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Preface

Mathematical models of practical problems usually are designed to fit into well-known
existing theory. At the same time new theoretic frameworks have to cope with criti-
cism for lacking in practical relevance. To avoid such criticism, new theoretic results
should come bundled with suggestions for improved mathematical models offered by
the widened theory. Delivering such a bundle is one objective of this thesis.

In Part I we investigate ill-posed inverse problems formulated as operator equation
in topological spaces. Such problems require regularization techniques for obtaining a
stable approximate solution. Classical Tikhonov regularization allows for extensions to
very general settings. We suggest one such extension and discuss its properties.

To fill the theoretic framework of Part I with life we consider a concrete inverse
problem in Part II, which exploits the great freedom in modeling provided by the
theory developed in the first part. Numerical examples show that alternative Tik-
honov approaches yield improved regularized solutions in comparison with more classi-
cal Tikhonov-type methods.

Next to describing a general framework for Tikhonov-type regularization the emphasis
of Part I lies on convergence rates theory. The sufficient condition for convergence rates
proposed there is quite abstract and requires further explanation. Since there are
several different formulations of such sufficient conditions in the literature, we embed
the discussion into a wider context and present a number of cross connections between
various conditions already known in the literature. This is the objective of Part III.

Some mathematical preliminaries are collected in the appendix. We recommend to
have a look at the appendix and at the list of symbols and notations since the latter
contains some remarks on notational conventions used throughout the thesis.

Only few weeks before the final version of this thesis was ready for printing the
preprint [HW11] was published. It contains a very general framework for analyzing
iteratively regularized Newton methods, which show some similarity with Tikhonov-
type methods. Even though this preprint contains many interesting ideas which should
be cited and commented in this thesis, we decided to leave it at a note in the preface.
Changes and extensions in this late stage of the thesis would inevitably lead to mistakes
and inconsistencies. The reader interested in this thesis should also have a look at the
preprint [HW11] since the fundamental difficulties treated in the thesis (replacement
for the triangle inequality, sufficient conditions for convergence rates) are handled in a
different way.

This thesis was written under the supervision of Professor Bernd Hofmann (Chem-
nitz) during the last two years. The author thanks Bernd Hofmann for its constant
support in mathematical as well as personal development and for the great freedom
in research he offers his graduate students. Further, the author thanks Peter Mathé
(Berlin) for pleasing collaboration, Radu Ioan Boţ (Chemnitz) for several hints con-
cerning convex analysis, and Frank Werner (Göttingen) for discussions on regulariza-
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tion with Poisson distributed data and his questions on logarithmic source conditions
which motivated parts of the thesis. Research was partly supported by DFG under
grant HO 1454/8-1.

Chemnitz, May 2011
Jens Flemming
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Part I.

Theory of generalized Tikhonov
regularization
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1. Introduction

In this first part of the thesis we provide a comprehensive analysis of generalized Tik-
honov regularization. We start with a short discussion of the problem to be analyzed in
the sections of the present introductory chapter. Chapter 2 gives details on the setting
and poses the basic assumptions on which all results of the subsequent chapters are
based. We start the analysis of Tikhonov-type regularization methods in Chapter 3
and formulate the main result (Theorem 4.11) of this part of the thesis in Chapter 4.
In the last chapter, Chapter 5, a second setting for Tikhonov-type regularization is
presented.

The core of Chapters 2, 3, and 4 (without the section on the discrepancy principle)
has already been published in [Fle10a].

1.1. Statement of the problem

Let (X, τX), (Y, τY ), and (Z, τZ) be Hausdorff spaces (see Definition A.9) and let
F : X → Y be a mapping defined on X and taking values in Y . Justified by the
considerations below we refer to X as the solution space, to Y as the space of right-
hand sides, and to Z as the data space. Our aim is to approximate a solution of the
ill-posed equation

F (x) = y, x ∈ X, (1.1)

with given right-hand side y ∈ Y numerically. Here, ill-posedness means that the solu-
tions do not depend continuously on the right-hand side. More precisely, if a sequence
of right-hand sides converges with respect to τY then a sequence of solutions of the
corresponding equations need not converge with respect to τX . The popular definition
of ill-posedness in the sense of Hadamard (see [EHN96, Chap. 2]) additionally includes
the question of existence and uniqueness of solutions. In our setting existence of solu-
tions will be assumed and uniqueness is not of interest since the developed theory is
capable of handling multiple solutions.

Solving ill-posed equations numerically without making an effort to overcome the
ill-posedness is impossible because even very small discretization or rounding errors can
lead to arbitrarily large deviations of the calculated solution from the exact solution.
In practice one also has to cope with the problem that the exact right-hand side y is
unknown. Usually one only has some, often discrete, noisy measurement z ∈ Z of y
at hand. This lack of exact data can be dealt with by considering the minimization
problem

S(F (x), z) → min
x∈X

(1.2)

instead of the original equation (1.1), where S : Y ×Z → [0,∞] is some fitting functional,
that is, S(ỹ, z̃) should be the smaller the better a data element z̃ ∈ Z represents a right-

9



1. Introduction

hand side ỹ ∈ Y . Typical examples of such fitting functionals are given in Section 1.4
and a more ambitious one is proposed in Part II.

Because equation (1.1) is ill-posed, the minimization problem (1.2) typically is ill-
posed, too. This means that the minimizers do not depend continuously on the data z.
The idea of Tikhonov-type regularization methods is to stabilize the minimization prob-
lem by adding an appropriate regularizing or stabilizing functional Ω : X → (−∞,∞].
To control the influence of the stabilizing functional we introduce the regularization
parameter α ∈ (0,∞). Thus, we consider the minimization problem

T zα(x) := S(F (x), z) + αΩ(x)→ min
x∈X

. (1.3)

The functional T zα is referred to as Tikhonov-type functional. Its properties and the
behavior of its minimizers are the core subject of the first part of this work.

1.2. Aims and scope

Concerning the minimization problem (1.3) there are four fundamental questions to be
answered in the subsequent chapters:

Existence We have to guarantee that for each data element z and for each regularization
parameter α there exist minimizers of T zα.

Stability Having in mind that (1.3) shall be solved numerically, well-posedness of (1.3)
has to be shown. That is, small perturbations of the data z should not alter the
minimizers too much. In addition we have to take into account that numerical
minimization methods provide only an approximation of the true minimizer.

Convergence Because the minimizers of T zα are only approximate solutions of the un-
derlying equation (1.1), we have to ensure that the approximation becomes the
more exact the better the data z fits to the right-hand side y. This can be achieved
by adapting the stability of (1.3) to the data, that is, we choose the regularization
parameter α depending on z.

Convergence rates Convergence itself is more or less only of theoretic interest because
in general it could be arbitrarily slow. For practical purposes we have to give con-
vergence rates, that is, we have to bound the discrepancy between the minimizers
in (1.3) and the exact solutions of (1.1) in terms of the misfit between the data z
and the given right-hand side y.

Analogously to convergence rates, estimates for the stability of the minimization prob-
lem (1.3) are sometimes given in the literature (see, e.g., [SGG+09, Theorem 3.46]). But
since only numerical errors (which are typically small) are of interest there, stability es-
timates are not of such an importance as convergence rates, which describe the influence
of possibly large measurement errors.

Concerning the choice of the regularization parameter there are two fundamental
variants: a priori choices and a posteriori choices. In the first case the regularization
parameter depends only on some noise bound, whereas a posteriori choices take into

10



1.3. Other approaches for generalized Tikhonov regularization

account the concrete data element z. Usually one uses a priori choices to show which
convergence rates can be obtained from the theoretical point of view. In practice, data
dependent choices are applied. In this thesis we consider both variants.

To avoid confusion, we note that instead of Tikhonov-type regularization sometimes
also the term variational regularization is given in the literature. But, more precisely,
we use this term to denote the class of all non-iterative regularization methods. For
information about iterative regularization we refer to the books [EHN96, KNS08].

1.3. Other approaches for generalized Tikhonov regularization

We want to mention four approaches for Tikhonov-type regularization which differ
slightly from ours but are quite general, too. All four can be seen, more or less, as
special cases of our setting.

• The authors of [JZ10] consider fitting functionals which implicitly contain the
operator. With our notation and Z := Y they set S̃(x, y) := S(F (x), y) and
formulate all assumptions and theorems with S̃ instead of S and F . Corrupting
the interpretation of the spaces X, Y , and Z somewhat one sees that our approach
is more general than the one in [JZ10]: we simply have to set Y := X and F to be
the identity on X, which results in the Tikhonov-type functional S(x, z)+αΩ(x).
The operator of the equation to be solved has to be contained in the fitting
functional S.

• In [TLY98] a similar approach is chosen. The only difference is an additional
function f : [0,∞] → [0,∞] which is applied to the fitting functional, that is,
the authors use f ◦ S instead of S itself in the Tikhonov-type functional. Such a
decomposition allows to fine-tune the assumptions on the fitting term, but besides
this it provides no essential advantages.

• The present work has been inspired by the thesis [Pös08]. Thus, our approach
is quite similar to the one considered there, except that we take into account a
third space Z for the data. In [Pös08] only the case Z := Y has been investigated.
Another improvement is the weakening of the assumptions the fitting functional
has to satisfy for proving convergence rates.

• In [Gei09] and [FH10] the setting coincides up to minor improvements with the
one considered in [Pös08].

Especially the distinction between the space Y of right-hand sides and the space Z
of data elements is considered for the first time in this thesis. On the one hand this
additional feature forces us to develop new proofs instead of simply replacing norms by
the fitting functional S in existing proofs, and thus encourages a deeper understanding
of Tikhonov-type regularization methods. On the other hand the combination with
general topological spaces (instead of using Banach or Hilbert spaces) allows to establish
extended mathematical models for practical problems. The benefit of this new degree
of freedom will be demonstrated in Part II of the thesis.

11



1. Introduction

1.4. The standard examples

Investigation of Tikhonov-type regularization methods (1.3), at least for special cases,
has been started in the nineteen sixties by Andrei Nikolaevich Tikhonov. The reader
interested in the historical development of Tikhonov-type regularization may find in-
formation and references to the original papers in [TA76].

Analytic investigations mainly concentrated on two settings, which are described
below. We refer to these two settings as the standard Hilbert space setting and the
standard Banach space setting. They serve as illustrating examples several times in the
sequel.

Example 1.1 (standard Hilbert space setting). Let X and Y be Hilbert spaces and
set Z := Y . The topologies τX and τY shall be the corresponding weak topologies and
τZ shall be the norm topology on Y = Z. Further assume that A := F : X → Y
is a bounded linear operator. Setting S(y1, y2) := 1

2‖y1 − y2‖2 for y1, y2 ∈ Y and
Ω(x) := 1

2‖x‖2 for x ∈ X the objective function in (1.3) becomes the well-known
Tikhonov functional

T y
δ

α (x) = 1
2‖Ax− yδ‖2 + α

2 ‖x‖2

with yδ ∈ Y , δ ≥ 0, being some noisy measurement of the exact right-hand side y in
(1.1) and satisfying

‖yδ − y‖ ≤ δ.

The number δ ≥ 0 is called noise level. The distance between minimizers xy
δ

α ∈ X of

T y
δ

α and a solution x† ∈ X of (1.1) is typically expressed by ‖xyδα − x†‖.
This special case of variational regularization has been extensively investigated and

is well understood. For a detailed treatment we refer to [EHN96].

The Hilbert space setting has been extended in two ways: Instead of linear also
nonlinear operators are considered and the Hilbert spaces may be replaced by Banach
spaces.

Example 1.2 (standard Banach space setting). Let X and Y be Banach spaces and
set Z := Y . The topologies τX and τY shall be the corresponding weak topologies and
τZ shall be the norm topology on Y = Z. Further assume that F : D(F ) ⊆ X → Y is a
nonlinear operator with domain D(F ) and that the stabilizing functional Ω is convex.
Note, that in Section 1.1 we assume D(F ) = X. How to handle the situation D(F ) ( X
within our setting is shown in Proposition 2.9. Setting S(y1, y2) := 1

p‖y1 − y2‖p for
y1, y2 ∈ Y with p ∈ (0,∞) the objective function in (1.3) becomes

T y
δ

α (x) = 1
p‖F (x)− yδ‖p + αΩ(x)

with yδ ∈ Y , δ ≥ 0, being some noisy measurement of the exact right-hand side y in
(1.1) and satisfying

‖yδ − y‖ ≤ δ.

The number δ ≥ 0 is called noise level. The distance between minimizers xy
δ

α ∈ X

of T y
δ

α and a solution x† ∈ X of (1.1) is typically expressed by the Bregman distance

12



1.4. The standard examples

BΩ
ξ†(x

yδ
α , x†) with respect to some subgradient ξ† ∈ ∂Ω(x†) ⊆ X∗ (Bregman distances

are introduced in Definition B.3).
Tikhonov-type regularization methods for mappings from a Banach into a Hilbert

space in connection with Bregman distances have been considered for the first time
in [BO04]. The same setting is analyzed in [Res05]. Further results on the standard
Banach space setting may be found in [HKPS07] and also in [HH09, BH10, NHH+10].

13





2. Assumptions

2.1. Basic assumptions and definitions

The following assumptions are fundamental for all the results in this part of the thesis
and will be used in subsequent chapters without further notice. Within this chapter we
explicitly indicate their usage to avoid confusion.

Assumption 2.1. The mapping F : X → Y , the fitting functional S : Y ×Z → [0,∞]
and the stabilizing functional Ω : X → (−∞,∞] have the following properties:

(i) F is sequentially continuous with respect to τX and τY .

(ii) S is sequentially lower semi-continuous with respect to τY ⊗ τZ .

(iii) For each y ∈ Y and each sequence (zk)k∈N in Z with S(y, zk) → 0 there exists
some z ∈ Z such that zk → z.

(iv) For each y ∈ Y , each z ∈ Z satisfying S(y, z) <∞, and each sequence (zk)k∈N in
Z the convergence zk → z implies S(y, zk)→ S(y, z).

(v) The sublevel sets MΩ(c) := {x ∈ X : Ω(x) ≤ c} are sequentially compact with
respect to τX for all c ∈ R.

Remark 2.2. Equivalently to item (v) we could state that Ω is sequentially lower
semi-continuous and that the sets MΩ(c) are relatively sequentially compact.

Items (i), (ii), and (v) guarantee that the Tikhonov-type functional T zα in (1.3) is lower
semi-continuous, which is an important prerequisite to show existence of minimizers.
The desired stability of the minimization problem (1.3) comes from (v), and items (iii)
and (iv) of Assumption 2.1 regulate the interplay of right-hand sides and data elements.

Remark 2.3. To avoid longish formulations, in the sequel we write ‘closed’, ‘contin-
uous’, and so on instead of ‘sequentially closed’, ‘sequentially continuous’, and so on.
Since we do not need the non-sequential versions of these topological terms confusion
can be excluded.

An interesting question is, whether for given F , S, and Ω one can always find topolo-
gies τX , τY , and τZ such that Assumption 2.1 is satisfied. Table 2.1 shows that for
each of the three topologies there is at least one item in Assumption 2.1 bounding the
topology below, that is, the topology must not be too weak, and at least one item
bounding the topology above, that is, it must not be too strong. If for one topology
the lower bound lies above the upper bound, then Assumption 2.1 cannot be satisfied
by simply choosing the right topologies.
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2. Assumptions

(i) (ii) (iii) (iv) (v)

τX 7→ • • • 7→← [

τY ← [ 7→ • • •

τZ • 7→ ← [ 7→ •

Table 2.1.: Lower and upper bounds for the topologies τX , τY , and τZ (‘ 7→’ means that the
topology must not be too weak but can be arbitrarily strong to satisfy the corre-
sponding item of Assumption 2.1 and ‘←[’ stands for the converse assertion, that is,
the topology must not be too strong)

Unlike most other works on convergence theory of Tikhonov-type regularization meth-
ods we allow Ω to attain negative values. Thus, entropy functionals as an important
class of stabilizing functionals are covered without modifications (see [EHN96, Sec-
tion 5.3] for an introduction to maximum entropy methods). However, the assumptions
on Ω guarantee that Ω is bounded below.

Proposition 2.4. Let Assumption 2.1 be true. Then the stabilizing functional Ω is
bounded below.

Proof. Set c := infx∈X Ω(x) and exclude the trivial case c =∞. Then we find a sequence
(xk)k∈N in X with Ω(xk)→ c and thus, for sufficiently large k we have Ω(xk) ≤ c+ 1,
which is equivalent to xk ∈ MΩ(c + 1). Therefore there exists a subsequence (xkl)l∈N
converging to some x̃ ∈ X and the estimate Ω(x̃) ≤ lim inf l→∞Ω(xkl) = c implies
c = Ω(x̃) > −∞.

The lower semi-continuity of the fitting functional S provides the following conclusion
from Assumption 2.1 (iii).

Remark 2.5. Let Assumption 2.1 be satisfied. If for y ∈ Y there exists a sequence
(zk)k∈N with S(y, zk)→ 0 then there exists a data element z ∈ Z satisfying S(y, z) = 0.

Since in general Y 6= Z, the fitting functional S provides no direct way to check
whether two elements y1 ∈ Y and y2 ∈ Y coincide. Thus, we have to introduce a notion
of weak equality.

