
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A numerical example is considered to present concrete results on the frequency domain
stability analysis. The direct FRFs for the dynamic behavior of the two tools and the
cross FRFs for the structural coupling between the tools are modeled by single harmonic
oscillators. The structural parameters for the oscillators are given in Table 7.1 and are
taken from [91]. The stability lobes for the parallel turning process are shown in Fig. 7.5.
The process is stable if a chip width b below the stability lobes is chosen. The dependence
of the stability lobes on the angle γ between the two tools is shown in Fig. 7.5a for
equivalent specific cutting force pressures P1 = P2 = 1800N/mm2 at the two tools. As
can be derived from Eq. (7.19) the angle γ does not affect the stability if the structure
is uncoupled G12 = G21 = 0 (black thick). For non-vanishing cross coupling with the
structural parameters from Table 7.1, the stability lobes change with varying γ but the
variation is very small. This is due to the fact, that the magnitude of the direct FRFs
G11 and G22 is much larger than the magnitude of the cross FRFs G12 and G21, which
are responsible for the γ-dependence of the stability lobes. Note, that in this simplified
numerical example there is a symmetry with respect to γ = 180◦, which means that, for
example, the lobes for γ = 150◦ are equivalent to the lobes for γ = 210◦. In Fig. 7.5b a
fixed angle γ = 180◦ was used, and the dependence of the stability lobes on the specific
cutting force pressures P1 and P2 is illustrated. The mean cutting force pressure is fixed
at (P1 +P2)/2 = 1800N/mm2. If the two cutting force pressures are equal, the stability
lobes are equivalent to the gray solid lobes in Fig. 7.5a. If P1 is increased and P2 is
decreased, the limiting chip width b becomes smaller (red). In contrast, the process can
be stabilized significantly by decreasing the pressure P1 at the first tool and increasing P2

(blue). The reason behind this is the lower eigenfrequency of the eigenmode at the first
tool, which is equivalent to a lower dynamic stiffness. In other words, the main reason
for chatter in this example with the structural parameters from Table 7.1 are unstable
self-excited vibrations at the first tool. This means that the process can be stabilized
(destabilzed) by decreasing (increasing) the specific cutting force pressure P1 at the first
tool, whereas the specific cutting force pressure P2 at the second tool has only a minor
influence on the stability behavior. Different cutting force pressures occur due to the
nonlinear cutting force behavior fc(hi) and different static chip thicknesses h∗1 and h∗2 at
the first and the second tool. In fact, the static chip thicknesses h∗i at the two cutting
tools depend mainly on the angle γ between the two tools, which is the reason for another
γ-dependence of the stability lobes in real parallel turning processes.

7.2.3. Turning with spindle speed variation

As a second machining example, a turning process with spindle speed variation (SSV)
is studied. A passive SSV occurs in real cutting processes due to an excitation of the
spindle drive via a non-stationary process torque [26, 189]. Moreover, an active SSV is
used in the industry for a stabilization of cutting processes [22, 23]. The kinematics of
the process is similar to the parallel turning process that is shown in Fig. 7.4, where only
the first tool is cutting. The time delay in metal cutting is a variable transport delay
as described in Sec. 2.2.1. A variation of the spindle speed can lead to a variable delay
τ̃(t̃) in the physical time t̃, which is equivalent to a variable time for one revolution of
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the spindle. However, if the process is described in terms of the spindle angle t, the
delay for the turning process in the so-called internal clock t is always constant τ(t) = τ .
The transformation from elapsed physical time t̃ to the spindle angle t is given by the
monotonic increasing function Φ(t̃) in Eq. (2.3). The derivative of the function Φ(t̃) is
the angular velocity Ω(t̃) of the spindle. An active SSV is considered, where the angular
velocity is assumed to be sinusoidal in the physical time

Ω(t̃) = Ω0(1 +AΩ cos(2πfΩt̃)). (7.20)

In Eq. (7.20) AΩ and fΩ are the relative amplitude and the frequency of the SSV.
A concrete numerical example is considered, where the structural dynamics can be

described by one dominant eigenmode with eigenfrequency ωn and damping ratio ζ. In
the physical time the system can be described by a DDE with time-varying delay [180]

x̃′(t̃) = Ãx̃(t̃) + B̃x̃
(

t̃− τ̃(t̃)
)

,

Ã =

(

0 1
−ω2

n(1 + w) −2ζωn

)

, B̃ =

(

0 0
ω2
nw 0

)

.
(7.21)

The variable transport delay τ̃(t̃) in the physical time can be calculated by Eq. (2.7)
with the constant delay τ = 2π, that is the angle for one spindle revolution. The two
dimensional configuration x̃

(

t̃
)

specifies the velocity and the displacement of the tool
tip perturbations in x-direction dependent on the physical time t̃. In Eq. (7.21) w is
the dimensionless chip width that is proportional to the real chip width b. The exact
relationship between the dimensionless and the real chip width depends on the cutting
force coefficient and the properties of the dominant eigenmode of the structure 1. Since
the delay in system Eq. (7.21) is defined by a variable transport over the constant distance
τ = 2π, the system can be transformed to standard form Eq. (2.1) in the angular domain
or the internal clock with constant delay and periodic coefficients

ẋ(t) = A(t)x(t) +B(t)x(t− 2π). (7.22)

By comparison of Eq. (7.22) and Eq. (7.21) with their general counterparts Eq. (2.1) and
Eq. (2.14), respectively, the coefficient matrices can be identified as

A(t) =
1

Ω(Φ−1(t))
Ã, B(t) =

1

Ω(Φ−1(t))
B̃. (7.23)

The stability analysis of turning with SSV in the angular domain with Eq. (7.22) with a
constant angular delay was at first shown in [70]. However, the authors have considered
a variable spindle speed Ω(t) that varies sinusoidally in the internal clock t, which is not
the generic case for an application. A more detailed description of the transformation
of dynamical systems from the physical time t̃ to the internal clock t can be found in
[26, 94], where also the stability lobes for the equivalent systems Eq. (7.21) and Eq. (7.22)
are compared.

1In particular, the orientation, the modal mass and the eigenfrequency of the mode are relevant
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Figure 7.6.: The stability lobes for a turning process with SSV calculated with the Hill-
Floquet method (blue) coincide well with the results from [26] (red), which
were calculated with the semidiscretization method. The stability lobes for
the process with constant spindle speed (black) were also shown.

7.2.4. Stability lobes for turning with spindle speed variation

In this thesis, the example from Ref. [26] is chosen for the calculation of the stability
lobes with the Hill-Floquet method from Eq. (7.22) as described in Sec. 6.3. The relative
amplitude and the frequency of the spindle speed modulation are given by AΩ = 0.15
and fΩ = 1 Hz. The parameters for the structural dynamics are ωn = 2π100s−1 and
ζ = 0.03. The stability lobes are calculated for n = 150 higher harmonics and M =
3 Chebyshev nodes. The results from the Hill-Floquet method (blue) are shown in
Fig. 7.6 and compared to the results from Ref. [26] (red) that were calculated with the
semidiscretization method [190]. In addition, the stability lobes for the system with
constant spindle speed AΩ = 0 (black) are shown. The results from both methods
coincide very well, even though the number of Chebyshev nodes M = 3 is very low. A
bottle neck in the Hill-Floquet method is the large number of higher harmonics that must
be used, because the frequency fΩ of the SSV is much lower than the eigenfrequency of
the structure. This leads to a worse numerical performance for this specific example with
a low modulation frequency.