Definition 2.6. If for two elements y1, y2 ∈ Y there exists some z ∈ Z such that
S(y1, z) = 0 and S(y2, z) = 0, we say that y1 and y2 are S-equivalent with respect to z.
Further, we say that x1, x2 ∈ X are S-equivalent if F (x1) and F (x2) are S-equivalent.

The notion of S-equivalence can be extended to a kind of distance on Y ×Y induced
by S.

Definition 2.7. We define the distance SY : Y × Y → [0,∞] induced by S via

SY (y1, y2) := inf
z∈Z

(

S(y1, z) + S(y2, z)
)

for all y1, y2 ∈ Y .

Proposition 2.8. Let Assumption 2.1 be satisfied. Then the functional SY defined in
Definition 2.7 is symmetric and SY (y1, y2) = 0 if and only if y1 and y2 are S-equivalent.
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2.2. Special cases and examples

Proof. We only show that y1, y2 are S-equivalent if SY (y1, y2) = 0 (the remaining
assertions are obviously true). If SY (y1, y2) = 0, then there is a sequence (zk)k∈N such
that S(y1, zk) + S(y2, zk) → 0, in particular S(y1, zk) → 0. Thus, by item (iii) of
Assumption 2.1 there is some z̃ ∈ Z with zk → z̃ and therefore, by the lower semi-
continuity of S, we have S(y1, z̃) = 0 and S(y2, z̃) = 0. This shows that y1, y2 are
S-equivalent with respect to z̃.

The functional SY plays an important role in Chapter 4 as part of a sufficient condi-
tion for convergence rates.

2.2. Special cases and examples

Sometimes it is favorable to consider a space X which is larger than the domain of the
mapping F , for example to make X a Banach space. The following proposition shows
how to reduce such a situation to the one described in this thesis.

Proposition 2.9. Let (X̃, τX̃) be a topological space and assume that the continuous

mapping F̃ : D(F̃ ) ⊆ X̃ → Y has a closed domain D(F̃ ). Further, assume that
Ω̃ : X̃ → (−∞,∞] has compact sublevel sets. If we set X := D(F̃ ) and if τX is the
topology on X induced by τX̃ then the restrictions F := F̃ |X and Ω := Ω̃|X satisfy items
(i) and (v) of Assumption 2.1.

Proof. Only the compactness of the sublevel sets of Ω needs a short comment: obviously
MΩ(c) = MΩ̃(c) ∩D(F̃ ) and thus MΩ(c) is closed as an intersection of closed sets. In
addition we see MΩ(c) ⊆MΩ̃(c). Because closed subsets of compact sets are compact,
MΩ(c) is compact.

Assumption 2.1 and Definition 2.6 can be simplified if the measured data lie in the
same space as the right-hand sides. This is the standard assumption in inverse prob-
lems literature (see, e.g., [EHN96, SGG+09]) and with respect to non-metric fitting
functionals this setting was already investigated in [Pös08].

Proposition 2.10. Set Z := Y and assume that S : Y × Y → [0,∞] satisfies the
following properties:

(i) Two elements y1, y2 ∈ Y coincide if and only if S(y1, y2) = 0.

(ii) S is lower semi-continuous with respect to τY ⊗ τY .

(iii) For each y ∈ Y and each sequence (yk)k∈N the convergence S(y, yk) → 0 implies
yk → y.

(iv) For each y ∈ Y , each ỹ ∈ Y satisfying S(y, ỹ) <∞, and each sequence (yk)k∈N in
Y the convergence S(ỹ, yk)→ 0 implies S(y, yk)→ S(y, ỹ).

Then the following assertions are true:

• S induces a topology on Y such that a sequence (yk)k∈N in Y converges to some
y ∈ Y with respect to this topology if and only if S(y, yk) → 0. This topology is
stronger than τY .
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2. Assumptions

• Defining τZ to be the topology on Z = Y induced by S, items (ii), (iii), and (iv)
of Assumption 2.1 are satisfied.

• Two elements y1, y2 ∈ Y are S-equivalent if and only if y1 = y2.

Proof. We define the topology

τS :=
{

G ⊆ Y :
(

y ∈ G, yk ∈ Y, S(y, yk)→ 0
)

⇒
(

∃k0 ∈ N : yk ∈ G ∀k ≥ k0
)

}

to be the family of all subsets of Y consisting only of ‘interior points’. This is indeed a
topology: Obviously ∅ ∈ τS and Y ∈ τS. For G1, G2 ∈ τS we have

y ∈ G1 ∩G2, yk ∈ Y, S(y, yk)→ 0

⇒ ∃k1, k2 ∈ N : yk ∈ G ∀k ≥ k1, yk ∈ G2 ∀k ≥ k2
⇒ yk ∈ G1 ∩G2 ∀k ≥ k0 := max{k1, k2},

that is, G1 ∩G2 ∈ τS. In a similar way we find that τS is closed under infinite unions.
We now prove that yk

τS→ y if and only if S(y, yk)→ 0. First, note that yk
τ→ y with

some topology τ on Y holds if and only if for each G ∈ τ with y ∈ G also yk ∈ G
is true for sufficiently large k. From this observation we immediately get yk

τS→ y if
S(y, yk)→ 0. Now assume that yk

τS→ y and set

Mε(y) := {ỹ ∈ Y : S(y, ỹ) < ε}

for ε > 0. Because

ỹ ∈Mε(y), ỹk ∈ Y, S(ỹ, ỹk)→ 0

⇒ S(y, ỹk)→ S(y, ỹ) < ε (Assumption (iv))

⇒ ∃k0 ∈ N : S(y, ỹk) < ε ∀k ≥ k0
⇒ ỹk ∈Mε(y) ∀k ≥ k0

we have Mε(y) ∈ τS . By Assumption (i) we know y ∈ Mε(y) and therefore yk
τS→ y

implies yk ∈ Mε(y) for all sufficiently large k. Thus, S(y, yk) < ε for all sufficiently
large k, that is, S(y, yk)→ 0.

The next step is to show that τS is stronger than τY . So let G ∈ τY . Then we have

y ∈ G, yk ∈ Y, S(y, yk)→ 0

⇒ yk → y (Assumption (iii))

⇒ ∃k0 ∈ N : yk ∈ G ∀k ≥ k0,

which is exactly the property in the definition of τS , that is, G ∈ τS .
Now set Z := Y and τZ := τS. Then item (ii) of Assumption 2.1 follows from

Assumption (ii) because τZ is stronger than τY . With z := y Assumption 2.1 (iii) is
an immediate consequence of Assumption (iii). And (iv) of Assumption 2.1 is simply a
reformulation of Assumption (iv).

The third and last assertion of the proposition is quite obvious: If y1 and y2 are
S-equivalent with respect to some z ∈ Z then by Assumption (i) we know y1 = z = y2.
Conversely, if y1 = y2 then y1 and y2 are S-equivalent with respect to z := y1.
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2.2. Special cases and examples

Eventually, we show that the standard settings for Tikhonov-type regularization de-
scribed in Example 1.1 and in Example 1.2 fit well into our general framework.

Proposition 2.11. Let Y = Z be a normed vector space and let τY be the corresponding
weak topology. Then the fitting functional S : Y × Y → [0,∞) defined by

S(y1, y2) :=
1
p‖y1 − y2‖p

with p > 0 satisfies the assumptions of Proposition 2.10.

Proof. Item (i) of Propostion 2.10 is trivial, the lower semi-continuity of S follows from
[BP86, Chapter 1, Corollary 2.5], and the remaining two assumptions of Propostion 2.10
are obviously satisfied.

Proposition 2.12. Let X be a normed vector space and let τX be the corresponding
weak topology. Then the stabilizing functional Ω : X → [0,∞) defined by

Ω(x) := 1
q‖x− x̄‖q

with q > 0 and fixed x̄ ∈ X is weakly lower semi-continuous and its sublevel sets are
relatively weakly compact if and only if X is reflexive.

Proof. The weak lower semi-continuity of Ω is a consequence of [BP86, Chapter 1,
Corollary 2.5] and the assertion about the sublevel sets of Ω follows immediately from
[BP86, Chapter 1, Theorem 2.4].

The setting of Example 1.1 is obtained from Propositions 2.11 and 2.12 by setting
p = 2 and q = 2.

If the fitting functional S is the power of a norm we can give an explicit formula for
the distance SY induced by S.

Proposition 2.13. Let Y = Z be a normed vector space and define the fitting functional
S : Y × Y → [0,∞) by

S(y1, y2) :=
1
p‖y1 − y2‖p

for some p > 0. Then the corresponding distance SY : Y × Y → [0,∞] defined in
Definition 2.7 reads as

SY (y1, y2) =
c

p
‖y1 − y2‖p for all y1, y2 ∈ Y

with c := min{1, 21−p}.

Proof. Applying the triangle inequality and the inequality

(a+ b)p ≤ max{1, 2p−1}(ap + bp) for all a, b ≥ 0

(cf. [SGG+09, Lemma 3.20]) gives c
p‖y1 − y2‖p ≤ S(y1, y) + S(y2, y) for all y ∈ Y = Z,

that is, cp‖y1− y2‖p ≤ SY (y1, y2). And setting y := 1
2 (y1 + y2) for p ≥ 1 and y := y1 for

p < 1 proves equality.
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3. Fundamental properties of
Tikhonov-type minimization problems

In this chapter we prove that the minimization problem (1.3) has solutions, that these
solutions are stable with respect to the data z and with respect to inexact minimization,
and that problem (1.3) provides arbitrarily accurate approximations of the solutions to
(1.1). In addition, we provide some remarks on the discretization of (1.3). Throughout
this chapter we assume that Assumption 2.1 is satisfied.

The proofs of the three main theorems in this chapter use standard techniques and
are quite similar to the corresponding proofs given in [HKPS07] or [Pös08].

3.1. Generalized solutions

Since in general Y 6= Z, it may happen that the data elements z contain not enough
information about the exact right-hand side y to reconstruct a solution of (1.1) from
the measured data. Therefore we can only expect to find some x ∈ X such that F (x)
is S-equivalent to y (cf. Definition 2.6). We denote such x as S-generalized solutions.
Obviously, each true solution is also an S-generalized solution if there is some z ∈ Z
such that S(y, z) = 0.

As we will see in Section 3.4, the minimizers of (1.3) are approximations of a specific
type of S-generalized solutions, so called Ω-minimizing S-generalized solutions, which
are introduced by the following proposition.

Proposition 3.1. If for y ∈ Y there exists an S-generalized solution x̄ ∈ X of (1.1)
with Ω(x̄) <∞, then there exists an Ω-minimizing S-generalized solution of (1.1), that
is, there exists an S-generalized solution x† ∈ X which satisfies

Ω(x†) = inf{Ω(x) : x ∈ X, F (x) is S-equivalent to y}.

Proof. Set c := inf{Ω(x) : x ∈ X, F (x) is S-equivalent to y} and take a sequence
(xk)k∈N in X such that F (xk) is S-equivalent to y and Ω(xk)→ c. Because the sublevel
sets of Ω are compact and Ω(xk) ≤ c+ 1 for sufficiently large k, there is a subsequence
(xkl)l∈N of (xk) converging to some x̃ ∈ X. The continuity of F implies F (xkl)→ F (x̃).

Now take a sequence (zk)k∈N in Z such that F (xk) is S-equivalent to y with respect
to zk, that is, S(F (xk), zk) = 0 and S(y, zk) = 0. Because S(y, zk) → 0, we find
some z ∈ Z with zk → z. The lower semi-continuity of S implies S(y, z) = 0 and
S(F (x̃), z) ≤ lim inf l→∞ S(F (xkl), zkl) = 0. Thus, x̃ is an S-generalized solution. The
estimate

Ω(x̃) ≤ lim inf
l→∞

Ω(xkl) = lim
l→∞

Ω(xkl) = c

shows that x̃ is Ω-minimizing.
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3. Fundamental properties of Tikhonov-type minimization problems

3.2. Existence of minimizers

The following result on the existence of minimizers of the Tikhonov-type functional T zα
is sometimes denoted as ‘well-posedness’ of (1.3) and the term ‘existence’ is used for
the assertion of Proposition 3.1 (see, e.g., [HKPS07, Pös08]). Since well-posedness for
us means the opposite of ill-posedness in the sense described in Section 1.1, we avoid
using this term for results not directly connected to the ill-posedness phenomenon.

Theorem 3.2 (existence). For all z ∈ Z and all α ∈ (0,∞) the minimization problem
(1.3) has a solution. A minimizer x∗ ∈ X satisfies T zα(x

∗) < ∞ if and only if there
exists an element x̄ ∈ X with S(F (x̄), z) <∞ and Ω(x̄) <∞.

Proof. Set c := infx∈X T zα(x) and take a sequence (xk)k∈N in X with T zα(xk) → c. To
avoid trivialities we exclude the case c = ∞, which occurs if and only if there is no
x̄ ∈ X with S(F (x̄), z) <∞ and Ω(x̄) <∞. Then

Ω(xk) ≤
1

α
T zα(xk) ≤

1

α
(c+ 1)

for sufficiently large k and by the compactness of the sublevel sets of Ω there is a
subsequence (xkl)l∈N converging to some x̃ ∈ X. The continuity of F implies F (xkl)→
F (x̃) and the lower semi-continuity of S and Ω gives

T zα(x̃) ≤ lim inf
l→∞

T zα(xk) = c,

that is, x̃ is a minimizer of T zα .

3.3. Stability of the minimizers

For the numerical treatment of the minimization problem (1.3) it is of fundamental
importance that the minimizers are not significantly affected by numerical inaccuracies.
Examples for such inaccuracies are discretization and rounding errors. In addition,
numerical minimization procedures do not give real minimizers of the objective function;
instead, they provide an element at which the objective function is only very close to
its minimal value. The following theorem states that (1.3) is stable in this sense.
More precisely, we show that reducing numerical inaccuracies yields arbitrarily exact
approximations of the true minimizers.

Theorem 3.3 (stability). Let z ∈ Z and α ∈ (0,∞) be fixed and assume that (zk)k∈N
is a sequence in Z satisfying zk → z, that (αk)k∈N is a sequence in (0,∞) converging
to α, and that (εk)k∈N is a sequence in [0,∞) converging to zero. Further assume that
there exists an element x̄ ∈ X with S(F (x̄), z) <∞ and Ω(x̄) <∞.

Then each sequence (xk)k∈N with T zkαk(xk) ≤ infx∈X T zkαk(x) + εk has a τX-convergent
subsequence and for sufficiently large k the elements xk satisfy T zkαk(xk) < ∞. Each
limit x̃ ∈ X of a τX-convergent subsequence (xkl)l∈N is a minimizer of T zα and we have

T
zkl
αkl

(xkl) → T zα(x̃), Ω(xkl) → Ω(x̃) and thus also S(F (xkl), zkl) → S(F (x̃), z). If T zα
has only one minimizer x̂, then (xk) converges to x̂.
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3.3. Stability of the minimizers

Proof. The convergence zk → z together with S(F (x̄), z) < ∞ implies S(F (x̄), zk) →
S(F (x̄), z), that is, S(F (x̄), zk) < ∞ for sufficiently large k. Thus, without loss of
generality we assume S(F (x̄), zk) <∞ for all k ∈ N. From Theorem 3.2 we obtain the
existence of minimizers x∗k ∈ argminx∈X T

zk
αk
(x) and that T zkαk(x

∗
k) < ∞ for all k ∈ N.

Further, S(F (x̄), zk)→ S(F (x̄), z) implies

Ω(xk) ≤
1

αk
T zkαk(xk) ≤

1

αk
T zkαk(x

∗
k) +

εk
αk
≤ 1

αk
T zkαk(x̄) +

εk
αk

=
1

αk
S(F (x̄), zk) + Ω(x̄) +

εk
αk
≤ 2

α

(

S(F (x̄), z) + 1
)

+Ω(x̄) +
2

α
sup
l∈N

εl =: cΩ

for sufficiently large k and therefore, by the compactness of the sublevel sets of Ω, the
sequence (xk) has a τX-convergent subsequence.

Now let (xkl)l∈N be an arbitrary τX-convergent subsequence of (xk) and let x̃ ∈ X be
the limit of (xkl). Then for all xzα ∈ argminx∈X T

z
α(x) Theorem 3.2 shows S(F (xzα), z) <

∞ and Ω(xzα) <∞, and thus we get

T zα(x̃) ≤ lim inf
l→∞

T
zkl
α (xkl) ≤ lim sup

l→∞
T
zkl
α (xkl) = lim sup

l→∞

(

T
zkl
αkl

(xkl) + (α− αkl)Ω(xkl)
)

≤ lim sup
l→∞

(

T
zkl
αkl

(x∗kl) + εkl + |α− αkl ||Ω(xkl)|
)

≤ lim sup
l→∞

(

T
zkl
αkl

(xzα) + εkl + |α− αkl ||cΩ|
)

= lim
l→∞

(

S(F (xzα), zkl) + αklΩ(x
z
α) + εkl + |α− αkl ||cΩ|

)

= T zα(x
z
α),

that is, x̃ minimizes T zα . In addition, with xzα = x̃, we obtain

T zα(x̃) = lim
l→∞

T
zkl
αkl

(xkl).

Assume Ω(xkl) 9 Ω(x̃). Then

Ω(x̃) 6= lim inf
l→∞

Ω(xkl) or Ω(x̃) 6= lim sup
l→∞

Ω(xkl)

must hold, which implies

c := lim sup
l→∞

Ω(xkl) > Ω(x̃).

If (xlm)m∈N is a subsequence of (xkl) with Ω(xlm)→ c we get

lim
m→∞

S(F (xlm), zlm) = lim
m→∞

T
zlm
αlm (xlm)− lim

m→∞

(

αlmΩ(xlm)
)

= T zα(x̃)− αc
= S(F (x̃), z)− α(c −Ω(x̃)) < S(F (x̃), z),

which contradicts the lower semi-continuity of S.

Finally, assume that T zα has only one minimizer x̂. Since (xk)k∈N has a convergent
subsequence and each convergent subsequence has the limit x̂, by Proposition A.27 the
whole sequence (xk) converges to x̂.
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3. Fundamental properties of Tikhonov-type minimization problems

3.4. Convergence to generalized solutions

Now, that we know that (1.3) can be solved numerically, we have to prove that the
minimizers of (1.3) are approximations of the solutions to (1.1). In fact, we show that
the better a data element z represents the exact right-hand side y the more accurate
the approximation. To achieve this, the regularization parameter α has to be chosen
appropriately.

Theorem 3.4 (convergence). Let y ∈ Y and let (zk)k∈N be a sequence in Z satisfying
S(y, zk)→ 0. Further, let (αk)k∈N be a sequence in (0,∞) and let (xk)k∈N be a sequence
in X with xk ∈ argminx∈X T

zk
αk
(x).

If the choice of (αk) guarantees Ω(xk) ≤ c for some c ∈ R and sufficiently large k
and also S(F (xk), zk) → 0, then (xk) has a τX-convergent subsequence and each limit
of a τX-convergent subsequence (xkl)l∈N is an S-generalized solution of (1.1).

If in addition lim supk→∞Ω(xk) ≤ Ω(x̂) for all S-generalized solutions x̂ ∈ X of
(1.1), then each such limit x̃ is an Ω-minimizing S-generalized solution and Ω(x̃) =
liml→∞Ω(xkl). If (1.1) has only one Ω-minimizing S-generalized solution x†, then
(xk) has the limit x†.

Proof. The existence of a τX -convergent subsequence of (xk) is guaranteed by Ω(xk) ≤ c
for sufficiently large k. Let (xkl)l∈N be an arbitrary subsequence of (xk) converging to
some element x̃ ∈ X. Since S(y, zk)→ 0, there exists some z ∈ Z with zk → z, and the
lower semi-continuity of S together with the continuity of F implies

S(F (x̃), z) ≤ lim inf
l→∞

S(F (xkl), zkl) = 0,

that is, S(F (x̃), z) = 0. Thus, from S(y, z) ≤ lim infk→∞ S(y, zk) = 0 we see that x̃ is
an S-generalized solution of (1.1).

If lim supk→∞Ω(xk) ≤ Ω(x̂) for all S-generalized solutions x̂ ∈ X, then for each
S-generalized solution x̂ we get

Ω(x̃) ≤ lim inf
l→∞

Ω(xkl) ≤ lim sup
l→∞

Ω(xkl) ≤ Ω(x̂).

This estimate shows that x̃ is an Ω-minimizing S-generalized solution, and setting x̂ := x̃
we find Ω(x̃) = liml→∞Ω(xkl).

Finally, assume there is only one Ω-minimizing S-generalized solution x†. Then for
each limit x̃ of a convergent subsequence of (xk) we have x̃ = x† and therefore, by
Propostion A.27 the whole sequence (xk) converges to x†.

Having a look at Proposition 4.15 in Section 4.3 we see that the conditions Ω(xk) ≤ c
and lim supk→∞Ω(xk) ≤ Ω(x̂) in Theorem 3.4 constitute a lower bound for αk. On the
other hand, this proposition suggests that S(F (xk), zk)→ 0 bounds αk from above.

Remark 3.5. Since it is not obvious that a sequence (αk)k∈N satisfying the assumptions
of Theorem 3.4 exists, we have to show that there is always such a sequence: Let y,
(zk)k∈N, and (xk)k∈N be as in Theorem 3.4 and assume that there exists an S-generalized
solution x̄ ∈ X of (1.1) with Ω(x̄) <∞ and S(F (x̄), zk)→ 0. If we set

αk :=

{

1
k , if S(F (x̄), zk) = 0,
√

S(F (x̄), zk), if S(F (x̄), zk) > 0,
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3.5. Discretization

then

S(F (xk), zk) = T zkαk(xk)− αkΩ(xk) ≤ T
zk
αk
(x̄)− αkΩ(xk)

= S(F (x̄), zk) + αk
(

Ω(x̄)− Ω(xk)
)

≤ S(F (x̄), zk) + αk
(

Ω(x̄)− inf
x∈X

Ω(x)
)

→ 0

and

Ω(xk) ≤
1

αk
T zkαk(xk) ≤

1

αk
T zkαk(x̄) = Ω(x̄) +

S(F (x̄), zk)

αk
→ Ω(x̄).

An a priori parameter choice satisfying the assumptions of Theorem 3.4 is given in
Corollary 4.2 and an a posteriori parameter choice applicable in practice is the subject
of Section 4.3 (see Corollary 4.22 for the verification of the assumptions on (αk)).

3.5. Discretization

In this section we briefly discuss how to discretize the minimization problem (1.3). The
basic ideas for appropriately extending Assumption 2.1 are taken from [PRS05], where
discretization of Tikhonov-type methods in nonseparable Banach spaces is discussed.

Note that we do not discretize the spaces Y and Z here. The space Y of right-hand
sides is only of analytic interest and the data space Z is allowed to be finite-dimensional
in the setting investigated in the previous chapters. Only the elements of the space
X, which in general is infinite-dimensional in applications, have to be approximated
by elements from finite-dimensional spaces. Therefore let (Xn)n∈N be an increasing
sequence of τX-closed subspaces X1 ⊆ X2 ⊆ . . . ⊆ X of X equipped with the topology
induced by τX . Typically, the Xn are finite-dimensional spaces. Thus, the minimization
of T zα over Xn can be carried out numerically.

The main result of this section is based on the following assumption.

Assumption 3.6. For each x ∈ X there is a sequence (xn)n∈N with xn ∈ Xn such that
S(F (xn), z)→ S(F (x), z) for all z ∈ Z and Ω(xn)→ Ω(x).

This assumption is rather technical. The next assumption formulates a set of suffi-
cient conditions which are more accessible.

Assumption 3.7. Let τ+X and τ+Y be topologies on X and Y , respectively, and assume
that the following items are satisfied:

(i) S(•, z) : Y → [0,∞] is continuous with respect to τ+Y for all z ∈ Z.

(ii) Ω is continuous with respect to τ+X .

(iii) F is continuous with respect to τ+X and τ+Y .

(iv) The union of (Xn) is dense in X with respect to τ+X , that is,

⋃

n∈N
Xn

τ+X
= X.
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3. Fundamental properties of Tikhonov-type minimization problems

Obviously Assumption 3.6 is a consequence of Assumption 3.7.

Remark 3.8. Note that we always find topologies τ+X and τ+Y such that items (i), (ii),
and (iii) of Assumption 3.7 are satisfied. Usually, these topologies will be stronger than
τX and τY (indicated by the ‘+’ sign). The crucial limitation is item (iv). Especially if
X is a nonseparable space one has to be very careful in choosing appropriate topologies
τ+X and τ+Y and suitable subspaces Xn. For concrete examples we refer to [PRS05].

Remark 3.9. As noted above we assume that the subspaces Xn are τX-closed. There-
fore Assumption 2.1 is still satisfied if X is replaced by Xn (with the topology induced
by τX). Consequently, the results on existence (Theorem 3.2) and stability (Theo-
rem 3.3) also apply if T zα in (1.3) is minimized over Xn instead of X. For the sake of
completeness we mention that we can guarantee the existence of elements x̄n ∈ Xn with
S(F (x̄n), z) <∞ and Ω(x̄n) <∞ if there is x̄ ∈ X with S(F (x̄), z) <∞ and Ω(x̄) <∞
and if n is sufficiently large. This is an immediate consequence of Assumption 3.6.

The following corollary of Theorem 3.3 (stability) states that the minimizers of T zα
over X can be approximated arbitrarily exact by the minimizers of T zα over Xn if n is
chosen large enough.

Corollary 3.10. Let Assumption 3.6 by satisfied, let z ∈ Z and α ∈ (0,∞) be fixed,
and let (xn)n∈N be a sequence of minimizers xn ∈ argminx∈Xn T

z
α(x). Further assume

that there exists an element x̄ ∈ X with S(F (x̄), z) <∞ and Ω(x̄) <∞.
Then (xn) has a τX-convergent subsequence and for sufficiently large n the elements

xn satisfy T zα(xn) <∞. Each limit x̃ ∈ X of a τX-convergent subsequence (xnl)l∈N is a
minimizer of T zα over X and we have T zα(xnl)→ T zα(x̃), Ω(xnl) → Ω(x̃), and thus also
S(F (xnl), z)→ S(F (x̃), z). If T zα has only one minimizer x̂, then (xn) converges to x̂.

Proof. From Theorem 3.2 in combination with Remark 3.9 we obtain the existence of
minimizers xn ∈ argminx∈Xn T

z
α(x) and that T zα(xn) < ∞ for sufficiently large n ∈ N.

We verify the assumptions of Theorem 3.3 for k := n, zn := z, αn := α, and εn :=
T zα(xn)− T zα(x∗) with some minimizer x∗ ∈ argminx∈X T

z
α(x). The only thing we have

to show is εn → 0. For this purpose take a sequence (x∗n)n∈N of approximations x∗n ∈ Xn

such that S(F (x∗n), z)→ S(F (x∗), z) and Ω(x∗n)→ Ω(x∗) (cf. Assumption 3.6). Then

0 ≤ εn = T zα(xn)− T zα(x∗) ≤ T zα(x∗n)− T zα(x∗)→ 0.

Now all assertions follow from Theorem 3.3.
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4. Convergence rates

We consider equation (1.1) with fixed right-hand side y := y0 ∈ Y . By x† ∈ X we
denote one fixed Ω-minimizing S-generalized solution of (1.1), where we assume that
there exists an S-generalized solution x̄ ∈ X with Ω(x̄) < ∞ (then Proposition 3.1
guarantees the existence of Ω-minimizing S-generalized solutions).

4.1. Error model

Convergence rate results describe the dependence of the solution error on the data
error if the data error is small. So at first we have to decide how to measure these
errors. For this purpose we introduce a functional Dy0 : Z → [0,∞] measuring the
distance between the right-hand side y0 and a data element z ∈ Z. On the solution
space X we introduce a functional Ex† : X → [0,∞] measuring the distance between
the Ω-minimizing S-generalized solution x† and an approximate solution x ∈ X. We
want to obtain bounds for the solution error Ex†(x

z
α) in terms of Dy0(z), where z is the

given data and xzα is a corresponding minimizer of the Tikhonov-type functional (1.3).

4.1.1. Handling the data error

In practice we do not know the exact data error Dy0(z), but at least we should have
some upper bound at hand, the so called noise level δ ∈ [0,∞). Given δ, by

Zδy0 := {z ∈ Z : Dy0(z) ≤ δ}

we denote the set of all data elements adhering to the noise level δ. To guarantee
Zδy0 6= ∅ for each δ ≥ 0, we assume that there is some z ∈ Z with Dy0(z) = 0.

Of course, we have to connect Dy0 to the Tikhonov-type functional (1.3) to obtain
any useful result on the influence of data errors on the minimizers of the functional.
This connection is established by the following assumption, which we assume to hold
throughout this chapter.

Assumption 4.1. There exists a monotonically increasing function ψ : [0,∞)→ [0,∞)
satisfying ψ(δ)→ 0 if δ → 0, ψ(δ) = 0 if and only if δ = 0, and

S(ỹ, z) ≤ ψ(Dy0(z))

for all ỹ ∈ Y which are S-equivalent to y0 and for all z ∈ Z with Dy0(z) <∞.

This assumption provides the estimate

S(F (x), zδ) ≤ ψ(Dy0(z
δ)) ≤ ψ(δ) <∞ (4.1)
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4. Convergence rates

for all S-generalized solutions x of (1.1) and for all zδ ∈ Zδy0 . Thus, we obtain the

following version of Theorem 3.4 with an a priori parameter choice (that is, the regu-
larization parameter α does not depend on the concrete data element z but only on the
noise level δ).

Corollary 4.2. Let (δk)k∈N be a sequence in [0,∞) converging to zero, take an arbitrary
sequence (zk)k∈N with zk ∈ Zδk

y0
, and choose a sequence (αk)k∈N in (0,∞) such that

αk → 0 and ψ(δk)
αk
→ 0. Then for each sequence (xk)k∈N with xk ∈ argminx∈X T

zk
αk
(x)

all the assertions of Theorem 3.4 about subsequences of (xk) and their limits are true.

Proof. We show that the assumptions of Theorem 3.4 are satisfied for y := y0 and
x̄ := x†. Obviously S(y0, zk) → 0 by Assumption 4.1. Further, S(F (x†), zk) → 0 by
(4.1), which implies

S(F (xk), zk) = T zkαk(xk)− αkΩ(xk) ≤ T
zk
αk
(x†)− αkΩ(xk)

= S(F (x†), zk) + αk
(

Ω(x†)− Ω(xk)
)

≤ S(F (x†), zk) + αk
(

Ω(x†)− inf
x∈X

Ω(x)
)

→ 0.

Thus, it only remains to show lim supk→∞Ω(xk) ≤ Ω(x̂) for all S-generalized solutions
x̂. But this follows immediately from

Ω(xk) ≤
1

αk
T zkαk(xk) ≤

1

αk
T zkαk(x̂) =

S(F (x̂), zk)

αk
+Ω(x̂) ≤ ψ(δk)

αk
+Ω(x̂),

where we used (4.1).

The following example shows how to specialize our general data model to the typical
Banach space setting.

Example 4.3. Consider the standard Banach space setting introduced in Example 1.2,
that is, Y = Z and S(y1, y2) = 1

p‖y1 − y2‖p for some p ∈ (0,∞). Setting Dy0(y) :=

‖y− y0‖ and ψ(δ) := 1
pδ
p Assumption 4.1 is satisfied and the estimate S(y0, zδ) ≤ ψ(δ)

for zδ ∈ Zδy0 (cf. (4.1)) is equivalent to the standard assumption ‖yδ − y0‖ ≤ δ. Note
that in this setting by Proposition 2.10 two elements y1, y2 ∈ Y are S-equivalent if and
only if y1 = y2.

4.1.2. Handling the solution error

To obtain bounds for the solution error Ex†(x
z
α) in terms of the data error Dy0(z) or in

terms of the corresponding noise level δ we have to connect Ex† to the Tikhonov-type
functional (1.3). Establishing such a connection requires some preparation.

At first we note that for the distance SY : Y ×Y → [0,∞] introduced in Definition 2.7
we have the triangle-type inequality

SY (y1, y2) ≤ S(y1, z) + S(y2, z) for all y1, y2 ∈ Y and all z ∈ Z. (4.2)

The additional functional SY , as well as the notion of S-equivalence (see Definition 2.6),
is the price to pay when considering the case Y 6= Z. But it is the triangle-type
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4.1. Error model

inequality (4.2) which allows to handle non-metric fitting functionals. Even in the
case Y = Z this inequality is weaker (or at least not stronger) than the usual triangle
inequality S(y1, y2) ≤ S(y1, y3) + S(y2, y3); but it is strong enough to pave the way for
obtaining convergence rates results.

The key to controlling the very general error measure Ex† is the following observation.

Lemma 4.4. Let δ ∈ [0,∞), zδ ∈ Zδy0 , α ∈ (0,∞), and xz
δ

α ∈ argminx∈X T
zδ
α (x).

Further, let ϕ : [0,∞)→ [0,∞) be a monotonically increasing function. Then

Ω(xz
δ

α )− Ω(x†) + ϕ
(

SY (F (x
zδ
α ), F (x†))

)

≤ 1

α

(

ψ(δ) − S(F (xzδα ), zδ)
)

+ ϕ
(

ψ(δ) + S(F (xz
δ

α ), zδ)
)

.

Proof. We simply use the minimizing property of xz
δ

α and estimates (4.1) and (4.2):

Ω(xz
δ

α )− Ω(x†) + ϕ
(

SY (F (x
zδ

α ), F (x†))
)

=
1

α

(

T z
δ

α (xz
δ

α )− αΩ(x†)− S(F (xzδα ), zδ)
)

+ ϕ
(

SY (F (x
zδ
α ), F (x†))

)

≤ 1

α

(

S(F (x†), zδ)− S(F (xzδα ), zδ)
)

+ ϕ
(

S(F (xz
δ

α ), zδ) + S(F (x†), zδ)
)

≤ 1

α

(

ψ(δ) − S(F (xzδα ), zδ)
)

+ ϕ
(

S(F (xz
δ

α ), zδ) + ψ(δ)
)

.

The left-hand side in the lemma does not depend directly on the data zδ or on the
noise level δ, whereas the right-hand side is independent of the exact solution x† and
of the exact right-hand side y0. Of course, at the moment it is not clear whether the
estimate in Lemma 4.4 is of any use. But we will see below that it is exactly this
estimate which provides us with convergence rates.