Nevertheless, the Hill-Floquet method becomes advantageous for very low spindle
speeds, because with the Hill-Floquet method the system is transformed to an au-
tonomous system and no monodromy matrix must be calculated. In particular, for lower
spindle speeds the delay becomes larger, whereas the frequency of the tool vibrations
remains in the neighborhood of the eigenfrequency of the structure. This means that
more collocation points are necessary for an approximation of the solution in one delay
interval with the semidiscretization. The higher dimension of the transition matrices of
the semidiscretization method for low spindle speeds leads to an increasing numerical
effort for the calculation of the monodromy matrix and their eigenvalues. Specifically,
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for the calculation of the stability lobes in Fig. 7.6 the number of collocation points for
the semidiscretization method was fixed to M = 100. As a consequence, the accuracy
of the semidiscretization (red) decreases for low spindle speeds resulting in very small
deviations between the red and the blue curve that can be seen in Fig. 7.6 for low spindle
speeds. In contrast, the accuracy of the Hill-Floquet method is very high and does not
significantly depend on the nominal spindle speed Ω0.

7.3. Networks with heterogeneous coupling delays

Synchronization in complex networks is a well-known phenomena that can be found, for
example, in social systems [191, 192], in engineering [193, 194, 195, 196], in biology [156,
197, 198] or in physics [199, 200, 201]. An overview on the synchronization phenomena
in classical networks with instantaneous coupling can be found in [202, 203]. However,
synchronization is also possible in networks with time-delayed couplings [15, 93]. In some
technical applications, for example, in delay-coupled semiconductor lasers [199, 200, 201],
the time-delays in the network can be tuned to be homogeneous. However, in real world
systems, such as neuronal networks, social networks or connected vehicle systems, the
delays in the network are typically heterogeneous, i.e. there are couplings with different
delays between different nodes of the network [195]. Such a situation is studied here,
where a specific method for the decomposition of the network dynamics for the case of
heterogeneous coupling delays is introduced.

7.3.1. Synchronization in heterogeneously delay-coupled networks

In general, the dynamics of a network with d identical oscillators with heterogeneous
linear delay coupling can be described by

u̇i(t) = f(ui(t)) +
1

d

d
∑

j=1

cijBuj(t− τij), (7.24)

where ui ∈ R
N specifies the configuration of the i = 1, . . . , d oscillators. The solution of

the uncoupled oscillators is described by the nonlinear ODE u̇i = f(ui). The dynamics
of the each oscillator in the network is affect by an additional term corresponding to the
delayed coupling with other oscillators. The coupling is specified by the d×d dimensional
adjacency matrix C and the coupling matrix B. The elements cij of the adjacency
matrix are equal to one if the current configuration of node i at time t is affected by the
configuration of node j at the delayed time t− τij, or zero if there is no coupling between
the nodes i and j.

A complete synchronized solution, ui(t) = us(t) for i = 1, . . . , d, is only possible if
there is a uniform delay distribution Ki(τ) = K(τ) independent of the specific node
index i, which is defined by the sum over all discrete delays in the coupling term of one
node

Ki(τ) :=
1

d

d
∑

j=1

cijδ(τ − τij) = K(τ). (7.25)
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Eq. (7.25) is the generalization of the constant row sum condition [93, 204] for networks
without delay or networks with homogeneous delays to networks with heterogeneous
delays in the coupling. With Eq. (7.25) the dynamics within the so-called synchronization
manifold us(t) can be described by the nonlinear DDE with distributed delay

u̇s(t) = f(us(t)) +B

τmax
∫

0

K(τ)us(t− τ)dτ. (7.26)

The linear variational system can be obtained by studying the behavior of infinitesimal
perturbations around the synchronized solution xi(t) = us(t)− ui(t). In particular, the
linearized dynamics can be characterized by

ẋi(t) = A(t)xi(t) +
1

d

d
∑

j=1

cijBxj(t− τij), (7.27)

where A(t) is the Jacobian of f at the synchronized solution us(t) (cf. Sec. 3.3.2).

7.3.2. Representation with the adjacency lag operator

For networks with heterogeneous delays a representation of the coupling terms with lag
operators is suitable [195, 205]. The lag operator S(τ) is defined as

S(τ)x(t) = x(t− τ). (7.28)

Alternatively, in quantum mechanics the lag operator is defined as S(τ) = e−τ ∂
∂t , which is

equivalent to Eq. (7.28). The eigenfunctions of the lag operator are exponential functions
x(t) = qest

S(τ)qest = e−sτqest. (7.29)

In Eq. (7.29) the eigenvalue e−sτ depends on the argument τ of the lag operator, whereas
the eigenfunctions are exponential functions independent of the argument τ . As a conse-
quence, lag operators with different arguments commute with each other and fulfill the
relation

S(τ1)S(τ2) = S(τ2)S(τ1) = S(τ1 + τ2). (7.30)

From Eq. (7.30) it follows that Sn(τ) = S(nτ), which can be used to calculate roots
and the inverse of lag operators. The identity element is given by S(0)x(t) = x(t).
Furthermore, the lag operator commutes with the differential operator d

dtS(τ) = S(τ) d
dt ,

because they share the same eigenfunctions.

With the lag operators Eq. (7.27) can be written as

ẋ(t) = (I ⊗A(t))x(t) + (C ⊗B)x(t), (7.31)

where ⊗ denotes the direct product and the Nd dimensional vector x = col (x1, . . . ,xd)
contains the perturbations at all nodes of the network. The matrix of lag operator C is
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called adjacency lag operator and the elements of the adjacency lag operator are given
by

{C}ij =
1

d
cijS(τij). (7.32)

On the one hand, the adjacency lag operator describes the topology of the network,
which is characterized by the matrix C. In addition, the adjacency lag operator contains
the information on the coupling delays. For complex networks a decomposition of the
dynamics into network eigenmodes is suitable, which is shown next.

7.3.3. Decomposition into network eigenmodes

Many efforts have been made for the stability analysis of the synchronized solution of
complex networks based on the eigenmode decomposition of the perturbations x into
network eigenmodes. Note that the network eigenmodes are not to be confused with
the eigenmodes of a DDE, which are functions in one delay interval and are described
in Sec. 4.4. Instead, the network eigenmodes are in the simplest case the eigenfunctions
of the adjacency matrix C. The stability analysis based on the eigenmode decomposi-
tion was at first presented in [204, 206] for networks with instantaneous coupling. The
so-called master stability function can be used to analyze the stability of the network
dependent on the eigenvalues of the adjacency matrix C. Later, the master stability
approach was extended to the decomposition of the network dynamics in case of param-
eter mismatches [207, 208] and for the decomposition around cluster states [209]. The
master stability function can be also used for networks with delay couplings, as it was
presented for homogeneous delay couplings in [93]. For heterogeneous delay couplings,
however, the application of the master stability function is restricted to the case, where
the separate adjacency matrices for each discrete delay in the coupling commute [210].
In [211] an approach for the eigenmode decomposition was presented for hierarchical net-
works with a small delay in some subnetworks and a much longer delay for the coupling
between the subnetworks. A general approach for the decomposition of the dynamics of
heterogeneously delay-coupled networks based on a diagonalization of the operator C has
been shown in [195]. This method can be applied for the decomposition of the network
dynamics into eigenmodes for synchronized equilibria but the extension to synchronized
time-dependent solutions is not straightforward. In this thesis, the eigenmode decom-
position is shown for synchronized time-dependent solutions in networks with arbitrary
heterogeneous delays in the coupling.

It is assumed that the adjacency lag operator can be diagonalized as

U(t)CV (t) = L, (7.33)

where U(t) and V (t) is the matrix of the left and the right eigenvectors and L is a diago-
nal matrix with the eigenvalues of the adjacency lag operator on the main diagonal. Since
exponential functions are always eigenfunctions of the lag operators S(τ) independent of
the delay τ in the argument, the eigenfunctions and the eigenvalues of the adjacency lag
operator can be written as

U(t) = e−stU , V (t) = Vest, and L = e−stLest. (7.34)
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The matrix operators U , V contain lag operators equivalent to the formal left and the
formal right eigenvectors of the matrix operator C, and they diagonalize the adjacency
lag operator as

UCV = L, (7.35)

where L is a diagonal operator and UV = I. With the operators U and V the modal
coordinates y(t) on the network level can be defined as

x(t) = (V ⊗ I)y(t), y(t) = (U ⊗ I)x(t). (7.36)

With Eq. (7.35) and the coordinate transformations in Eq. (7.36) the network dynamics
Eq. (7.31) in modal coordinates can be described by

ẏ(t) = (U ⊗ I) (I ⊗A(t)) (V ⊗ I)y(t) + (L ⊗B)y(t). (7.37)

The main difference between the decomposition for equilibria with a time-invariant
coefficient matrix A(t) = A0 and the decomposition for periodic orbits with a time-
varying matrix A(t) can be seen in the first term on the right hand side of Eq. (7.37).
For a constant matrix A0 the lag operators in U or V always commute with the constant
matrix A0 and the term can be simplified to (I ⊗A0), which results in d decoupled
equations of dimension N in Eq. (7.37). However, this is not true for time-varying
matrices A(t) because, in general, they do not commute with the operators U or V. This
can be illustrated by the following paradigmatic example. Whereas for constant matrices
the term S(−τ)A0S(τ)x(t) can be simplified to A0x(t), the equivalent relation with a
time-varying matrix is not true

S(−τ)A(t)S(τ)x(t) = A(t+ τ)x(t) 6= A(t)x(t). (7.38)

As a consequence, for a time-varying coefficient matrix A(t), in general, the equations
in modal coordinates in Eq. (7.37) cannot be decoupled with the eigenfunctions of the
adjacency lag operator on the network level. Nevertheless, for the dynamics can be
separated on the network level if the elements Lk of the diagonalized adjacency lag
operator L can be characterized by a linear combination

Lk =
∑

i,j

ρijS(τij), ρij ∈ C, (7.39)

which contains only time lag operators S(τij) with the coupling delays τij. In this case,
it can be shown that either the corresponding column Vk in the matrix operator V or the
corresponding row UT

k in the matrix operator U contain only complex numbers but no
lag operators. In this case, the modal dynamics is decoupled and can be described by

ẏk(t) = A(t)yk(t) + LkByk(t), (7.40)

where yk(t) is the N dimensional vector of the perturbations in modal coordinates cor-
responding to the kth network eigenmode. For the tangential eigenmode, that describes
perturbations within the synchronization manifold, the corresponding scalar operator L‖
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can be always written as a linear combination similar to Eq. (7.39). For example, in
Eq. (7.39) the coefficients of the lag operator Lk = L‖ can be given by dρij = cijδi1.
The eigenvector of the adjacency lag operator corresponding to the tangential eigenmode
is characterized by Vk = col (1, . . . , 1), which is equivalent to the eigenvector for the
tangential eigenmode in networks with homogeneous coupling delays.

Eq. (7.40) is related to the well-known master stability function. For networks without
delay the scalar operators Lk are simply complex numbers without any lag operator [204].
For networks with a homogeneous delay in the coupling, the scalar operators Lk are a
product of the lag operator for the homogeneous delay and a complex number. Thus, in
both cases the modal equations for different eigenmodes differ only in a complex number
given by different eigenvalues of the adjacency matrix C. In contrast, for heterogeneous
delay couplings the scalar operators Lk can contain an arbitrary combination of different
lag operators, which means that the modal dynamics for varying k can be specified by a
DDE with different multiple or distributed delays.

For illustration, a concrete coupling scheme with N = 5 nodes and two different delays
τij ∈ {τ1, τ2} is studied. In particular, all nodes are coupled to all other nodes of the
network and the adjacency lag operator C is given by

C =













0 S(τ1) S(τ1) S(τ1) S(τ2)
S(τ1) 0 S(τ2) S(τ1) S(τ1)
S(τ1) S(τ2) 0 S(τ1) S(τ1)
S(τ1) S(τ1) S(τ1) 0 S(τ2)
S(τ2) S(τ1) S(τ1) S(τ1) 0













. (7.41)

The corresponding diagonalized operator L can be specified by the diagonal elements

L‖ = L1 = 3S(τ1) + S(τ2), L3 = −S(τ1),

L2 = −2S(τ1) + S(τ2), L4,5 = −S(τ2).
(7.42)

According to Eq. (7.42), in this case all entries Lk of the diagonal operator L can be
written as a linear combination of the two lag operators S(τ1) and S(τ2), which means
that the decoupled modal equations Eq. (7.40) can be used for the description of the
network dynamics in modal coordinates.

For example, the column vector V3 corresponding to the third network eigenmode with
the scalar operator L3 in Eq. (7.42) is determined by

V3 = col (1, 1, 1,−3 − S(τ2 − τ1), 1) . (7.43)

This means that if the transversal network eigenmode q3(t) becomes unstable in a net-
work with the adjacency lag operator C from Eq. (7.41), the network dynamics can be
characterized by four nodes that remain synchronized yi(t) = q3(t) for i = 1, 2, 3, 5
and one node that can be characterized by y4(t) = −3q3(t) − q3(t − τ2 + τ1). Such a
time-shifted relation between the dynamics at different nodes for the transversal network
eigenmodes is not possible in networks with homogeneous delays but can occur in net-
works with heterogeneous delay couplings. The second fundamental difference in contrast
to networks with homogeneous delays are different multiple or distributed delays in the
modal equations Eq. (7.40) for different eigenmodes.
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7.3.4. Synchronized delay-coupled Hodgkin-Huxley neurons