In the light of Lemma 4.4 we would like to have

Ex†(x
zδ
α ) ≤ Ω(xz

δ

α )− Ω(x†) + ϕ
(

SY (F (x
zδ
α ), F (x†))

)

for all minimizers xz
δ

α . But since the connection between Ex† and the Tikhonov-type
functional should be independent of the a priori unknown data zδ and therefore also
of the minimizers xz

δ

α , we have to demand such an estimate from all x in a sufficiently
large set M ⊆ X. Here, ‘sufficiently large’ has to be understood in the following sense:

Assumption 4.5. Given a parameter choice (δ, zδ) 7→ α(δ, zδ) let M ⊆ X be a set
such that SY (F (x), F (x

†)) <∞ for all x ∈M and such that there is some δ̄ > 0 with

⋃

zδ∈Zδ
y0

argmin
x∈X

T z
δ

α(δ,zδ)(x) ⊆M for all δ ∈ (0, δ̄].

Obviously M = X satisfies Assumption 4.5. The following proposition gives an
example of a smaller set M if the regularization parameter α is chosen a priori as
in Corollary 4.2. A similar construction for a set containing the minimizers of the
Tikhonov-type functional is used in [HKPS07, Pös08].
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4. Convergence rates

Proposition 4.6. Let ᾱ > 0 and ̺ > Ω(x†) and let δ 7→ α(δ) be a parameter choice

satisfying α(δ) → 0 and ψ(δ)
α(δ) → 0 if δ → 0. Then

M := {x ∈ X : SY (F (x), F (x
†)) + ᾱΩ(x) ≤ ̺ᾱ}

satisfies Assumption 4.5.

Proof. Because α(δ)→ 0 and ψ(δ)
α(δ) → 0 if δ → 0 there exists some δ̄ > 0 with α(δ) ≤ ᾱ

and ψ(δ)
α(δ) ≤ 1

2(̺−Ω(x†)) for all δ ∈ (0, δ̄]. For the sake of brevity we now write α instead

of α(δ).

Using (4.2), (4.1), 1 ≤ ᾱ
α , and 2ψ(δ)α + Ω(x†) ≤ ̺, for each δ ∈ (0, δ̄], each zδ ∈ Zδy0 ,

and each minimizer xz
δ

α of T z
δ

α we have

SY (F (x
zδ
α ), F (x†)) + ᾱΩ(xz

δ

α )

≤ S(F (xzδα ), zδ) + ψ(δ) + ᾱΩ(xz
δ

α ) = ψ(δ) +
ᾱ

α
T z

δ

α (xz
δ

α )−
( ᾱ

α
− 1
)

S(F (xz
δ

α ), zδ)

≤ ψ(δ) + ᾱ

α
T z

δ

α (x†) ≤
(

1 +
ᾱ

α

)

ψ(δ) + ᾱΩ(x†) ≤ ᾱ
(

2
ψ(δ)

α
+Ω(x†)

)

≤ ̺ᾱ,

that is, xz
δ

α ∈M .

Now we are in the position to state the connection between the solution error Ex†
and the Tikhonov-type functional (1.3).

Assumption 4.7. Let M ⊆ X and assume that there exist a constant β ∈ (0,∞) and
a monotonically increasing function ϕ : [0,∞)→ [0,∞) such that

βEx†(x) ≤ Ω(x)− Ω(x†) + ϕ
(

SY (F (x), F (x
†))
)

for all x ∈M. (4.3)

Showing that the exact solution x† satisfies an inequality of the form (4.3) on a set
fulfilling Assumption 4.5 will be the main task when proving convergence rates. Using,
e.g., norms or Bregman distances for the solution error Ex† , inequality (4.3) becomes a
kind of smoothness assumption on x†. We have a detailed look at such inequalities in
Part III.

Inequalities of type (4.3) appeared first in [HKPS07] as ‘variational inequalities’.
There they have been introduced for the standard Banach space setting of Example 1.2
with ϕ(t) = ct1/p, c > 0 (see also [SGG+09, Section 3.2] for results on this special
case). Details on how to specialize our general model for measuring the solution er-
ror to that setting will be given below in Example 4.8. An extension of variational
inequalities to more general Tikhonov-type methods, again only for one fixed function
ϕ, has been given in [Pös08]. For the standard Banach space setting the technique
has been extended in [HH09] using arbitrary monomials ϕ, that is, the restriction of
ϕ to the reciprocal of the norm exponent in the fitting functional has been dropped.
In [Gei09, FH10] the two mentioned extensions are combined. Variational inequalities
with more general ϕ are considered in [BH10] for a slightly extended Banach space
setting and first results using the, to our knowledge, up to now most general version
(4.3) of variational inequalities have been published in [Fle10a]. The setting and proof
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4.2. Convergence rates with a priori parameter choice

techniques considered in [Gra10a] differ only slightly from [Fle10b], but the formulation
of the results there is not as general as ours. Here we should mention that the corre-
sponding preprints [Fle10b] and [Gra10b] appeared almost at the same time. Examples
of variational inequalities with non-standard error measures Ex† are given in [BL09,
Lemmas 4.4 and 4.6] and [Gra10a].

The cited literature only considers Tikhonov-type regularization methods. But the
technique of variational inequalities has also been used, even though rarely, to ob-
tain convergence rates for other regularization methods (see, e.g., [Hei08a, GHS09]).
In Part III we will see that at least for linear problems in Hilbert spaces variational
inequalities provide convergence rates for a wide class of linear regularization methods.

The following example shows how to specialize our general error model to the standard
Banach space setting.

Example 4.8. Consider the standard Banach space setting introduced in Example 1.2
(see also Example 4.3), that is, X and Y = Z are Banach spaces and S(y1, y2) =
1
p‖y1 − y2‖p for some p ∈ (0,∞). As error measure Ex† in Banach spaces one usually
uses the Bregman distance

Ex†(x) := BΩ
ξ†(x, x

†) = Ω(x)− Ω(x†)− 〈ξ†, x− x†〉

with respect to some subgradient ξ† ∈ ∂Ω(x†) (cf. Example 1.2). Note that a Bregman
distance can only be defined if ∂Ω(x†) 6= ∅.

In Proposition 2.13 we have seen SY (y1, y2) = 1
p min{1, 21−p}‖y1 − y2‖p. Together

with ϕ(t) := ctκ/p for κ ∈ (0,∞) and some c > 0 the variational inequality (4.3) attains
the form

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c̃‖F (x) − F (x†)‖κ

with c̃ > 0. This variational inequality is equivalent to

−〈ξ†, x− x†〉 ≤ β1BΩ
ξ†(x, x

†) + β2‖F (x)− F (x†)‖κ

with constants β1 := 1−β and β2 := c̃. The last inequality is of the type introduced in
[HKPS07] for κ = 1 and in [HH09] for general κ.

4.2. Convergence rates with a priori parameter choice

In this section we give a first convergence rates result using an a priori parameter choice.
The obtained rate only depends on the function ϕ in the variational inequality (4.3).
For future reference we formulate the following properties of this function ϕ.

Assumption 4.9. The function ϕ : [0,∞)→ [0,∞) satisfies:

(i) ϕ is monotonically increasing, ϕ(0) = 0, and ϕ(t)→ 0 if t→ 0;

(ii) there exists a constant γ > 0 such that ϕ is concave and strictly monotonically
increasing on [0, γ];
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4. Convergence rates

(iii) the inequality

ϕ(t) ≤ ϕ(γ) +
(

inf
τ∈[0,γ)

ϕ(γ) − ϕ(τ)
γ − τ

)

(t− γ)

is satisfied for all t > γ.

If ϕ satisfies items (i) and (ii) of Assumption 4.9 and if ϕ is differentiable in γ, then
item (iii) is equivalent to

ϕ(t) ≤ ϕ(γ) + ϕ′(γ)(t − γ) for all t > γ.

For example, ϕ(t) = tµ, µ ∈ (0, 1], satisfies Assumption 4.9 for each γ > 0. The function

ϕ(t) =

{

(− ln t)−µ, t ≤ e−µ−1,
(

1
µ+1

)µ
+ µ

(

e
µ+1

)µ+1
(t− e−µ−1), else

with µ > 0 has a sharper cusp at zero than monomials and satisfies Assumption 4.9 for
γ ∈ (0, e−µ−1].

In preparation of the main convergence rates result of this thesis we prove the fol-
lowing error estimates. The idea to use conjugate functions (see Definition B.4) for
expressing the error bounds comes from [Gra10a].

Lemma 4.10. Let x† satisfy Assumption 4.7. Then

βEx†(x
zδ
α ) ≤ 2

ψ(δ)

α
+ (−ϕ)∗

(

− 1

α

)

if xz
δ

α ∈M,

where α > 0, δ ≥ 0, zδ ∈ Zδy0 , and xz
δ

α ∈ argminx∈X T
zδ
α (x). If ϕ is invertible with

inverse ϕ−1 : R(ϕ)→ [0,∞), then

βEx†(x
zδ
α ) ≤ 2

ψ(δ)

α
+

1

α

(

ϕ−1
)∗
(α) if xz

δ

α ∈M.

Proof. By Lemma 4.4 and inequality (4.3) we have

βEx†(x
zδ
α ) ≤ 1

α

(

ψ(δ) − S(F (xzδα ), zδ)
)

+ ϕ
(

S(F (xz
δ

α ), zδ) + ψ(δ)
)

and therefore

βEx†(x
zδ
α ) ≤ 2

ψ(δ)

α
+ ϕ

(

S(F (xz
δ

α ), zδ) + ψ(δ)
)

− 1

α

(

S(F (xz
δ

α ), zδ) + ψ(δ)
)

≤ 2
ψ(δ)

α
+ sup

t≥0

(

ϕ(t)− 1

α
t
)

Now the first estimate in the lemma follows from

sup
t≥0

(

ϕ(t)− 1

α
t
)

= sup
t≥0

(

− 1

α
t− (−ϕ)(t)

)

= (−ϕ)∗
(

− 1

α

)

and the second from

sup
t≥0

(

ϕ(t) − 1

α
t
)

= sup
s∈R(ϕ)

(

s− 1

α
ϕ−1(s)

)

=
1

α
sup

s∈R(ϕ)

(

αs− ϕ−1(s)
)

=
1

α

(

ϕ−1
)∗
(α).

32



4.2. Convergence rates with a priori parameter choice

The following main result is an adaption of Theorem 4.3 in [BH10] to our generalized
setting. A similar result for the case Z := Y can be found in [Gra10a]. Unlike the
corresponding proofs given in [BH10] and [Gra10a] our proof avoids the use of Young-
type inequalities or differentiability assumptions on (−ϕ)∗ or

(

ϕ−1
)∗
. Therefore it works

also for non-differentiable functions ϕ in the variational inequality (4.3).

Theorem 4.11 (convergence rates). Let x† satisfy Assumption 4.7 such that the asso-
ciated function ϕ satisfies Assumption 4.9 and let δ 7→ α(δ) be a parameter choice such
that

inf
τ∈[0,ψ(δ))

ϕ(ψ(δ)) − ϕ(τ)
ψ(δ) − τ ≥ 1

α(δ)
≥ sup

τ∈(ψ(δ),γ]

ϕ(τ)− ϕ(ψ(δ))
τ − ψ(δ) (4.4)

for all δ > 0 with ψ(δ) < γ, where ψ and γ come from Assumptions 4.1 and 4.9,
respectively. Further, let M satisfy Assumption 4.5. Then there is some δ̄ > 0 such
that

Ex†
(

xz
δ

α(δ)

)

≤ 2

β
ϕ(ψ(δ)) for all δ ∈ (0, δ̄],

where zδ ∈ Zδy0 and xz
δ

α(δ) ∈ argminx∈X T
zδ

α(δ)(x). The constant β comes from Assump-
tion 4.7.

Before we prove the theorem the a priori parameter choice (4.4) requires some com-
ments.

Remark 4.12. By item (ii) of Assumption 4.9 a parameter choice satisfying (4.4)
exists, that is,

∞ > inf
τ∈[0,t)

ϕ(t)− ϕ(τ)
t− τ ≥ sup

τ∈(t,γ]

ϕ(τ)− ϕ(t)
τ − t > 0

for all t ∈ (0, γ).
By (4.4) we have

ψ(δ)

α(δ)
≤ ψ(δ)ϕ(ψ(δ)) − ϕ(0)

ψ(δ) − 0
= ϕ(ψ(δ)) → 0 if δ → 0 (δ > 0)

and if supτ∈(t,γ]
ϕ(τ)−ϕ(t)

τ−t → ∞ if t → 0 (t > 0), then α(δ) → 0 if δ → 0 (δ > 0).
Thus, if the supremum goes to infinity, the parameter choice satisfies the assumptions
of Corollary 4.2 and of Proposition 4.6.

If supτ∈(t,γ]
ϕ(τ)−ϕ(t)

τ−t ≤ c for some c > 0 and all t ∈ (0, t0], t0 > 0, then ϕ(s) ≤ cs for
all s ∈ [0,∞). To see this, take s ∈ (0, γ] and t ∈ (0,min{s, t0}). Then

ϕ(s)− ϕ(t)
s− t ≤ sup

τ∈(t,γ]

ϕ(τ)− ϕ(t)
τ − t ≤ c

and thus, ϕ(s) ≤ cs + ϕ(t) − ct. Letting t → 0 we obtain ϕ(s) ≤ cs for all s ∈ (0, γ].
For s > γ by item (iii) we have

ϕ(s) ≤ ϕ(γ) +
(

inf
τ∈[0,γ)

ϕ(γ)− ϕ(τ)
γ − τ

)

(s− γ) ≤ ϕ(γ) + ϕ(γ)

γ
(s− γ) ≤ cγ

γ
s = cs.

The case ϕ(s) ≤ cs for all s ∈ [0,∞) is a singular situation. Details are given in
Proposition 4.14 below.
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Remark 4.13. If ϕ is differentiable in (0, γ) then the parameter choice (4.4) is equiv-
alent to

α(δ) =
1

ϕ′(ψ(δ))
.

Now we prove the theorem.

Proof of Theorem 4.11. We write α instead of α(δ).

By Assumption 4.5 we have xz
δ

α ∈M for sufficiently small δ > 0. Thus, Lemma 4.10
gives

βEx†
(

xz
δ

α

)

≤ 2
ψ(δ)

α
+ sup
τ∈[0,∞)

(

ϕ(τ)− 1

α
τ
)

.

If we can show, for sufficiently small δ and α as proposed in the theorem, that

ϕ(τ) − 1

α
τ ≤ ϕ(ψ(δ)) − 1

α
ψ(δ) for all τ ≥ 0, (4.5)

then we obtain

βEx†
(

xz
δ

α

)

≤ ψ(δ)

α
+ ϕ(ψ(δ)) ≤ ψ(δ) inf

τ∈[0,ψ(δ))

ϕ(ψ(δ)) − ϕ(τ)
ψ(δ) − τ + ϕ(ψ(δ))

≤ ψ(δ)ϕ(ψ(δ)) − ϕ(0)
ψ(δ) − 0

+ ϕ(ψ(δ)) = 2ϕ(ψ(δ)).

Thus, it remains to show (4.5).
First we note that for fixed t ∈ (0, γ) and all τ > γ item (iii) of Assumption 4.9

implies

ϕ(τ) − ϕ(t)
τ − t ≤ 1

τ − t

(

ϕ(γ) +

(

inf
σ∈[0,γ)

ϕ(γ) − ϕ(σ)
γ − σ

)

(τ − γ)− ϕ(t)
)

≤ 1

τ − t

(

ϕ(γ) +
ϕ(γ) − ϕ(t)

γ − t (τ − γ)− ϕ(t)
)

=
ϕ(γ)− ϕ(t)

γ − t .

Using this estimate with t = ψ(δ) we can extend the supremum in the lower bound for
1
α in (4.4) from τ ∈ (ψ(δ), γ] to τ ∈ (ψ(δ),∞), that is,

inf
τ∈[0,ψ(δ))

ϕ(ψ(δ)) − ϕ(τ)
ψ(δ) − τ ≥ 1

α
≥ sup

τ∈(ψ(δ),∞)

ϕ(τ) − ϕ(ψ(δ))
τ − ψ(δ)

or, equivalently,

ϕ(ψ(δ)) − ϕ(τ)
ψ(δ) − τ ≥ 1

α
for all τ ∈ [0, ψ(δ)) and

ϕ(τ)− ϕ(ψ(δ))
τ − ψ(δ) ≤ 1

α
for all τ ∈ (ψ(δ),∞).

These two inequalities together are equivalent to

1

α
(ψ(δ) − τ) ≤ ϕ(ψ(δ)) − ϕ(τ) for all τ ≥ 0

and simple rearrangements yield (4.5).
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4.3. The discrepancy principle

Note that Theorem 4.11 covers only the case δ > 0. If δ = 0, then we would intuitively
choose α(δ) = 0. But for α = 0 the minimization problem (1.3) is not stable and it may
happen that it has no solution. Thus, also in the case δ = 0 we have to choose α > 0.
Lemma 4.10 then provides the estimate

Ex†(x
z0
α ) ≤ 1

β
(−ϕ)∗

(

− 1

α

)

.