Numerical results based on the eigenmode decomposition of the network are shown for
the dynamics and the stability of delay-coupled Hodgkin-Huxley neurons with heteroge-
neous coupling delays. The Hodgkin-Huxley neuronal model is a well-known model in
neurodynamics for the description of the voltage activity and the ion transport in the
brain [212]. The model is similar to the system studied in [156] and the dynamics at the
i = 1, . . . , d nodes of the network can be described by the DDE

CV̇i(t) = I − gNam
3
i (t)hi(t) (Vi(t)− VNa)

− gKn
4
i (t) (Vi(t)− VK)

− gL (Vi(t)− VL)

+
κ

d

d
∑

j=1

cij (Vj(t− τij)− Vi(t)) ,

ṁi =αm (Vi(t)) (1−mi(t))− βm (Vi(t))mi(t),

ḣi =αh (Vi(t)) (1− hi(t))− βh (Vi(t)) hi(t),

ṅi =αn (Vi(t)) (1− ni(t))− βn (Vi(t))ni(t),

(7.44)

where the time t is measured in ms. The voltage Vi of the i-th neuron at the soma is
measured in mV. The dimensionless gating variables mi, hi, ni ∈ [0, 1] characterize the
"openness" of the sodium and potassium ion channels embedded in the cell membrane.
The equations for mi, hi, ni are based on measurements, where the nonlinear functions
are defined by (cf. [213])

αm(V ) =
V/(10mV) + 4

1− e−(V/(10mV)+4)
, βm(V ) = 4e−(V/(18mV)+3.61),

αh(V ) = 0.07e−(V/(20mV)+3.25), βh(V ) =
1

1 + e−(V/(10mV)+3.5)
,

αn(V ) =
V/(100mV) + 0.55

1− e−(V/(10mV)+5.5)
, βn(V ) = 0.125e−(V/(80mV)+0.81).

(7.45)

The conductances gNa, gK, gL, the reference voltages VNa, VK, VL, the membrane capac-
itance C and the driving current I are given in Table 7.2. The coupling term represents
a direct electronic connection between the j-th and the i-th neuron, where κ is the con-
ductance of the gap junction and τij represents the time for the signal propagation from

Table 7.2.: Fixed parameters of the Hodgkin-Huxley neuronal model in Eq. (7.44)

VNa = 50 mV VK = −77 mV VL = −54.4 mV

gNa = 120 mS
cm2 gK = 36 mS

cm2 gL = 0.3 mS
cm2

C = 1 µF
cm2 I = 20 µA

cm2 κ = 1.2 mS
cm2
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Figure 7.7.: a) Stability chart for the non-trivial equilibrium of the Hodgkin-Huxley neu-
rons Eq. (7.44) with heterogeneous delay coupling Eq. (7.41). b) Dominant
characteristic exponent λ0 for heterogeneous delay with τ2 = τ1+2.4 (dashed
line in Fig. 7.7a) for the tangential eigenmode (black) and the transversal
eigenmodes with L2 (blue), L3 (red) and L4,5 (green).

the ith to the jth neuron. The conductance κ can be also interpreted as the coupling
strength and is fixed to κ = 1.2 mS/cm2 in this example (see Table 7.2). A network with
d = 5 Hodgkin-Huxley neurons is considered, where the neurons are coupled with the
all-to-all coupling scheme from the example in Eq. (7.41).

The system Eq. (7.44) has a non-trivial equilibrium (cf. [156]). The stability of the
equilibrium in the τ1-τ2-plane is shown in Fig. 7.7a. The stability chart was calculated
with the D-subdivision method described in Sec. 5.3. The D-curves corresponding to
the tangential eigenmode are shown in black. The blue curves are the D-curves for the
transversal eigenmode L2 in Eq. (7.42). The characteristic exponents for the modal equa-
tions associated to the other transversal eigenmodes with the operators L3 and L4,5 in
Eq. (7.42) does not cross the imaginary axis in the given parameter region, and therefore,
no D-curves corresponding to these eigenmodes can be found in Fig. 7.7a. This means,
that these eigenmodes do not lead to an instability for time delays τ1, τ2 ∈ [0, 15] ms. As
can be seen from Fig. 7.7a for homogeneous delay coupling, i.e. the identity τ1 = τ2 , only
the tangential network eigenmode can become unstable. Thus, for the Hodgkin-Huxley
neurons with only one homogeneous delay in the coupling, an unstable synchronized equi-
librium typically leads to a synchronized periodic solution. Time delays corresponding to
a stable synchronized equilibrium are shaded in Fig. 7.7a. Other delay combinations cor-
respond to an unstable equilibrium. For heterogeneous delay coupling it is also possible
that the transversal eigenmode y2(t) leads to an instability of the equilibrium. This is
illustrated in Fig. 7.7b for τ2 = τ1+2.4 ms, i.e. the dashed line in Fig. 7.7a, where the real
part λ0 of the dominant characteristic exponents of the modal equations Eq. (7.40) as a
function of τ1 is shown. In particular, the black, blue, red and green curves in Fig. 7.7b
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Figure 7.8.: Asymptotic solution of the Hodgkin-Huxley neurons Eq. (7.44) with hetero-
geneous delay coupling Eq. (7.41) for τ2 = τ1 + 2.4 ms. a) For τ1 = 5 ms,
where the transversal eigenmode is unstable, alternating spiking of two clus-
ters can be seen. b) For τ1 = 10 ms, where the tangential eigenmode is
unstable, complete synchronized spiking appears.

correspond to the dominant exponents for the eigenmodes that are characterized by the
operators L1,L2,L3 and L4,5 in Eq. (7.42), respectively. Consistent to Fig. 7.7a, only
the tangential eigenmode (black) and the first transversal eigenmode (blue) can become
unstable. Specifically, the synchronized equilibrium is stable for τ1 ∈ [0.95, 3] ms. For
τ1 ∈ {[0, 0.95], [6.05, 11.6], [14.3, 15]} ms the equilibrium is unstable and the system is
dominated by the unstable tangential network eigenmode. However, for τ1 ∈ [3, 6.05] ms
and for τ1 = [11.6, 14.3] ms the system is unstable but dominated by an unstable transver-
sal eigenmode, which means that in this case a desynchronized solution bifurcates from
the synchronized equilibrium.

Two examples for the asymptotic solution of the network with the coupling from
Eq. (7.41) are shown in Fig. 7.8 with the two delays τ1 and τ2 = τ1 + 2.4, which cor-
responds to the dashed line in Fig. 7.7a and the dominant characteristic exponents in
Fig. 7.7b. The asymptotic solution for τ1 = 5 is shown in Fig. 7.8a. In this case the
synchronized equilibrium is unstable with an unstable transversal eigenmode. Indeed,
in Fig. 7.8a not all nodes are synchronized but rather cluster synchronization appears,
where the network dynamics is characterized by an alternating spiking of the two clusters.
In contrast, for τ1 = 10 the instability of the equilibrium is due to an unstable tangen-
tial eigenmode. As a consequence, a complete synchronized period solution appears in
Fig. 7.8b, where all neurons of the networks are spiking simultaneously.