In connection with δ = 0 the authors of [BO04] observed a phenomenon called exact
penalization. This means that for δ = 0 and sufficiently small α > 0 the solution
error Ex†(x

z0
α ) is zero. In [BO04] a Banach space setting similar to Example 4.8 with

p = 1 and κ = 1 was considered. In our more general setting we observe the same
phenomenon:

Proposition 4.14. Let x† satisfy Assumption 4.7. If ϕ(t) ≤ ct for some c > 0 and all
t ∈ [0,∞), then

Ex†(x
zδ
α ) ≤ 2

β

ψ(δ)

α
if xz

δ

α ∈M and α ∈
(

0, 1c
]

,

where δ ≥ 0, zδ ∈ Zδy0 , and xz
δ

α ∈ argminx∈X T
zδ
α (x). That is, choosing a fixed α̃ ∈ (0, 1c ]

we obtain

Ex†(x
zδ

α̃ ) = O(ψ(δ)) if δ → 0.

Proof. By Lemma 4.10 we have

βEx†(x
zδ
α ) ≤ 2

ψ(δ)

α
+ (−ϕ)∗

(

− 1

α

)

if xz
δ

α ∈M

and using ϕ(t) ≤ ct and α ≤ 1
c we see

(−ϕ)∗
(

− 1

α

)

= sup
t≥0

(

ϕ(t) − 1

α
t
)

≤ sup
t≥0

(

ct− 1

α
t
)

≤ 0.

Thus, the assertion is true.

4.3. The discrepancy principle

The convergence rate obtained in Theorem 4.11 is based on an a priori parameter choice.
That is, we have proven that there is some parameter choice yielding the asserted rate.
For practical purposes the proposed choice is useless because it is based on the function
ϕ in the variational inequality (4.3) and therefore on the unknown Ω-minimizing S-
generalized solution x†.

In this section we propose another parameter choice strategy, which requires only the
knowledge of the noise level δ, the noisy data zδ, and the fitting functional S(F (xz

δ

α ), zδ)

at the regularized solutions xz
δ

α for all α > 0. The expression S(F (xz
δ

α ), zδ) is also known
as discrepancy and therefore the parameter choice which we introduce and analyze in
this section is known as the discrepancy principle or the Morozow discrepancy principle.
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4. Convergence rates

Choosing the regularization parameter according to the discrepancy principle is a
standard technique in Hilbert space settings (see, e.g., [EHN96]) and some extensions to
Banach spaces, nonlinear operators, and general stabilizing functionals Ω are available
(see, e.g., [AR11, Bon09, KNS08, TLY98]). To our knowledge the most general analysis
of the discrepancy principle in connection with Tikhonov-type regularization methods is
given in [JZ10]. Motivated by this paper we show that the discrepancy principle is also
applicable in our more general setting. The major contribution will be that in contrast
to [JZ10] we do not assume uniqueness of the minimizers of the Tikhonov-type functional
(1.3). Another a posteriori parameter choice which works for very general Tikhonov-
type regularization methods and which is capable of handling multiple minimizers of
the Tikhonov-type functional is proposed in [IJT10]. The basic ideas of this section are
taken from this paper and [JZ10].

4.3.1. Motivation and definition

Remember that x† is one fixed Ω-minimizing S-generalized solution to the original
equation (1.1) with right-hand side y0 ∈ Y . Given a fixed data element zδ ∈ Zδy0 ,

δ ≥ 0, for each α ∈ (0,∞) the Tikhonov-type regularization method (1.3) provides a
nonempty set

Xzδ
α := argmin

x∈X
T z

δ

α (x)

of regularized solutions. We would like to choose a regularization parameter α∗ in
such a way that Xzδ

α∗ contains an element xz
δ

α∗ for which the solution error Ex† becomes
minimal with respect to α, that is,

Ex†(x
zδ
α∗) = inf{Ex†(xz

δ

α ) : α > 0, xz
δ

α ∈ Xzδ
α }.

In this sense α∗ is the optimal regularization parameter. But in practice we do not know
x† and therefore α∗ is not accessible.

The only thing we know about x† is that F (x†) is S-equivalent to y0 and that
Dy0(z

δ) ≤ δ (cf. Subsection 4.1.1). Avoiding the use of the intermediate functional Dy0 ,
Assumption 4.1 provides the possibly weaker condition S(F (x†), zδ) ≤ ψ(δ). Therefore
it is reasonable to choose an α such that at least for one xz

δ

α ∈ Xzδ
α the element F (xz

δ

α )
lies ‘near’ the set {y ∈ Y : S(y, zδ) ≤ ψ(δ)}. Of course, many different parameters
α could satisfy such a condition. We use this degree of freedom and choose the most
regular xz

δ

α , where ‘regular’ means that the stabilizing functional Ω is small. How to
realize this is shown in the following proposition (cf. [JZ10, Lemma 2.1]).

Proposition 4.15. Let 0 < α1 < α2 < ∞ be two regularization parameters and take
corresponding minimizers xz

δ

α1
∈ Xzδ

α1
and xz

δ

α2
∈ Xzδ

α2
. Then

S(F (xz
δ

α1
), zδ) ≤ S(F (xzδα2

), zδ) and Ω(xz
δ

α1
) ≥ Ω(xz

δ

α2
).

Proof. Because xz
δ

α1
and xz

δ

α2
are minimizers of the Tikhonov-type functionals T z

δ

α1
and

T z
δ

α2
, respectively, we have

S(F (xz
δ

α1
), zδ) + α1Ω(x

zδ
α1
) ≤ S(F (xzδα2

), zδ) + α1Ω(x
zδ
α2
),

S(F (xz
δ

α2
), zδ) + α2Ω(x

zδ

α2
) ≤ S(F (xzδα1

), zδ) + α2Ω(x
zδ

α1
).
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4.3. The discrepancy principle

Adding these two inequalities the S-terms can be eliminated and simple rearrangements
yield (α2 − α1)

(

Ω(xz
δ

α2
) − Ω(xz

δ

α1
)
)

≤ 0. Dividing the first inequality by α1 and the
second by α2, the sum of the resulting inequalities allows to eliminate the Ω-terms.
Simple rearrangements now give ( 1

α1
− 1

α2
)
(

S(F (xz
δ

α2
), zδ) − S(F (xz

δ

α1
), zδ)

)

≥ 0 and

multiplication by α1α2 shows (α2 − α1)
(

S(F (xz
δ

α2
), zδ) − S(F (xzδα1

), zδ)
)

≥ 0. Dividing
the two derived inequalities by α2 − α1 proves the assertion.

Proposition 4.15 shows that the larger α the more regular the corresponding regu-
larized solutions xz

δ

α , but S(F (xz
δ

α ), zδ) increases as α becomes larger. Thus, choosing

α such that S(F (xz
δ

α ), zδ) ≈ ψ(δ) meets both requirements, F (xz
δ

α ) lies ‘near’ the set

{y ∈ Y : S(y, zδ) ≤ ψ(δ)} and Ω(xz
δ

α ) is as small as possible.
The ‘≈’ symbol can be made even more precise: Because our data model allows

S(F (x†), zδ) = ψ(δ), there is no reason to choose α with S(F (xz
δ

α ), zδ) < ψ(δ). On

the other hand a regularized solution xz
δ

α∗ corresponding to the optimal regulariza-

tion parameter α∗ has not to coincide with x† and therefore S(F (xz
δ

α∗), zδ) > ψ(δ) is
possible. But since the regularized solutions are approximations of x†, the difference
S(F (xz

δ

α∗), zδ) − ψ(δ) cannot become arbitrarily large, in fact it has to go to zero if
δ → 0. Following this reasoning, we should demand

ψ(δ) ≤ S(F (xzδα ), zδ) ≤ cψ(δ) (4.6)

with some c > 1.
If we choose α in such a way that (4.6) is satisfied for at least one xz

δ

α ∈ Xzδ
α , then

we say that α is chosen according to the discrepancy principle.

4.3.2. Properties of the discrepancy inequality

The aim of this subsection is to show that the discrepancy inequality (4.6) has a solution

and that this inequality is also manageable if the sets Xzδ
α , α > 0, contain more than

one element.
To keep explanations accessible we first introduce some notation. By u = (uα)α>0

we denote a family of regularized solutions uα ∈ Xzδ
α and

U := {(uα)α>0 : uα ∈ Xzδ
α }

contains all such families. To each u ∈ U we assign a function Su : (0,∞) → [0,∞)
via Su(α) := S(F (uα), z

δ). Remember that S(F (x†), zδ) ≤ ψ(δ) by Assumption 4.1
and that Ω(x†) < ∞ by assumption. Therefore, Theorem 3.2 (existence) guarantees

Xzδ
α 6= ∅ and S(F (xz

δ

α ), zδ) < ∞ for all xz
δ

α ∈ Xzδ
α . If all Xzδ

α , α > 0, contain only

one element xz
δ

α , then U = {ũ} with ũα = xz
δ

α . In this case solving the discrepancy
inequality (4.6) is equivalent to finding some α with

ψ(δ) ≤ Sũ(α) ≤ cψ(δ).

In general, the sets Xzδ
α contain more than one element and the question of the in-

fluence of u ∈ U on Su arises. By Proposition 4.15 we know that Su is monotonically
increasing for all u ∈ U . Thus, a well-known result from real analysis says that for each
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4. Convergence rates

α > 0 the one-sided limits Su(α−0) and Su(α+0) exist (and are finite) and that Su has
at most countably many points of discontinuity (see, e.g., [Zor04, Proposition 3, Corol-
lary 2]). The following lemma formulates the fundamental observation for analyzing
the influence of u ∈ U on Su.

Lemma 4.16. Let α̃ > 0. Then Su1(α̃ − 0) = Su2(α̃ − 0) for all u1, u2 ∈ U and there
is some ũ ∈ U with Sũ(α̃) = Sũ(α̃− 0). The same is true if α̃− 0 is replaced by α̃+ 0.

Proof. Let u1, u2 ∈ U and take sequences (α1
k)k∈N and (α2

k)k∈N in (0,∞) converging to
α̃ and satisfying α1

k < α2
k < α̃. Proposition 4.15 gives Su1(α

1
k) ≤ Su2(α

2
k) for all k ∈ N.

Thus,
Su1(α̃− 0) = lim

k→∞
Su1(α

1
k) ≤ lim

k→∞
Su2(α

2
k) = Su2(α̃− 0).

Interchanging the roles of u1 and u2 shows Su1(α̃− 0) = Su2(α̃− 0).
For proving the existence of ũ we apply Theorem 3.3 (stability) with z := zδ , zk := zδ,

α := α̃, εk := 0, and x̄ := x†. Take a sequence (αk)k∈N in (0, α̃) converging to α̃.

Then, by Theorem 3.3, a corresponding sequence of minimizers (xk)k∈N of T z
δ

αk
has

a subsequence (xkl)l∈N converging to a minimizer x̃ of T z
δ

α̃ . Theorem 3.3 also gives
S(F (xkl), z

δ) → S(F (x̃), zδ). Thus, choosing ũ such that ũαkl = xkl and ũα̃ = x̃, we
get Sũ(αkl)→ Sũ(α̃) and therefore Sũ(α̃) = Sũ(α̃− 0).

Analog arguments apply if α̃− 0 is replaced by α̃+ 0 in the lemma.

Exploiting Proposition 4.15 and Lemma 4.16 we obtain the following result on the
continuity of the functions Su, u ∈ U .

Proposition 4.17. For fixed α̃ > 0 the following assertions are equivalent:

(i) There exists some ũ ∈ U such that Sũ is continuous in α̃.

(ii) For all u ∈ U the function Su is continuous in α̃.

(iii) Su1(α̃) = Su2(α̃) for all u1, u2 ∈ U .

Proof. Obviously, (ii) implies (i). We show ‘(i) ⇒ (iii)’. So let (i) be satisfied, that is
Sũ(α̃ − 0) = Sũ(α̃) = Sũ(α̃ + 0), and let u ∈ U . Then, by Proposition 4.15, Sũ(α1) ≤
Su(α̃) ≤ Sũ(α2) for all α1 ∈ (0, α̃) and all α2 ∈ (α̃,∞). Thus, Sũ(α̃ − 0) ≤ Su(α̃) ≤
Sũ(α̃+ 0), which implies (iii).

It remains to show ‘(iii) ⇒ (ii)’. Let (iii) be satisfied and let u ∈ U . By Lemma 4.16
there is some ũ with Sũ(α̃) = Sũ(α̃ − 0) and the lemma also provides Su(α̃ − 0) =
Sũ(α̃− 0). Thus,

Su(α̃− 0) = Sũ(α̃− 0) = Sũ(α̃) = Su(α̃).

Analog arguments show Su(α̃+ 0) = Su(α̃), that is, Su is continuous in α̃.

By Proposition 4.17 the (at most countable) set of points of discontinuity coincides
for all Su, u ∈ U , and at the points of continuity all Su are identical. If the Su are not
continuous at some point α̃ > 0, then, by Lemma 4.16, there are u1, u2 ∈ U such that
Su1 is continuous from the left and Su2 is continuous from the right in α̃. For all other
u ∈ U Proposition 4.15 states Su1(α̃) ≤ Su(α̃) ≤ Su2(α̃).

The following example shows that discontinuous functions Su really occur.
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4.3. The discrepancy principle

Example 4.18. Let X = Y = Z = R and define

S(y, z) := |y − z|, Ω(x) := x2 + x, F (x) := x4 − 5x2 − x, zδ := −8.

Then T z
δ

α (x) = x4 + (α− 5)x2 + (α− 1)x+ 8 (cf. upper row in Figure 4.1). For α 6= 1

the function T z
δ

α has exactly one global minimizer, but T z
δ

1 has two global minimizers:

Xzδ
1 = {−

√
2,
√
2} (cf. lower row in Figure 4.1). Thus, U = {u1, u2} with u11 = −

√
2,

u21 =
√
2, and u1α = u2α for α 6= 1. The corresponding functions Su1 and Su2 satisfy

Su1(1) = 2 +
√
2 and Su2(1) = 2−

√
2.
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Figure 4.1.: Upper row from left to right: fitting functional, stabilizing functional, Tikhonov-
type functional for α = 1

2
. Lower row from left to right: Tikhonov-type functional

for α = 1

2
, α = 1, α = 2.

Since we know that the Su, u ∈ U , differ only slightly, we set S∗ := Su for an
arbitrary u ∈ U . Then solving the discrepancy inequality is (nearly) equivalent to
finding α ∈ (0,∞) with

ψ(δ) ≤ S∗(α) ≤ cψ(δ). (4.7)

Two questions remain to be answered: For which δ ≥ 0 inequality (4.7) has a solution?
And if there is a solution, is it unique (at least for c = 1)?

To answer the first question we formulate the following proposition.

Proposition 4.19. Let D(Ω) := {x ∈ X : Ω(x) < ∞} and let M(Ω) := {xM ∈ X :
Ω(xM ) ≤ Ω(x) for all x ∈ X with S(F (x), zδ) <∞}. Then we have

lim
α→0

S∗(α) = inf
x∈D(Ω)

S(F (x), zδ) and lim
α→∞

S∗(α) = min
xM∈M(Ω)

S(F (xM ), zδ).

Proof. For all α > 0 and all x ∈ X we have

S(F (xz
δ

α ), zδ) = T z
δ

α (xz
δ

α )− αΩ(xzδα ) ≤ T zδα (x)− αΩ(xzδα )

≤ S(F (x), zδ) + α
(

Ω(x)− inf Ω
)

,
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4. Convergence rates

that is, limα→0 S∗(α) ≤ S(F (x), zδ) for all x ∈ D(Ω). On the other hand,

inf
x∈D(Ω)

S(F (x), zδ) ≤ S∗(α) for all α > 0,

which yields limα→0 S∗(α) ≥ infx∈D(Ω) S(F (x), z
δ). Thus, the first assertion is true.

We prove the second one. Let (αk)k∈N be an arbitrary sequence in (0,∞) with

αk →∞ and take a sequence (xk)k∈N in X with xk ∈ argminx∈X T
zδ
αk
(x). Because

Ω(xk) ≤
1

αk
T z

δ

αk
(xk) ≤

1

αk
S(F (x†), zδ) + Ω(x†)→ Ω(x†),

the sequence (xk) has a convergent subsequence. Let (xkl)l∈N be such a convergent
subsequence and let x̃ ∈ X be one of its limits. Then

Ω(x̃) ≤ lim inf
l→∞

Ω(xkl) ≤ lim inf
l→∞

( 1

αkl
S(F (x), zδ) + Ω(x)

)

= Ω(x)

for all x ∈ X with S(F (x), zδ) < ∞, that is, x̃ ∈ M(Ω). In addition, for each xM ∈
M(Ω) we get

S(F (x̃), z) ≤ lim inf
l→∞

S(F (xkl), z
δ) ≤ lim sup

l→∞
S(F (xkl), z

δ)

= lim sup
l→∞

(

T z
δ

αkl
(xkl)− αklΩ(xkl)

)

≤ lim sup
l→∞

(

T z
δ

αkl
(xkl)− αklΩ(xM )

)

≤ lim sup
l→∞

S(F (xM ), zδ) = S(F (xM ), zδ).

Thus, S(F (x̃), z) = minxM∈M(Ω) S(F (xM ), z) and setting xM := x̃ in the estimate

above, we obtain S(F (x̃), z) = liml→∞ S(F (xkl), z
δ). Now one easily sees that

lim
k→∞

S(F (xk), z
δ) = min

xM∈M(Ω)
S(F (xM ), z).

Because this reasoning works for all sequences (αk) with αk →∞, the second assertion
of the proposition is true.

Example 4.20. Consider the standard Hilbert space setting introduced in Example 1.1,
that is, X and Y = Z are Hilbert spaces, F = A is a bounded linear operator, S(y, z) =
1
2‖y − z‖2, and Ω(x) = 1

2‖x‖2. Then T z
δ

α has exactly one minimizer xz
δ

α for each

α > 0 and S∗(α) = 1
2‖Axz

δ

α − zδ‖2 is continuous in α. In Proposition 4.19 we have

D(Ω) = X and M(Ω) = {0}. Thus, limα→0 S∗(α) is the distance from zδ to R(A) and
limα→∞ S∗(α) =

1
2‖zδ‖2. Details on the discrepancy principle in Hilbert spaces can be

found, for instance, in [EHN96].

Proposition 4.19 shows that

1

c
inf

x∈D(Ω)
S(F (x), zδ) ≤ ψ(δ) ≤ min

xM∈M(Ω)
S(F (xM ), zδ)

with D(Ω) and M(Ω) as defined in the proposition is a necessary condition for the
solvability of (4.7).
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4.3. The discrepancy principle

If we in addition assume that the jumps of S∗ are not too high, that is,

S∗(α+ 0) ≤ cS(α − 0) for all α > 0, (4.8)

then (4.7) has a solution. This follows from the implication

ψ(δ) > S∗(α− 0) ⇒ cψ(δ) > cS∗(α− 0) ≥ S∗(α+ 0).

In other words, it is not possible that ψ(δ) > S∗(α − 0) and cψ(δ) < S∗(α + 0). Note
that the sum of all jumps in a finite interval is finite. Therefore, in the case of infinitely
many jumps, the height of the jumps has to tend to zero. That is, there are only few
relevant jumps.

Now we come to the second open question: assume that (4.7) has a solution for c = 1;
could there be another solution? More precisely, are there α1 6= α2 with S∗(α1) =
S∗(α2)?

In general the answer is ‘yes’. But the next proposition shows that in such a case it
does not matter which solution is chosen.

Proposition 4.21. Assume 0 < α1 < α2 < ∞ and S∗(α1) = S∗(α2). Further, let

xz
δ

α1
∈ Xzδ

α1
such that S(F (xz

δ

α1
), zδ) = S∗(α1) and xz

δ

α2
∈ Xzδ

α2
such that S(F (xz

δ

α2
), zδ) =

S∗(α2). Then xz
δ

α1
∈ Xzδ

α2
and xz

δ

α2
∈ Xzδ

α1
.

Proof. Because S(F (xz
δ

α1
), zδ) = S(F (xz

δ

α2
), zδ), the inequality T z

δ

α1
(xz

δ

α1
) ≤ T zδα1

(xz
δ

α2
) im-

plies Ω(xz
δ

α1
) ≤ Ω(xz

δ

α2
). Together with Proposition 4.15 this shows Ω(xz

δ

α1
) = Ω(xz

δ

α2
).

Thus, T z
δ

α1
(xz

δ

α1
) = T z

δ

α1
(xz

δ

α2
) and T z

δ

α2
(xz

δ

α2
) = T z

δ

α2
(xz

δ

α1
).

4.3.3. Convergence and convergence rates

In this subsection we show that choosing the regularization parameter α according to
the discrepancy principle yields convergence rates for the error measure Ex† introduced
in Subsection 4.1.2.

First we show that the regularized solutions converge to Ω-minimizing S-generalized
solutions.

Corollary 4.22. Let (δk)k∈N be a sequence in [0,∞) converging to zero, take an ar-
bitrary sequence (zk)k∈N with zk ∈ Zδky0 , and choose a sequence (αk)k∈N in (0,∞) and

a sequence (xk)k∈N in X with xk ∈ argminx∈X T
zk
αk
(x) such that the discrepancy in-

equality (4.6) is satisfied. Then all the assertions of Theorem 3.4 (convergence) about
subsequences of (xk) and their limits are true.

Proof. We show that the assumptions of Theorem 3.4 are satisfied for y := y0 and
x̄ := x†. Obviously S(y0, zk) → 0 by Assumption 4.1 and S(F (xk), zk) ≤ cψ(δk) → 0
by (4.6). Thus, it only remains to show lim supk→∞Ω(xk) ≤ Ω(x̂) for all S-generalized
solutions x̂. But this follows immediately from

Ω(xk) =
1

αk

(

T zkαk(xk)− S(F (xk), zk)
)

≤ 1

αk

(

S(F (x̂), zk)− S(F (xk), zk)
)

+Ω(x̂) ≤ Ω(x̂),

where we used S(F (x̂), zk) ≤ ψ(δ) and S(F (xk), zk) ≥ ψ(δ).
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4. Convergence rates

Before we come to the convergence rates result we want to give an example of a set
M (on which a variational inequality (4.3) shall hold) satisfying Assumption 4.5. It is
the same set as in Proposition 4.6.

Proposition 4.23. Let ᾱ > 0 and ̺ > Ω(x†). If α = α(δ, zδ) is chosen according to
the discrepancy principle (4.6), then

M := {x ∈ X : SY (F (x), F (x
†)) + ᾱΩ(x) ≤ ̺ᾱ}

satisfies Assumption 4.5.

Proof. For the sake of brevity we write α instead of α(δ, zδ). Set δ̄ > 0 such that
ψ(δ̄) ≤ ᾱ

c+1(̺ − Ω(x†)) with c > 1 from (4.6). As in the proof of Corollary 4.22 we

see Ω(xz
δ

α ) ≤ Ω(x†) for each δ ∈ (0, δ̄], each zδ ∈ Zδy0 , and each minimizer xz
δ

α of T z
δ

α .
Therefore, we have

SY (F (x
zδ
α ), F (x†)) + ᾱΩ(xz

δ

α ) ≤ S(F (xzδα ), zδ) + S(F (x†), zδ) + ᾱΩ(xz
δ

α )

≤ (c+ 1)ψ(δ) + ᾱΩ(x†) ≤ (c+ 1)ψ(δ̄) + ᾱΩ(x†) ≤ ᾱ̺,

that is, xz
δ

α ∈M .

The following theorem shows that choosing the regularization parameter according
to the discrepancy principle and assuming that the fixed Ω-minimizing S-generalized
solution x† satisfies a variational inequality (4.3) we obtain the same rates as for the a
priori parameter choice in Theorem 4.11. But, in contrast to Theorem 4.11, the con-
vergence rates result based on the discrepancy principle works without Assumption 4.9,
that is, this assumption is not an intrinsic prerequisite for obtaining convergence rates
from variational inequalities.

Theorem 4.24. Let x† satisfy Assumption 4.7 and choose α = α(δ, zδ) and xz
δ

α(δ,zδ)
∈

argminx∈X T
zδ

α(δ,zδ)
(x) for δ > 0 and zδ ∈ Zδy0 such that the discrepancy inequality (4.6)

is satisfied. Further assume that M satisfies Assumption 4.5. Then there is some δ̄ > 0
such that

Ex†
(

xz
δ

α(δ,zδ)

)

≤ 1

β
ϕ
(

(c+ 1)ψ(δ)
)

for all δ ∈ (0, δ̄].

The constant β > 0 and the function ϕ come from Assumption 4.7. The constant c > 1
is from (4.6).

Proof. We write α instead of α(δ, zδ). By Assumption 4.5 we have xz
δ

α ∈ M for suffi-
ciently small δ > 0. Thus, Lemma 4.4 gives

βEx†
(

xz
δ

α

)

≤ 1

α

(

ψ(δ) − S(F (xzδα ), zδ)
)

+ ϕ
(

S(F (xz
δ

α ), zδ) + ψ(δ)
)

.

By the left-hand inequality in (4.6) the first summand is nonpositive and by the right-
hand one the second summand is bounded by ϕ((c + 1)ψ(δ)).
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In Section 1.1 we gave a heuristic motivation for considering minimizers of (1.3) as
approximate solutions to (1.1). The investigation of such Tikhonov-type minimization
problems culminated in the convergence rates theorems 4.11 and 4.24. Both theorems
provide bounds for the solution error Ex†

(

xz
δ

α(δ,zδ)

)

in terms of an upper bound δ for

the data error Dy0(z). That setting is completely deterministic, that is, the influence
of (random) noise on the data is solely controlled by the bound δ.

In the present chapter we give another motivation for minimizing Tikhonov-type
functionals. This second approach is based on the idea of MAP estimation (maximum
a posteriori probability estimation) introduced in Section 5.1 and pays more attention
to the random nature of noise. A major benefit is that the MAP approach yields a
fitting functional S suited to the probability distribution governing the data.

We do not want to go into the details of statistical inverse problems (see, e.g., [KS05])
here. The aims of this chapter are to show that the MAP approach can be made precise
also in a very general setting and that the tools for obtaining deterministic convergence
rates also work in a stochastic framework.

5.1. MAP estimation

The method of maximum a posteriori probability estimation is an elegant way for moti-
vating the minimization of various Tikhonov-type functionals. It comes from statistical
inversion theory and is well-known in the inverse problems community. But usually
MAP estimation is considered in a finite-dimensional setting (see, e.g., [KS05, Chapter
3] and [BB09]). To show that the approach can be rigorously justified also in our very
general (infinite-dimensional) framework, we give a detailed description of it.

Note that Chapter C in the appendix contains all necessary information on random
variables taking values in topological spaces. Especially questions arising when using
conditional probability densities in such a general setting as ours are addressed there.

5.1.1. The idea

The basic idea is to treat all relevant quantities as random variables over a common
probability space (Θ,A, P ), where A is a σ-algebra over Θ 6= ∅ and P : A → [0, 1]
is a probability measure on A. For this purpose we equip the spaces X, Y , and Z
with their Borel-σ-algebras BX , BY , and BZ . In our setting the relevant quantities
are the variables x ∈ X (solution), y ∈ Y (right-hand side), and z ∈ Z (data). By
ξ : Θ→ X, η : Θ→ Y , and ζ : Θ→ Z we denote the corresponding random variables.
Since η is determined by F (ξ) = η, it plays only a minor role and the information of
interest about an outcome θ ∈ Θ of the experiment will be contained in ξ(θ) and ζ(θ).
After appropriately modeling the three components of the probability space (Θ,A, P ),
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5. Random data

Bayes’ formula allows us to maximize with respect to θ ∈ Θ the probability that ξ(θ)
is observed knowing that ζ(θ) coincides with some fixed measurement z ∈ Z. Such a
maximization problem can equivalently be written as the minimization over x ∈ X of
a Tikhonov-type functional.

5.1.2. Modeling the propability space

The main point in modeling the probability space (Θ,A, P ) is the choice of the proba-
bility measure P , but first we have to think about Θ and A. Assuming that nothing is
known about the connection between ξ and ζ, each pair (x, z) of elements x ∈ X and
z ∈ Z may be an outcome of our experiment, that is, for each such pair there should ex-
ist some θ ∈ Θ with x = ξ(θ) and z = ζ(θ). Since ξ and ζ are the only random variables
of interest, Θ := X × Z is a sufficiently ample sampling set. We choose A := BX ⊗ BZ
to be the corresponding product σ-algebra and we define ξ and ζ by ξ(θ) := xθ and
ζ(θ) := zθ for θ = (xθ, zθ) ∈ Θ.

The probability measure P can be compiled of two components: a weighting of the
elements of X and the description of the dependence of ζ on ξ. Both components
are accessible in practice. The aim of the first one, the weighting, is to incorporate
desirable or a priori known properties of solutions of the underlying equation (1.1) into
the model. This weighting can be realized by prescribing the probability distribution of
ξ. A common approach, especially having Tikhonov-type functionals in mind, is to use
a functional Ω : X → (−∞,∞] assigning small, possibly negative values to favorable
elements x and high values to unfavorable ones. Then, given a measure µX on (X,BX )
and assuming that 0 <

∫

X exp(−αΩ(•)) dµX <∞ (we set exp(−∞) := 0), the density

pξ(x) := c exp(−αΩ(x)) for x ∈ X

with c :=
(∫

X exp(−αΩ(•)) dµX
)−1

realizes the intended weighting. The parameter
α ∈ (0,∞) allows to scale the strength of the weighting. Assuming that Ω has τX -
closed sublevel sets (cf. item (v) of Assumption 2.1) Ω is measurable with respect to
BX . Thus, c exp(−αΩ(•)) is measureable, too.

The second component in modeling the probability measure P is to prescribe the
conditional probability that a data element z ∈ Z is observed, that is, ζ(θ) = z, if
ξ(θ) = x is known. In terms of densities this corresponds to prescribing the conditional
density pζ|ξ=x with respect to some measure µZ on (Z,BZ). Here, on the one hand we
have to incorporate the underlying equation (1.1) and on the other hand we have to
take the measurement process yielding the data z into account. Since the data depends
only on F (x), and not directly on x, we have

pζ|ξ=x(z) = pζ|η=F (x)(z) for x ∈ X and z ∈ Z. (5.1)

The conditional density pζ|η=y for y ∈ Y has to be chosen according to the measurement
process.

Assuming that µX and µZ , and thus also the product measure µX ⊗ µZ , are σ-finite
and that the functional p(ξ,ζ) : X × Z → [0,∞) defined by

p(ξ,ζ)(x, z) := pζ|ξ=x(z)pξ(x) for x ∈ X and z ∈ Z (5.2)

44



5.1. MAP estimation

is measurable with respect to the product σ-algebra BX ⊗BZ on X ×Z, there exists a
probability measure having p(ξ,ζ) as a density with respect to µX ⊗µZ . We define P to
be this probability measure. Equation (C.3), being a consequence of Proposition C.10,
guarantees that the notations pξ and pζ|ξ=x are chosen appropriately.

Note that Section C.2 in the Appendix discusses the question why working with den-
sities is more favorable than directly working with the probability measure P . To guar-
antee the existence of conditional distributions as the basis of conditional densities we
assume that (X,BX) and (Z,BZ) are Borel spaces (cf. Definition C.6, Proposition C.7,
and Theorem C.8).

5.1.3. A Tikhonov-type minimization problem

Now, that we have a probability space, we can attack the problem of maximizing with
respect to θ ∈ Θ the probability that ξ(θ) is observed knowing that ζ(θ) coincides with
some fixed measurement z ∈ Z. This probability is expressed by the conditional density
pξ|ζ=z(x), that is, we want to maximize pξ|ζ=z(x) over x ∈ X for some fixed z ∈ Z.

For x ∈ X with pξ(x) > 0 and z ∈ Z with pζ(z) > 0 Bayes’ formula (C.2) states

pξ|ζ=z(x) =
pζ|ξ=x(z)pξ(x)

pζ(z)
.

If pζ(z) = 0, then pξ|ζ=z(x) = pξ(x) for all x ∈ X by Proposition C.10. In the case
pξ(x) = 0 and pζ(z) > 0 the same proposition provides

pξ|ζ=z(x) =
p(ξ,ζ)(x, z)

pζ(z)

and (5.2) shows that the numerator is zero. Thus, pξ|ζ=z(x) = 0. Summarizing the
three cases and using equality (5.1) we obtain

pξ|ζ=z(x) =











pξ(x), if pζ(z) = 0,
pζ|η=F (x)(z)pξ(x)

pζ(z)
, if pζ(z) > 0.

(5.3)

We now transform the maximization of pξ|ζ=z into an equivalent minimization prob-
lem. First observe

argmax
x∈X

pξ|ζ=z(x) = argmin
x∈X

(

− ln pξ|ζ=z(x)
)

(with − ln(0) :=∞) and

− ln pξ|ζ=z(x) =

{

− ln c+ αΩ(x), if pζ(z) = 0,

− ln pζ|η=F (x)(z) + ln pζ(z)− ln c+ αΩ(x), if pζ(z) > 0.

In the case pζ(z) = 0 we can add ln c without changing the minimizers. The resulting
objective function is αΩ(x). If pζ(z) > 0 we can substract ln pζ(z) − ln c and also the
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5. Random data

infimum of − ln pζ|η=y(z) over y ∈ Y without changing the minimizers, where we assume
that the infimum is not −∞. This results in the objective function

− ln pζ|η=F (x)(z)− inf
y∈Y

(

− ln pζ|η=y(z)
)

+ αΩ(x).

Setting

S(y, z) :=







0, if pζ(z) = 0,

− ln pζ|η=y(z)− inf
ỹ∈Y

(

− ln pζ|η=ỹ(z)
)

, if pζ(z) > 0
(5.4)

for all y ∈ Y and all z ∈ Z we thus obtain

argmax
x∈X

pξ|ζ=z(x) = argmin
x∈X

(

S(F (x), y) + αΩ(x)
)

for all z ∈ Z.

That is, the maximization of the conditional probability density pξ|ζ=z is equivalent
to the Tikhonov-type minimization problem (1.3) with a specific fitting functional S.
Note that by construction S(y, z) ≥ 0 for all y ∈ Y and z ∈ Z.

5.1.4. Example

To illustrate the MAP approach we give a simple finite-dimensional example. A more
complex one is the subject of Part II of this thesis.