The bifurcation diagrams for the network dynamics is shown for homogeneous coupling
delays τ1 = τ2 in Fig. 7.9a and heterogeneous coupling delays τ2 = τ1+2.4 ms in Fig. 7.9b.
The diagrams are taken from [205] and were calculated with DDE-Biftool [123] for the
synchronized solution of the network that is described by the DDE Eq. (7.26). A stable
and unstable synchronized solution is marked in Fig. 7.9 by solid red and solid green lines,
respectively. In addition, the stability of the synchronized equilibria and the periodic so-
lutions with respect to transversal perturbations was calculated by using the Hill-Floquet
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Figure 7.9.: Bifurcation diagram that shows the peak-to-peak amplitude of synchronized
solutions of the Hodgkin-Huxley neurons Eq. (7.44) with the coupling scheme
Eq. (7.41) as a function of the delay τ1. a) For homogeneous delays τ1 = τ2
either the synchronized equilibrium or the synchronized periodic orbit is
stable (green, solid). b) For heterogeneous delays with τ2 = τ1 + 2.4 ms in
the interval τ1 ∈ [3.05, 5.7] at least one transversal eigenmode of the solution
is unstable (red, dashed).

method from Chapter 6 for the calculation of the dominant Floquet exponents for the
modal equations Eq. (7.40). Unstable transversal eigenmodes are marked by red dashed
lines in Fig. 7.9. For τ1 = τ2 in Fig. 7.9a, which corresponds to the identity line in
Fig. 7.7a, either the complete synchronized equilibrium or a complete synchronized peri-
odic solution is stable. In contrast, for τ2 = τ1 +2.4 ms in Fig. 7.9b, that corresponds to
the dashed line in Fig. 7.7a, for τ1 ∈ [3.05, 5.7] neither the synchronized equilibrium nor
a synchronized periodic solution is stable. In this case, one example for the asymptotic
solution of the network is the cluster synchronized state in Fig. 7.8a. As a result, one
can conclude that heterogeneous delays in the coupling facilitate desynchronization in
all-to-all coupled networks of Hodgkin-Huxley neurons. More results on heterogeneously
delay-coupled Hodgkin Huxley neurons can be found in [205].

7.4. Summary

In this chapter specific applications were presented, where frequency domain methods
are suitable for the analysis of the system. In Sec. 7.1 the stability of equilibria of single-
species reaction-diffusion systems with distributed delay were studied. In particular, the
focus lay on diffusion-driven instabilities because they are a source for time-invariant and
time-varying spatial pattern in spatially extended systems. It was shown that classical
Turing instabilities resulting in time-invariant Turing pattern are not possible in single-
species reaction-diffusion systems. However, wave instabilities are possible in reaction-
diffusion systems with asymmetrically distributed or time-varying delay in the reaction
term. The wavenumber and frequencies of the resulting Turing-like traveling waves in
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the Fisher-KPP equation with delay Eq. (7.8) are very close to the results of the linear
stability analysis.

In Sec. 7.2 the stability of self-excited mechanical vibrations in turning processes was
studied. For parallel turning processes a very simple and efficient method for the calcu-
lation of the stability chart was presented, which represents an extension of the results
in [188]. This frequency domain method is based on the solution of the eigenvalue prob-
lem in Eq. (7.18), and is suitable for the analysis of the influence of different process
parameters on the stability lobes. Specifically, it was shown in this thesis that the angle
between the two cutting tools in parallel turning processes does not affect the stability
of the process if the structural coupling between the two tools is negligible. Moreover, it
is illustrated by an example that often only the regenerative effect at one tool dominates
the behavior of the stability lobes, whereas the influence of the regeneration at the other
tool on the stability is small. Moreover, with the example of a turning process with
SSV it was shown that, according to the results from Sec. 2.2, time delay models for
metal cutting processes with variable delays due to a variation of the spindle speed are
equivalent to time delay systems with constant delays. For this example the stability
results from the Hill-Floquet method were verified with existing results for the stability
lobes from the literature.

Finally, in Sec. 7.3 the stability of synchronized solutions in networks with heteroge-
neous delay coupling was studied. The results from [195] for the modal decomposition
of the network dynamics for synchronized equilibria was extended to the decomposition
of time-dependent solutions of the network with heterogeneous delays. The decomposi-
tion is based on the adjacency lag operator C, which contains the information on the
topology of the network as well as the information on the time delays of the coupling.
The diagonalization of the adjacency lag operator C can be used to obtain the decoupled
modal equations Eq. (7.40) similar to the master stability function for networks without
time delays or with homogeneous delays in the coupling. Specifically, in the classical
master stability function the stability is calculated as a function of a complex number,
which is equivalent to the eigenvalue of the adjacency matrix, whereas in the extended
version Eq. (7.40) for networks with heterogeneous delays the stability of different net-
work eigenmodes can be determined by DDEs with different distributed delays, where the
distributed delays are related to the eigenvalues of the adjacency lag operator C. A spe-
cific example is shown for a network of five all-to-all coupled Hodgkin-Huxley neurons.
The results show that in comparison to a network with homogeneous coupling delays,
the network with heterogeneous delays is characterized by larger parameter regions with
unstable transversal eigenmodes.
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In this thesis frequency domain methods for the linear stability analysis of time delay sys-
tems are studied. The main contribution is the introduction of a general framework for
the analysis of linear systems with periodic coefficients in the frequency domain, which is
called Hill-Floquet method. The Hill-Floquet method transforms a non-autonomous sys-
tem with periodic coefficients to a higher dimensional autonomous system with constant
coefficients. The autonomous system is given by the autonomous differential equation in
the time domain, which is associated with the Hill’s infinite determinant as the charac-
teristic equation. Thus, the Hill-Floquet method is a generalization of the Hill’s infinite
determinant method. Until now, the Hill’s infinite determinant for the analysis of periodic
time delay systems was only used for specific applications, for example, where a harmonic
variation of the coefficients appears or where a small number of higher harmonics is suf-
ficient for an accurate approximation. In the field of machine-tool chatter the method is
known as multifrequency approach and often used for the calculation of stability charts
with specific numerical tools for finding the roots of the Hill’s infinite determinant. With
the newly introduced Hill-Floquet method the frequency domain analysis of periodic time
delay systems becomes usable for a wide area of applications because a general framework
for the construction of the Hill-Floquet system and its numerical analysis was presented.
In fact, many numerical tools for the analysis of autonomous time delay systems, such as
the calculation of Floquet exponents with the Chebyshev collocation method as shown
in Sec. 6.3, are now applicable to periodic time delay systems. In addition to the analysis
of time delay systems, the method can be also used for the analysis of quantum systems
with non-local potentials (cf. [76]).

In this thesis, the Hill-Floquet transformation was presented for DDEs with a constant
delay distribution. A future generalization of the method to systems with a variable delay
distribution may be useful because a transformation of a system with a variable delay
distribution to a system with a constant delay distribution is not always possible as it
was shown in Sec. 2.2. Moreover, in future work the efficiency of the Hill-Floquet method
can be compared in detail to established methods for the analysis of periodic time delay
systems such as the semidiscretization method [3] or the spectral element method [74],
where more detailed results on the numerical effort, the convergence and the numerical
error can be derived. In this thesis, the periodic coefficients and the periodic part of
the solution are expanded in a Fourier series similar to the original work of Hill [77].
Nevertheless, in general, the expansion of the periodic part in an arbitrary set of basis
functions is possible and an arbitrary method for the minimization of the error can be
used. This opens a new field of numerical methods for the analysis of periodic systems,
which are not based on the calculation of the monodromy matrix as described in Sec. 5.2.2,
but rather are based on the transformation of the system to an autonomous system by a
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series expansion for the periodic part of the solution.
In Sec. 2.2 it was shown that only systems with a time-varying or state-dependent delay

distribution, which has its origin in a transport with a variable velocity over constant
distances and is called variable transport delay, are equivalent to systems with a constant
delay distribution. In fact, for a parameter family of discrete sinusoidally-varying delays
it was shown, that, in addition to variable transport delays, a second type of so-called
dissipative delays appear. For discrete delays the delay type can be identified by the
dynamical properties of the retarded access map, which is defined in Eq. (2.16b). A zero
Lyapunov exponent of the access map corresponds to variable transport delays, which
are conjugate to constant delays, whereas a negative access map Lyapunov exponent is
associated with discrete dissipative delays. At the moment, the effects of the dynamical
properties of the retarded access map on the dynamics of the corresponding time delay
systems are not completely clear. In [100] it is shown that the scaling of the Lyapunov
spectrum of the time delay systems changes qualitatively for changing the delay type
from a variable transport delay to a dissipative delay. Studying the effects of different
dynamics of the retarded access map on the dynamics of the corresponding time delay
system opens a new direction in the analysis of time delay systems with many open
questions. For example, there is no strategy for the identification of variable transport
delays from a variable delay distribution and it is not clear how the results from [100]
can be extended to multiple or distributed delays.

Apart from the basic results on the equivalence of time delay systems in Chapter 2,
the fundamental results on the analysis of linear DDEs in Chapter 4 and the newly in-
troduced Hill-Floquet method in Chapter 6, new results on some specific applications
with time delay effects were presented in Chapter 7. In particular, it was shown that
Turing-like waves can occur already in single species reaction-diffusion systems with a dis-
tributed delay in the reaction term. More precisely, the stability of equilibria of delayed
reaction-diffusion systems was studied systematically, where the well-known frequency
domain methods for the analysis of autonomous systems were used. However, in gen-
eral, the presented frequency domain methods are also suitable for the stability analysis
of time-periodic pattern in spatially extended systems. Frequency domain methods for
the stability analysis of time delay systems are often used for the analysis of machine
tool vibrations in metal cutting processes. In this example, it was shown that a specific
D-subdivision method for the calculation of the stability lobes is very useful for getting
insight into the effects of different parameters on the stability of the system. Finally, a
new method for the decomposition of synchronized solutions for networks with hetero-
geneous delay couplings was presented. The decomposition can be used to extend the
well-known Master stability approach to networks with heterogeneous delays. Specifically,
the presented approach is very useful for network design, where the node dynamics and
the network topology is fixed but a desired synchronization behavior should be obtained
by changing the coupling delays.
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A. Appendix

A.1. Equivalent systems

Some additional remarks on systems with variable transport delays, which are presented
in Chapter 2, are given in this section. In particular, in Sec. 2.2.1 a relationship between
the delay distributions of the DDEs for the two equivalent representations in terms of
the physical time t̃ and in terms of the internal clock t is presented, which is derived in
Appendix A.1.1. In Appendix A.1.2 the characteristic curves for the PDE representation
of the time delay system are calculated, which are presented in Sec. 2.3.1.

A.1.1. Relation between delay kernels

Eq. (2.8) defines the memory of the standard form Eq. (2.1) in terms of the new inde-
pendent variable t̃ if a nonlinear time scale transformation t = Φ

(

t̃
)

is applied. The

relationship Eq. (2.9) between the delay distribution K̃
(

t̃, τ̃
)

in the new tilded variables
and the delay distribution K(τ) in the original variables can be derived as follows. At
first, Eq. (2.5) is substituted for the retarded configurations x(t− τ) in Eq. (2.2)

ru(t) =

τmax
∫

0

K(τ)ũ
(

t̃− τ̃
(

t̃
))

dτ, (A.1)

where the delay τ̃
(

t̃
)

is defined by Eq. (2.7). A change of the integration variable from
delays τ to delays τ̃ yields

ru(t) =

τ̃max(t̃)
∫

0

K
(

Φ
(

t̃
)

− Φ
(

t̃− τ̃
))

ũ
(

t̃− τ̃
) dτ

dτ̃
dτ̃ , (A.2)

where the variable maximum delay τ̃max

(

t̃
)

for the integration in the new variables can
be calculated according to Eq. (2.7). In Eq. (A.2) the condition Eq. (2.6) for variable
transport delays was used to express the argument τ of the delay distribution K(τ) in
terms of the new variable τ̃ . An explicit expression for the derivative dτ

dτ̃ can be derived
from Eq. (2.6) as

dτ

dτ̃
= Ω

(

t̃− τ̃
)

. (A.3)

The condition Eq. (2.4) of a strictly positive velocity Ω
(

t̃
)

does not only guarantee a
bijective mapping between the variables t and t̃ but also a bijective mapping between the
two delays τ and τ̃ . In other words an increasing delay τ in the original systems implies
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an increasing delay τ̃ in the transformed system. Thus, the one-to-one correspondence
of the original integral in Eq. (A.1) and the integral Eq. (A.2) in the new variables is
guaranteed. Putting Eq. (A.3) into Eq. (A.2) leads to

ru(t) =

τ̃max(t̃)
∫

0

K
(

Φ
(

t̃
)

− Φ
(

t̃− τ̃
))

Ω
(

t̃− τ̃
)

ũ
(

t̃− τ̃
)

dτ̃ . (A.4)

By comparison of the memory Eq. (A.4) and the definition Eq. (2.8), the relationship
between the delay distributions K̃

(

t̃, τ̃
)

and K(τ) can given by Eq. (2.9).

A.1.2. Characteristic curves for PDE representation

In Sec. 2.3.1 and Sec. 2.3.2 it is shown that the standard form of the time delay system
Eq. (2.1) can be also described by PDEs. In general, the PDE representations can be
written as

∂v(τ, t)

∂t
+ η(t)

∂v(τ, t)

∂τ
= g (v(τ, t)) . (A.5)

On a suitable hypersurface, characterized by the so-called characteristic curves, the PDE
Eq. (A.5) can be described by a family of ODEs. The hypersurface v(τ(s), t(s)) is
parameterized by the scalar independent variable s. For the derivative of v with respect
to s we get

dv(τ, t)

ds
=

∂v(τ, t)

∂t

dt

ds
+

∂v(τ, t)

∂τ

dτ

ds
. (A.6)

For dt
ds = 1 and dτ

ds = η(s) the right hand side of Eq. (A.6) is equivalent to the left hand
side of the PDE Eq. (A.5). As a consequence, a set of ODEs can be used to describe the
dynamics of the PDE Eq. (A.5). The complete set of ODEs can be given by

dt

ds
= 1,

dτ

ds
= η(s), and

dv(τ(s), t(s))

ds
= g (v(τ(s), t(s))) . (A.7)