Let X := Rn and Y = Z := Rm be Euclidean spaces, let µX and µZ be the corre-
sponding Lebesgue measures, and denote the Euclidean norm by ‖•‖. We define the
weighting functional Ω by Ω(x) := 1

2‖x‖2, that is,

pξ(x) =
( α

2π

)
n
2
exp

(

−α
2

n
∑

j=1

x2j

)

is the density of the n-dimensional Gauss distribution with mean vector (0, . . . , 0) and
covariance matrix diag

(

1
α , . . . ,

1
α

)

. Given a right-hand side y ∈ Y of (1.1) the data
elements z ∈ Z shall follow the m-dimensional Gauss distribution with mean vector y
and covariance matrix diag(σ2, . . . , σ2) for a fixed constant σ > 0. Thus,

pζ|η=y(z) =

(

1

2πσ2

)m
2

exp

(

−
m
∑

i=1

(zi − yi)2
2σ2

)

.

From pξ(x) > 0 for all x ∈ X and pζ|η=y(z) > 0 for all y ∈ Y and z ∈ Z we see
pζ(z) > 0 for all z ∈ Z. Thus, the fitting functional S defined by (5.4) becomes
S(y, z) = 1

2σ2 ‖F (x)− z‖2 and the whole Tikhonov-type functional reads as

1

2σ2
‖F (x)− z‖2 + α

2
‖x‖2.

This functional corresponds to the standard Tikhonov method (in finite-dimensional
spaces).
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5.2. Convergence rates

Contrary to the situation of Chapter 4, in the stochastic setting of the present chapter
we have no upper bound for the data error. In fact, we only assume that data elements
are close to the exact right-hand side with high probability and far away from it with
low probability. Thus, we cannot derive estimates for the solution error Ex†(x

z
α) (cf.

Section 4.1) in terms of some noise level δ. Instead we provide lower bounds for the
probability that we observe a data element z for which all corresponding regularized
solutions xzα lie in a small ball around x†. Here, as before, x† ∈ X is a fixed Ω-
minimizing S-generalized solution to (1.1) with fixed right-hand side y0 ∈ Y and we
assume Ω(x†) <∞.

For α > 0 and ε > 0 we define the set

Zεα(x
†) := {z ∈ Z : Ex†(x

z
α) ≤ ε for all xzα ∈ argminT zα}

and we are interested in the probability that an observed data element belongs to this
set. The following lemma gives a sufficient condition for the measurability of the sets
Zεα(x

†) with respect to the Borel-σ-algebra BZ of (Z, τZ).

Lemma 5.1. Let Ex† : X → [0,∞] be lower semi-continuous and assume that the
Tikhonov-type functional T zα has only one global minimizer for all α > 0 and all z ∈ Z.
Then for each α > 0 and each ε > 0 the set Zεα(x

†) is closed.

Proof. Let (zk)k∈N be a sequence in Zεα(x
†) converging to some z ∈ Z. We have to

show that z ∈ Zεα(x†), too. For each zk the corresponding minimizer xk ∈ argminT zkα
satisfies Ex†(xk) ≤ ε and by Theorem 3.3 (stability) the sequence (xk)k∈N converges
to the minimizer x̃ ∈ argmin T zα. Therefore the lower semi-continuity of Ex† implies
Ex†(x̃) ≤ lim infk→∞Ex†(xk) ≤ ε, that is, z ∈ Zεα(x†).

From now on we assume that the sets Zεα(x
†) are measurable.

By Pζ|ξ=x†(A) we denote the probability of an event A ∈ BZ conditioned on ξ = x†,
that is,

Pζ|ξ=x†(A) =
∫

A
pζ|ξ=x† dµz.

Instead of seeking upper bounds for the solution error Ex†(x
z
α) as done in the deter-

ministic setting of Chapter 4, we are interested in lower bounds for the probability
Pζ|ξ=x†(Z

ε
α(x

†)). The higher this probability the better is the chance to obtain well
approximating regularized solutions from the measured data.

Lower bounds for Pζ|ξ=x†(Z
ε
α(x

†)) can be derived in analogy to the upper bounds for

Ex†
(

xz
δ

α(δ)

)

in Section 4.2. We only have to replace expressions involving δ by suitable
expressions in ε.

The analog of Assumption 4.5 reads as follows.

Assumption 5.2. Given a parameter choice ε 7→ α(ε) let M ⊆ X be a set such that
SY (F (x), F (x

†)) <∞ for all x ∈M and such that there is some ε̄ > 0 with

⋃

z∈Zε
α(ε)

(x†)

argmin
x∈X

T zα(ε)(x) ⊆M for all ε ∈ (0, ε̄].
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For example the set M = {x ∈ X : Ex†(x) ≤ ε̄, SY (F (x), F (x
†)) < ∞} satisfies

Assumption 5.2 for each parameter choice α 7→ α(ε).
The following lemma is the analog of Lemma 4.10 and provides a basic estimate for

Pζ|ξ=x†(Z
ε
α(x

†)).

Lemma 5.3. Let x† satisfy Assumption 4.7, let α > 0 and ε ≥ 0, and assume
argminT zα ⊆M for all z ∈ Zεα(x†). Then

Pζ|ξ=x†(Z
ε
α(x

†)) ≥ Pζ|ξ=x†
({

z ∈ Z : 2S(F (x†), z) ≤ βαε − α(−ϕ)∗
(

− 1

α

)

})

.

Proof. Using the minimizing property of xzα the variational inequality (4.3) implies

βEx†(x
z
α) ≤ Ω(xzα)− Ω(x†) + ϕ

(

SY (F (x
z
α), F (x

†))
)

=
1

α
T zα(x

z
α)− Ω(x†)− 1

α
S(F (xzα), z) + ϕ

(

SY (F (x
z
α), F (x

†))
)

≤ 1

α

(

S(F (x†), z) − S(F (xzα), z)
)

+ ϕ
(

S(F (xzα), z) + S(F (x†), z)
)

≤ 2

α
S(F (x†), z) + sup

t≥0

(

ϕ(t)− 1

α
t

)

=
2

α
S(F (x†), z) + (−ϕ)∗

(

− 1

α

)

for all z ∈ Zεα(x†) and all corresponding regularized solutions xzα. Thus,

Zεα(x
†) ⊇

{

z ∈ Z :
2

α
S(F (x†), z) + (−ϕ)∗

(

− 1

α

)

≤ βε
}

=

{

z ∈ Z : 2S(F (x†), z) ≤ βαε − α(−ϕ)∗
(

− 1

α

)

}

,

proving the assertion.

The following theorem provides a lower bound for Pζ|ξ=x†(Z
ε
α(x

†)) which can be
realized by choosing the regularization parameter α in dependence on ε. The theorem
can be proven in analogy to Theorem 4.11 if ψ(δ) is replaced by ϕ−1(βε), where β
comes from Assumption 4.7.

Theorem 5.4. Let x† satisfy Assumption 4.7 such that the associated function ϕ sat-
isfies Assumption 4.9 and let ε 7→ α(ε) be a parameter choice such that

inf
τ∈[0,ϕ−1(βε))

βε− ϕ(τ)
ϕ−1(βε) − τ ≥

1

α(ε)
≥ sup

τ∈(ϕ−1(βε),γ]

ϕ(τ)− βε
τ − ϕ−1(βε)

(5.5)

for all ε ∈
(

0, 1βϕ(γ)
)

, where γ comes from Assumption 4.9 and β from Assumption 4.7.
Further, let M satisfy Assumption 5.2. Then there is some ε̄ > 0 such that

Pζ|ξ=x†
(

Zεα(ε)(x
†)
)

≥ Pζ|ξ=x†
({

z ∈ Z :
1

β
ϕ
(

2S(F (x†), z)
)

≤ ε
})

for all ε ∈ (0, ε̄].

Remark 5.5. By item (ii) of Assumption 4.9 the function ϕ is invertible as a mapping
from [0, γ] onto [0, ϕ(γ)]. Thus ϕ−1(βε) is well-defined for ε ∈

[

0, 1βϕ(γ)
]

. In addition,

Remarks 4.12 and 4.13 apply if ψ(δ) is replaced by ϕ−1(βε).
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Proof of Theorem 5.4. We write α instead of α(ε). From Assumption 5.2 we know
argminT zα ⊆M for all z ∈ Zεα(x†) if ε > 0 is sufficiently small. Thus, Lemma 5.3 gives

Pζ|ξ=x†(Z
ε
α(x

†)) ≥ Pζ|ξ=x†
({

z ∈ Z : 2S(F (x†), z) ≤ βαε− α(−ϕ)∗
(

− 1

α

)

})

.

In analogy to the proof of Theorem 4.11 we can show

ϕ(τ)− 1

α
τ ≤ βε− 1

α
ϕ−1(βε) for all τ ≥ 0

if ε is small enough (replace ψ(δ) by ϕ−1(βε)). And using this inequality multiplied by
−α we obtain

βαε− α(−ϕ)∗
(

− 1

α

)

≥ ϕ−1(βε),

yielding

Pζ|ξ=x†(Z
ε
α(x

†)) ≥ Pζ|ξ=x†
({

z ∈ Z : 2S(F (x†), z) ≤ ϕ−1(βε)
})

,

which is equivalent to the assertion.

Note that is the case ϕ(t) ≤ ct for some c > 0 and all t ∈ [0,∞) one can show

Pζ|ξ=x†(Z
ε
α(x

†)) ≥ Pζ|ξ=x†
({

z ∈ Z :
2

βα
S(F (x†), z) ≤ ε

})

if Zεα(x
†) ⊆M and α ∈

(

0, 1c
]

(cf. Proposition 4.14 for details).
Inspecting the lower bound in Theorem 5.4 we see that the faster the function ϕ de-

cays to zero if the argument goes to zero the faster the set
{

z ∈ Z : 1
βϕ
(

2S(F (x†), z)
)

≤
ε
}

expands if ε→ 0. Thus, the faster a function ϕ in a variational inequality (4.3) de-
cays to zero if the argument goes to zero the faster the lower bound for Pζ|ξ=x†(Z

ε
α(x

†))

increases if ε → 0. In other words, if x† satisfies a variational inequality with a fast
decaying function ϕ, then there is a high probability that the regularized solutions xzα
corresponding to an observed data element z are close to the exact solution x†.

49





Part II.

An example: Regularization with
Poisson distributed data
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6. Introduction

The major noise model in literature on ill-posed inverse problems is Gaussian noise,
because for many applications this noise distribution appears quite natural. Due to
the fact that more precise noise models promise better reconstruction results from
noisy data the interest in advanced approaches for modeling the noisy data is rapidly
growing.

One non-standard noise model shall be considered in the present part of the thesis.
Poisson distributed data, sometimes also referred to as data corrupted by Poisson noise,
occurs especially in imaging applications where the intensity of light or other radiation
to be detected is very low. One important application in medical imaging is positron
emission tomography (PET), where the decay of a radioactive fluid in a human body is
recorded. The decay events are recorded in a way such that instead of the concrete point
one only knows a straight line through the body where the decay took place. For each
line through the body one counts the number of decay events in a fixed time interval.
Since the radiation dose has to be very small, the number of decays is small, too. Thus,
one may assume that the number of decay events per time interval follows a Poisson
distribution. From the mathematical point of view reconstructing PET images consists
in inverting the Radon transform with Poisson distributed data. For more information
on PET we refer to the literature (e.g. [Eps08])

Other examples for ill-posed imaging problems with Poisson distributed data can
be found in the field of astronomical imaging. There, deconvolution and denoising
of images which are mostly black with only few bright spots (the stars) are important
tasks. As a third application we mention confocal laser scanning microscopy (see [Wil]).

The present part of the thesis is based on Part I. Thus, we use the same notation as
in the first part without further notice.

The structure of this part is as follows: at first we motivate a noise adapted Tikhonov-
type functional (Chapter 7), which then is specified to a semi-discrete and to a con-
tinuous model for Poisson distributed data in Chapters 8 and 9, respectively. In the
last chapter, Chapter 10, we present an algorithm for minimizing such Poisson noise
adapted Tikhonov-type functionals and compare the results with the results obtained
from the usual (Gaussian noise adapted) Tikhonov method.

A preliminary version of some results presented in the next three chapters of this
part (that is, excluding Chapter 10) has already been published in [Fle10a].
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7. The Tikhonov-type functional

7.1. MAP estimation for imaging problems

We want to apply the considerations of Chapter 5 to the typical setting in imaging
applications. Let (X, τX) be an arbitrary topological space and let Y := {y ∈ L1(T, µ) :
y ≥ 0 a.e.} be the space of real-valued images over T ⊆ Rd which are integrable with
respect to the measure µ (here we implicitly assume that T is equipped with a σ-algebra
AT on which µ is defined). Usually µ is a multiple of the Lebesgue measure. Assume
µ(T ) < ∞. The set T on the one hand is the domain of the images and on the other
hand it models the surface of the image sensor capturing the image. We equip the space
Y with the topology τY induced by the weak L1(T, µ)-topology.

The operator F assigns to each element x ∈ X an image F (x) ∈ Y . We assume
that the image sensor is a collection of m ∈ N sensor cells or pixels T1, . . . , Tm ⊆ T .
If we think of an image y ∈ Y to be an energy density describing the intensity of
the image, then each sensor cell counts the number of particles, for example photons,
emitted according to the density y and impinging on the cell. The sensor electronics
amplify the weak signal caused by the impinging particles, which leads to a scaling
and usually also to noise (for details see, e.g., [How06, Chapter 2]). In addition, some
preprocessing software could scale the signal to fit into a certain interval. Thus, the
data we obtain from a sensor cell is a nonnegative real number, and looking at a large
number of measurements we will observe that the values cluster around the points aw
for w ∈ N0 with a scaling factor a > 0. Note that in practice the factor a > 0 can be
measured, see [How06, Section 3.8]. As a consequence of these considerations we choose
Z := [0,∞)m, although the particle counts are natural numbers. The topology τZ will
be specified later.

The conditional density pζ|η=y describing the dependence of the data on the right-
hand side y ∈ Y has to be modeled to represent the specifics of the capturing process
of a concrete imaging problem. From the considerations above we only know the mean
Dy ∈ [0,∞)m of the data with D : Y → [0,∞) given by D = (D1, . . . ,Dm) and

Diy :=

∫

Ti

y dµ

for y ∈ Y and i = 1, . . . ,m.
Assume that the components ζi : Θ → [0,∞) of ζ are mutually independent and

that pζi|η=y can be written as pζi|η=y(zi) = g(Diy, zi) for all zi ∈ [0,∞) with a function
g : [0,∞) × [0,∞) → [0,∞), that is, pζi|η=y does not depend directly on y but only on
Diy. Then we have

pζ|η=y(z) =
m
∏

i=1

g(Diy, zi) for all y ∈ Y and z ∈ Z (7.1)
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and the fitting functional S in (5.4) reads as

S(y, z) =











0, if pζ(z) = 0,
m
∑

i=1

(

− ln g(Diy, zi)− inf
v∈[0,∞)

(

− ln g(v, zi)
)

)

, if pζ(z) > 0.

The setting introduced so far will be referred to as semi-discrete setting, because the
data space Z is finite-dimensional. We can also derive a completely continuous model
by temporarily setting T := {1, . . . ,m} ⊆ N and µ to be the counting measure on T .
Then Y = [0,∞)m and Ti := {i} leads to Diy = yi. Regarding y and z as functions
over T and writing the sum as an integral over T the fitting functional becomes

S(y, z) =







0, if pζ(z) = 0,
∫

T

(

− ln g(y(t), z(t)) − inf
v∈[0,∞)

(

− ln g(v, z(t))
)

)

dµ(t), if pζ(z) > 0.

This expression also works for arbitrary T and Z := Y (with Y being the set of nonneg-
ative L1(T, µ)-functions introduced above) if the infimum is replaced by the essential
infimum:

S(y, z) =







0, if pζ(z) = 0,
∫

T

(

− ln g(y(t), z(t)) − ess inf
v∈[0,∞)

(

− ln g(v, z(t))
)

)

dµ(t), if pζ(z) > 0.

This continuous setting has no direct motivation from practice, but it can be regarded
as a suitable model for images with very high resolution, that is, if m is very large.

In this thesis we analyze both the semi-discrete and the continuous model. Especially
in case of the continuous model we have to ensure that the fitting functional is well-
defined (measurability of the integrand). This question will be addressed later when
considering a concrete function g.

7.2. Poisson distributed data

In this section we first restrict our attention to data vectors z̃ ∈ Nm0 for motivating the
use of a certain fitting functional. Then we extend the considerations to data vectors
z ∈ [0,∞)m clustering around the vectors az̃ with a scaling factor a > 0 (cf. Section 7.1).

If the number z̃i ∈ N0 of particles impinging on the sensor cell Ti follows a Poisson
distribution with mean Diy for a given right-hand side y ∈ Y , then

g(v,w) :=















1, if v = 0, w = 0,

0, if v = 0, w > 0,
vw

w!
exp(−v), if v > 0

for v ∈ [0,∞) and w ∈ N0 defines the density pζ|η=y on Nm0 with respect to the counting
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measure on Nm0 (cf. (7.1)). Thus, setting

s(v,w) :=























0, if v = 0, w = 0,

∞, if v = 0, w > 0,

v, if v > 0, w = 0,

w ln
w

v
+ v − w, if v > 0, w > 0,

(7.2)

the fitting functional reads as S(y, z̃) =
∑m

i=1 s(Diy, z̃i) for all y ∈ Y and all z̃ ∈ Nm0
satisfying pζ(z̃) > 0.