The integration of the first two ODEs in Eq. (A.7) yields the characteristic curves

t(s) = t(0) + s, and τ(s) = τ(0) +

s
∫

0

η(s′)ds′. (A.8)

The solution along the characteristic curves can be described by the third ODE in
Eq. (A.7). The characteristic curves for the first-order hyperbolic PDEs Eq. (2.19),
Eq. (2.21), Eq. (2.23), and Eq. (2.25) in Sec. 2.3.1 are given in Eq. (2.27). In this case
the right hand side is zero, g = 0, and the solution remains constant along the character-
istic curves v(τ(s), t(s)) = v(τ(0), t(0)). For the PDE Eq. (2.25) the specific condition
η(s) = 1/Ω(Φ−1(s)) =

(

Φ−1
)′
(s) was used. For the McKendrick Eq. (2.28) in Sec. 2.3.2

the right hand side of the PDE is linear g (v(τ, t)) = −µv(τ, t) and the third ODE in
Eq. (A.7) can be solved analytically. In particular, in this case the solution along the
characteristic curves can be given by

v(τ(s), t(s)) = e−µsv(τ(0), t(0)). (A.9)
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A.2. Analytical methods for linear DDEs

In this part of the Appendix some additional remarks on the analytical methods for
time delay systems are given. A detailed derivation of the formal Laplace transform of a
non-autonomous DDE, which is presented in Sec. 4.1, is given in Appendix A.2.1. The
formal definition of a propagator for the time delay system from the Laplace transform
Eq. (4.3) of the DDE is given in Appendix A.2.2. In Appendix A.2.3 the explicit form of
the propagator from Sec. 4.2 is derived for non-autonomous DDEs with a single discrete
delay by a successive application of the method of steps. The biorthonormality condition
Eq. (4.35) of the eigenmode expansion for DDEs in Sec. 4.4 is derived in Appendix A.2.4.

A.2.1. Laplace transform of non-autonomous DDEs

The formal Laplace transform Eq. (4.3) of linear non-autonomous DDEs with distributed
delay is derived by applying the Laplace transform as defined in Eq. (4.1) on the time
delay system Eq. (3.2), which results in

∞
∫

0

dt (ẋ(t)−A(t)x(t)) e−st =

τmax
∫

0

dτ

∞
∫

0

dtB(t)K(τ)x(t− τ)e−st. (A.10)

With the definition Ψ(t) = x(t)H(−t) for the initial function of the DDE the second
integral on the right hand side of Eq. (A.10) can be split into two parts

∞
∫

0

dtB(t)K(τ)x(t− τ)e−st =

τ
∫

0

dtB(t)K(τ)Ψ(t− τ)e−st +

∞
∫

τ

dtB(t)K(τ)x(t− τ)e−st.

(A.11)
The first part is a weighted Laplace transform of the initial function Ψ(t−τ) with t−τ ≤ 0,
and the second part is a Laplace transform that contains the delayed configuration x(t−τ)
with t− τ > 0. Substitution of Eq. (A.11) in Eq. (A.10) yields after some rearrangement

sx̄(s)−Ψ(0)− Ā(s) ∗ x̄(s) =

τmax
∫

0

dtB(t)rΨ(t)e−st +

τmax
∫

0

dτ

∞
∫

τ

dtB(t)K(τ)x(t− τ)e−st.

(A.12)
The first summand on the right hand side of Eq. (A.12) is equivalent to the definition
in Eq. (4.4) and can be interpreted as the Laplace transform Ψ̄(s) of the initial memory
rΨ(t) weighed by the matrix B(t). The second summand can be simplified by represent-
ing B(t) in terms of its Laplace transform B̄(s′) and applying the Laplace transform of
the retarded configurations x(t− τ) as

τmax
∫

0

dτ

∞
∫

τ

dtB(t)K(τ)x(t− τ)e−st =

∫

(Γ)

ds′B̄(s′)

τmax
∫

0

dτK(τ)e−(s−s′)τ x̄(s− s′) (A.13)
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Finally, the remaining Laplace transform of the delay kernel K(τ) is applied in Eq. (A.13),
and the substitution of the resulting expression in Eq. (A.12) leads to

sx̄(s)−Ψ(0)− Ā(s) ∗ x̄(s) = Ψ̄(s) +

∫

(Γ)

ds′B̄(s′)K̄(s − s′)x̄(s− s′), (A.14)

which is equivalent to Eq. (4.3).

A.2.2. Propagator of linear DDEs

For the illustration of the structure of the Laplace transform Eq. (4.6) of the time delay
system a discrete representation of the operators and functions is considered. The discrete
representation in terms of matrices and vectors is only presented for the illustration of
the structure and the dimension of the equations and the integrals related to the Laplace
domain representation of the non-autonomous time delay system. No quantitative results
are derived from the discrete analysis. It is assumed that the continuous variable s is
approximated by a finite number of values si, with i = 1, . . . , n. A discrete representation
of Eq. (4.6) for the Laplace transform of the non-autonomous DDE with distributed delay
can be given by

T̄
−1
n x̄n = Ψ̄n0 + Ψ̄n, (A.15)

where the vectors for the Laplace domain representation of the configuration, the initial
value and the memory are defined by

x̄n =







x̄(s1)
...

x̄(sn)






, Ψ̄n0 =







Ψ(0)
...

Ψ(0)






, Ψ̄n =







Ψ̄(s1)
...

Ψ̄(sn)






. (A.16)

The N×N dimensional blocks of the discrete version of the inverse T̄
−1
n of the propagator

is given by

{

T̄
−1
n

}

kl
= Iskδkl − Ā(sk − sl)− B̄(sk − sl)K̄(sl), with k, l = 1, . . . , n. (A.17)

It is assumed that the matrix T̄
−1
n is invertible. In this case, the solution of the time

delay system in the discrete Laplace domain representation can be determined by

x̄n = T̄ n

(

Ψ̄n0 + Ψ̄n

)

. (A.18)

For the representation of the solution and the propagator in the time domain, the matrices
Ln and L−1

n for the Laplace and the inverse Laplace transform are defined as

{Ln}kl = Lkle
−sktl ,

{

L−1
n

}

kl
= Li

kle
tksl . (A.19)

In Eq. (A.19), ti ∈ [0,∞), i = 1, . . . , n are discrete times, and Lkl and Li
kl are arbi-

trary constants originating from the integrals in the definition of the continuous Laplace
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transform Eq. (4.1). With Eq. (A.19), the solution in the discrete time domain can be
expressed by

xn = L−1
n T̄ nLn (Ψn0 +Ψn) = T n (Ψn0 +Ψn) . (A.20)

The vectors for the configurations, the initial value and the memory in the discrete time
domain are given by

xn =







x(t1)
...

x(tn)






, Ψn0 =











Ψ(0)
0
...
0











, Ψn =







B(t1)rΨ(t1)
...

B(tn)rΨ(tn)






, (A.21)

where it is assumed that t1 = 0. Note that from the definition of the initial function
Ψ(t) = 0 for t > 0 it follows that rΨ(t) = 0, for t > τmax.

In the original continuous representation, the following property holds between the
Laplace domain representation of the propagator and its inverse,

∫

(Γ)

T̄ (s′′, s)T̄
−1

(s, s′)ds = Iδ(s′′ − s′). (A.22)

After multiplying Eq. (4.6) with T̄ (s′′, s) from the left, integrating over ds, and using the
identity Eq. (A.22), the solution in the Laplace domain can be determined by Eq. (4.7).
Eq. (4.7) is the continuous counterpart to Eq. (A.18). If the inverse Laplace transform is
applied to Eq. (4.7), that is multiplication with es

′′t′′ and integration over s′′, the solution
x(t′′) of the time delay system can be determined by

x(t′′) =

t′′
∫

0

dt

∫

(Γ)

ds

∫

(Γ)

ds′′T̄ (s′′, s)es
′′t′′−st (Ψ(t)δ(t − 0) +B(t)rΨ(t)) . (A.23)

From Eq. (A.23) the time domain representation T (t, t′) of the propagator of the DDE
can be identified as

T (t′′, t) =

∫

(Γ)

ds′′
∫

(Γ)

dsT̄ (s′′, s)es
′′t′′−stH(t′′ − t). (A.24)

This definition of the propagator is consistent to the relationship between the discrete
versions T n and T̄ n of the propagator in Eq. (A.20). The substitution of the definition
Eq. (A.24) in Eq. (A.23) leads to the general solution Eq. (4.8) of a non-autonomous
DDE with distributed delay in terms of the time domain representation T (t′′, t) of the
propagator. Eq. (A.23) or Eq. (4.8), respectively, are the continuous counterparts to
Eq. (A.20), where rΨ(t) = 0, for t > τmax.

If the inverse Laplace transform Eq. (A.24) is used for the Laplace domain representa-
tion Eq. (4.9) of the propagator for the autonomous system, the time domain represen-
tation Eq. (4.10) of the propagator is obtained.
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A.2.3. Method of steps for DDEs with discrete delays

The recursive application of Eq. (4.13) also known as method of steps can be used to
generate an explicit expression for the propagator T (t, t′). This is shown for the solution
of the non-autonomous DDE Eq. (3.2) with discrete delay τ0, i.e. K(τ) = K0δ(τ − τ0).
At first, the time scale is divided into the homogeneous intervals

Ij := [tj, tj+1), tj = jτ0. (A.25)

According to Eq. (4.13), the solution x(θj) in the jth interval with θj ∈ Ij can be obtained
from the solution x(θj−1) in the previous interval by

x(θj) = M(θj , tj)x(tj) +

θj−τ0
∫

tj−1

dθj−1M(θj , θj−1 + τ0)BK(θj−1)x(θj−1), (A.26)

where BK(t) = B(t)K0. From Eq. (4.8) it follows that for the specific initial function
x(0) = Ψ(0) and x(θ−1) = 0 for θ−1 < 0 the solution of the DDE can be written as
x(t) = T (t, 0)Ψ(0). This means, that according to Eq. (A.26) the propagator T (θj , 0)
for the solution of the delay system in the interval Ij can be derived from the propagator
T (θj−1, 0) in the previous interval as

T (θj, 0) = M(θj, tj)T (tj, 0) +

θj−τ0
∫

tj−1

dθj−1M(θj , θj−1 + τ0)BK(θj−1 + τ0)T (θj−1, 0).

(A.27)
The recursive application of Eq. (A.27) can be used to express the propagator T (θj , 0)
only in terms of the matrices M and BK . In the first interval with θ0 ∈ I0 the propagator
is equivalent to the matrix fundamental solution of the ODE T (θ0, 0) = M (θ0, 0). In
the second interval with θ1 ∈ I1 the propagator can be written as

T (θ1, 0) = M(θ1, 0) +

θ1−τ0
∫

t0

dθ0M(θ1, θ0 + τ0)BK(θ0 + τ0)M(θ0, 0), (A.28)

and in the third interval with θ2 ∈ I2

T (θ2, 0) = M(θ2, 0) +

θ2−τ0
∫

t0

dθ1M(θ2, θ1 + τ0)BK(θ1 + τ0)M (θ1, 0)

+

θ2−τ0
∫

t1

dθ1M(θ2, θ1 + τ0)BK(θ1 + τ0)

θ1−τ0
∫

t0

dθ0M (θ1, θ0 + τ0)BK(θ0 + τ0)M (θ0, 0).

(A.29)
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A.2. Analytical methods for linear DDEs

In the fourth interval with θ3 ∈ I3 the propagator can be determined by

T (θ3, 0) =

3
∑

n=0







n
∏

j=1

θ4−j−τ0
∫

tn−j

dθ3−jM(θ4−j , θ3−j + τ0)BK(θ3−j + τ0)






M(θ3−n, 0)

(A.30)
From Eq. (A.30) the general expression for the propagator T (t, t′) Eq. (4.14) can be
derived, which is given in Sec. 4.2.

A.2.4. Biorthonormality condition for eigenmode expansion of DDEs

The eigenmodes xk(t) with the dual eigenfunctions yT
k (t) satisfies the orthonormality

condition Eq. (4.35). This can be shown by putting Eq. (4.32) and Eq. (4.31) in Eq. (4.35),
which yields

dT
j

Nj

0
∫

−τmax

dθ



Iδ(θ − 0) +B0

τmax
∫

0

dτK(τ)e−sj (θ+τ)H(θ + τ)



 qke
skθ = δjk. (A.31)

After applying the integration in the first term, rearranging the terms and taking the
Heaviside step function into the boundary of the integration over θ, the expression reads

dT
j

Nj



I +B0

τmax
∫

0

dτK(τ)e−sjτ

0
∫

−τ

dθe(sk−sj)θ



qk = δjk. (A.32)

For j 6= k and no degenerated roots, i.e. sj 6= sk, the evaluation of the integration over
θ in Eq. (A.32) leads to

dT
j

Nj



I +B0

τmax
∫

0

dτK(τ)
e−sjτ − e−skτ

sk − sj



qk = 0. (A.33)

With the Laplace transform K̄(s) of the delay kernel the expression can be further
simplified

dT
j

Nj

(

I −B0
K̄(sj)− K̄(sk)

sj − sk

)

qk = 0. (A.34)

Eq. (4.23a) and Eq. (4.23b) can be used to obtain

dT
j

Nj

(

I −
Isj −A0 − Isk +A0

sj − sk

)

qk = 0, (A.35)

which is obviously true.
For j = k the evaluation of the integral over θ in Eq. (A.32) leads to

dT
k

Nk



I +B0

τmax
∫

0

dτK(τ)e−skττ



 qk = 1, (A.36)
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A. Appendix

which is equivalent to

dT
k

Nk

(

I −B0
dK̄(s)

ds

∣

∣

∣

∣

s=sk

)

qk = 1, (A.37)

With the definition of the normalization constant Nk in Eq. (4.30) and the biorthonor-
mality of the left and the right eigenvectors dT

k and qk it is clear that the statement
Eq. (A.37) is true.
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