Lemma 7.1. The function s : [0,∞)×[0,∞)→ (−∞,∞] defined by (7.2) is convex and
lower semi-continuous and it is continuous outside (0, 0) (with respect to the natural
topologies). Further, s(v,w) ≥ 0 for all v,w ∈ [0,∞) and s(v,w) = 0 if and only if
v = w.

Proof. Define the auxiliary function s̃(u) := u lnu − u + 1 for u ∈ (0,∞) and set
s̃(0) := 1. This function if strictly convex and continuous on [0,∞) and it has a global
minimum at u∗ = 1 with s̃(u∗) = 0. Further, s(v,w) = vs̃(wv ) for v ∈ (0,∞) and
w ∈ [0,∞).

We prove convexity and lower semi-continuity of s following an idea in [Gun06, Chap-
ter 1]. It suffices to show that s is a supremum of affine functions h(v,w) := aw + bv
with a, b ∈ R. Such affine functions can be written as h(v,w) = vh̃(wv ) for v ∈ (0,∞)

and w ∈ [0,∞) with h̃(u) := au+ b for u ∈ [0,∞). Therefore, h̃ ≤ s̃ on [0,∞) implies
h ≤ s on [0,∞)× [0,∞), that is, the supremum over all h with h̃ ≤ s̃ is at least a lower
bound for s.

Now let h̃ū ≤ s̃ be the tangent of s̃ at ū ∈ (0,∞). Thus, h̃ū(u) = s̃(ū)+ s̃′(ū)(u− ū) =
(ln ū)u+ 1− ū and the associated function hū reads as

hū(v,w) = (ln ū)w + (1− ū)v.

Observing

s(v,w) :=



























h1(0, 0), if v = 0, w = 0,

lim
u→∞

hu(0, w), if v = 0, w > 0,

lim
u→0

hu(v, 0), if v > 0, w = 0,

hw/v(v,w), if v > 0, w > 0

we see that s is indeed the supremum of all affine functions h with h̃ ≤ s̃.
The continuity of s outside (0, 0) is a direct consequence of the definition of s. The

nonnegativity follows from s̃ ≥ 0. And for v,w ∈ (0,∞) the equality s(v,w) = 0 is
equivalent to s̃(wv ) = 0, that is, wv has to coincide with the global minimizer u∗ = 1 of
s̃.

As discussed in Section 7.1 the data available to us is a scaled version z = az̃ (more
precisely z ≈ az̃) of the particle count z̃. Due to the structure of the fitting functional
this scaling is not serious. Obviously S(y, z) = aS

(

1
ay, z̃

)

, that is, working with scaled
data is the same as working with scaled right-hand sides. Note that when replacing
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7. The Tikhonov-type functional

z = az̃ by z ≈ az̃ the question of continuity of S arises. This question will be discussed
in detail in Section 8.1 and Section 9.1.

Summing up the above, the MAP approach suggests to use the fitting functional

S(y, z) =

m
∑

i=1

s(Diy, zi) for y ∈ Y and z ∈ [0,∞)m

in the semi-discrete setting and the fitting functional

S(y, z) =

∫

T
s(y(t), z(t)) dµ(t) for y ∈ Y and z ∈ Y

for the continuous setting.
Both fitting functionals are closely related to the Kullback–Leibler divergence known

in statistics as a distance between two probability densities. In the context of Tikhonov-
type regularization methods the Kullback-Leibler divergence appears as fitting func-
tional in [Pös08, Section 2.3] and also in [BB09, RA07]. Properties of entropy function-
als similar to the Kullback-Leibler divergence are discussed, e.g., in [Egg93, HK05].

Note that the integral of t 7→ s(y(t), z(t)) is well-defined, because this function is
measurable:

Proposition 7.2. Let f, g : T → [0,∞) be two functions which are measurable with
respect to the σ-algebra AT on T and the Borel σ-algebra B[0,∞) on [0,∞). Then
h : T → [0,∞] defined by h(t) := s(f(t), g(t)) is measurable with respect to AT and the
Borel σ-algebra B[0,∞] on [0,∞].

Proof. The proof is standard in introductory lectures on measure theory if the function
s is continuous. For the sake of completeness we give a version adapted to lower semi-
continuous s.

For b ≥ 0 define the sets

Gb := {(v,w) ∈ [0,∞) × [0,∞) : s(v,w) > b} =
(

[0,∞)× [0,∞)
)

\ s−1([0, b]).

These sets are open (with respect to the natural topology on [0,∞) × [0,∞)) because
s−1([0, b]) is closed due to the lower semi-continuity of s (see Lemma 7.1). Thus, for
fixed b there are sequences (αk)k∈N, (βk)k∈N, (γk)k∈N, and (δk)k∈N in [0,∞) such that

Gb =
⋃

k∈N

(

[αk, βk)× [γk, δk)
)

.

From

h−1
(

(b,∞]
)

=
{

t ∈ T : (f(t), g(t)) ∈ Gb
}

=
⋃

k∈N

{

t ∈ T : (f(t), g(t)) ∈ [αk, βk)× [γk, δk)
}

=
⋃

k∈N

(

f−1
(

[αk,∞)
)

∩ f−1
(

[0, βk)
)

∩ g−1
(

[γk,∞)
)

∩ g−1
(

[0, δk)
)

)

we see h−1
(

(b,∞]
)

∈ AT for all b ≥ 0, which is equivalent to the measurability of h.
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7.3. Gamma distributed data

Although this part of the thesis is mainly concerned with Poisson distributed data, we
want to give another example of non-metric fitting functionals arising in applications.

In SAR imaging (synthetic aperture radar imaging) a phenomenon called speckle
noise occurs. Although speckle noise results from interference phenomenons it behaves
like real noise and can be described by the Gamma distribution. For details on SAR
imaging and its modeling we refer to the detailed exposition in [OQ04]. Assume that
a measurement zi ∈ [0,∞) is the average of L ∈ N measurements, which is typical
for SAR images, and that each single measurement follows an exponential distribution
with mean Diy > 0. Then the averaged measurement zi follows a Gamma distribution
with parameters L and L

Diy
, that is

g(v,w) :=
1

(L− 1)!

(

L

v

)L

wL−1 exp

(

−L
v
w

)

determines the density pζ|η=y (cf. (7.1)). Note that the assumption Diy > 0 is quite
reasonable since in practice there is always some radiation detected by the sensor (in
contrast to applications with Poisson distributed data).

The corresponding fitting functionals are

S(y, z) = L

m
∑

i=1

(

ln
Diy

zi
+

zi
Diy
− 1

)

in the semi-discrete setting and

L

∫

T
ln
y(t)

z(t)
+
z(t)

y(t)
− 1 dµ(t)

in the continuous setting.
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In this chapter we analyze the semi-discrete setting for Tikhonov-type regularization
with Poisson distributed data as derived in Chapter 7. The solution space (X, τX ) is an
arbitrary topological space, the space (Y, τY ) of right-hand sides is Y := {y ∈ L1(T, µ) :
y ≥ 0 a.e.} equipped with the topology τY induced by the weak L1(T, µ)-topology, and
the data space (Z, τZ) is given by Z = [0,∞)m. The topology τZ will be specified
soon. Remember the definition Diy :=

∫

Ti
y dµ for y ∈ Y , where T1, . . . , Tm ⊆ T . For

obtaining approximate solutions to (1.1) we minimize a Tikhonov-type functional (1.3)
with fitting functional

S(y, z) :=

m
∑

i=1

s(Diy, zi) for all y ∈ Y and z ∈ Z,

where s is defined by (7.2).

One aim of this chapter is to show that the fitting functional S satisfies items (ii), (iii),
and (iv) of the basic Assumption 2.1. The second task consists in deriving variational
inequalities (4.3) as a prerequisite for proving convergence rates.

8.1. Fundamental properties of the fitting functional

Before we start to verify Assumption 2.1 we have to specify the topology τZ on the
data space Z = [0,∞)m. Choosing the topology induced by the usual topology of Rm

is inadvisable because the fitting functional S is not continuous in the second argument
with respect to this topology. Indeed, s(0, 0) = 0 but s(0, ε) = ∞ for all ε > 0. Thus,
we have to look for a stronger topology.

We started the derivation of S in Section 7.2 by considering data z̃i ∈ N0 for each
pixel Ti, and due to transformations and noise we eventually decided to model the
data as elements zi ∈ [0,∞) clustering around the points az̃i with an unknown scaling
factor a > 0. If we assume that the distance between zi and az̃i is less than a

2 , that
is, noise is not too large, then we can recover z̃i from zi by rounding zi and dividing
by a. Since a is typically unknown (however it can be measured if really necessary, cf.
Section 7.1) we can apply this procedure only in the case z̃i = 0: if zi is very small,
then we might assume z̃i = 0 and consequently also zi = 0. Thus, convergence zki → 0
with respect to the natural topology τ[0,∞) on [0,∞) of a sequence (zki )k∈N means that

the underlying sequence (z̃ki )k∈N of particle counts is zero for sufficiently large k, and
in turn we may set zki to zero for large k. In other words, from the particle point of
view nontrivial convergence to zero is not possible and thus the discontinuity of s(0, •)
at zero is irrelevant. Putting these considerations into the language of topologies we
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would like to have a topology τ0[0,∞) on [0,∞) satisfying

zki
τ0
[0,∞)−→ 0 if k →∞ ⇔ zki = 0 for sufficiently large k

and providing the same convergence behavior at other points as the usual topology
τ[0,∞) on [0,∞). This can be achieved by defining τ0[0,∞) to be the topology generated

by τ[0,∞) and the set {0}, that is, τ0[0,∞) shall be the weakest topology containing the

natural topology and the set {0}. Eventually, we choose τZ to be the product topology
of m copies of τ0[0,∞).

Note that the procedure of avoiding convergence to zero can also be applied to other
points az̃i if a is exactly known, which in practice is not the case (only a more or less
inaccurate measurement of a might be available). Since the treated discontinuity is
the only discontinuity of s, the clustering around the points az̃i for z̃i > 0 makes no
problems. To make things precise we prove the following proposition.

Proposition 8.1. The fitting functional S satisfies item (iv) of Assumption 2.1.

Proof. Let y ∈ Y and z ∈ Z be such that S(y, z) < ∞ and take a sequence (zk)k∈N in
Z converging to z. We have to show S(y, zk)→ S(y, z), which follows if s(Diy, [zk]i)→
s(Diy, zi) for i = 1, . . . ,m. For i with Diy > 0 this convergence is a consequence of
the continuity of s(Diy, •) with respect to the usual topology τ[0,∞) (cf. Lemma 7.1),
because τ0[0,∞) is stronger than τ[0,∞). If Diy = 0, then S(y, z) < ∞ implies zi = 0.

Thus, by the definition of τ0[0,∞), the convergence [zk]i → zi with respect to τ0[0,∞) implies

[zk]i = 0 for sufficiently large k. Consequently s(Diy, [zk]i) = 0 = s(Diy, zi) for large
k.

Remark 8.2. Without the non-standard topology τ0[0,∞) we could not prove continuity
of the fitting functional S in the second argument. The only way to avoid the disconti-
nuity without modifying the usual topology on [0,∞)m is to consider only y ∈ Y with
Diy > 0 for all i or to assume zi > 0 for all i. But since the motivation for using
such a fitting functional has been the counting of rare events, excluding zero counts is
not desirable. In PET (see Chapter 6) the assumption Diy > 0 would mean that the
radioactive fluid disperses through the whole body.

In addition we should be aware of the fact that the discontinuity is not intrinsic
to the problem but it is a consequence of an inappropriate data model. In practice
convergence to zero is not possible; either there is at least one particle or there is no
particle.

The example of Poisson distributed data shows that working with general topological
spaces instead of restricting attention only to Banach spaces and their weak or norm
topologies provides the necessary freedom for implementing complex data models.

We proceed in verifying Assumption 2.1.

Proposition 8.3. The fitting functional S satisfies item (ii) of Assumption 2.1.

Proof. The assertion is a direct consequence of the lower semi-continuity of s (cf.
Lemma 7.1) and of the fact that τ0[0,∞) is stronger than τ[0,∞).
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Proposition 8.4. The fitting functional S satisfies item (iii) of Assumption 2.1.

Proof. Let y ∈ Y , define z ∈ Z by zi := Diy for i = 1, . . . ,m, and let (zk)k∈N be a
sequence in Z with S(y, zk) → 0. We have to show zk → z, which is equivalent to
[zk]i → zi with respect to τ0[0,∞) for all i. From S(y, zk) → 0 we see s(Diy, [zk]i) → 0

for all i. If Diy = 0, this immediately gives [zk]i = 0 for sufficiently large k. If Diy > 0,
then the function s(Diy, •) is strictly convex with a global minimum at Diy and a
minimal value of zero. Thus, s(Diy, [zk]i) → 0 implies [zk]i → Diy with respect to
τ[0,∞) and therefore also with respect to τ0[0,∞).

The propositions of this section show that the basic theorems on existence (Theo-
rem 3.2), stability (Theorem 3.3), and convergence (Theorem 3.4) apply to the semi-
discrete setting for regularization with Poisson distributed data.

8.2. Derivation of a variational inequality

In this section we show how to obtain a variational inequality (4.3) from a source
condition. Since source conditions, in contrast to variational inequalities, are based
on operators mapping between normed vector spaces, we have to enrich our setting
somewhat.

Assume that X is a subset of a normed vector space X̃ and that τX is the topology
induced by the weak topology on X̃. Let Ã : X̃ → L1(T, µ) be a bounded linear operator
and assume that X is contained in the convex and τX-closed set Ã−1Y = {x ∈ X̃ :
Ãx ≥ 0 a.e.}. Then we may define F : X → Y to be the restriction of Ã to X. Further
let Ω be a stabilizing functional on X which can be extended to a convex functional
Ω̃ : X̃ → (−∞,∞] on X̃. As error measure Ex† we use the associated Bregman distance

BΩ̃
ξ†(•, x†), where ξ† ∈ ∂Ω̃(x†) ⊆ X̃∗.
At first we determine the distance SY on Y defined in Definition 2.7 and appearing

in the variational inequality (4.3).

Proposition 8.5. For all y1, y2 ∈ Y the equality

SY (y1, y2) =

m
∑

i=1

(
√

Diy1 −
√

Diy2
)2

is true.

Proof. At first we observe

SY (y1, y2) = inf
z∈Z

(

S(y1, z) + S(y2, z)
)

=

m
∑

i=1

inf
w∈[0,∞)

(

s(Diy1, w) + s(Diy2, w)
)

.

If Diy1 = 0 or Diy2 = 0, then obviously

inf
w∈[0,∞)

(

s(Diy1, w) + s(Diy2, w)
)

= 0 =
(
√

Diy1 −
√

Diy2
)2
.
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For Diy1 > 0 and Diy2 > 0 the infimum over [0,∞) is the same as over (0,∞). The
function w 7→ s(Diy1, w) + s(Diy2, w) is strictly convex and continuously differentiable
on (0,∞). Thus, calculating the zeros of the derivative

∂

∂w

(

s(Diy1, w) + s(Diy2, w)
)

= ln
w

Diy1
+ ln

w

Diy2

shows that the infimum is attained at w∗ :=
√
Diy1Diy2 with infimal value

s(Diy1, w
∗) + s(Diy2, w

∗) =
√

Diy1Diy2 ln

√

Diy2
Diy1

+Diy1 −
√

Diy1Diy2

+
√

Diy1Diy2 ln

√

Diy1
Diy2

+Diy2 −
√

Diy1Diy2

=
(
√

Diy1 −
√

Diy2
)2
.

As starting point for a variational inequality of the form (4.3) we use the inequality
obtained in the following lemma from the source condition ξ† ∈ R

(

(D ◦ Ã)∗
)

, where

ξ† ∈ ∂Ω̃(x†) and x† ∈ X. The mapping D ◦ Ã is a bounded linear operator mapping
between the normed vector spaces X̃ and Rm. Thus, the adjoint (D◦Ã)∗ is well-defined
as a bounded linear operator from Rm into X̃∗. Note that we defined D only on Y , but
its extension to L1(T, µ) is canonical.

Lemma 8.6. Let x† ∈ X be an Ω-minimizing S-generalized solution to (1.1) such that
there is a subgradient ξ† ∈ ∂Ω̃(x†) ∩R

(

(D ◦ Ã)∗
)

. Then there is some c > 0 such that

BΩ̃
ξ†(x, x

†) ≤ Ω̃(x)− Ω̃(x†) + c

m
∑

i=1

∣

∣DiÃx−DiÃx
†∣
∣ for all x ∈ X̃.

Proof. Let ξ† = (D ◦ Ã)∗η† with η† ∈ Rm. Then

−〈ξ†, x− x†〉 = −
〈

η†, (D ◦ Ã)(x− x†)
〉

≤ ‖η†‖2‖(D ◦ Ã)(x− x†)‖2

≤ ‖η†‖2‖(D ◦ Ã)(x− x†)‖1 = ‖η†‖2
m
∑

i=1

∣

∣DiÃx−DiÃx
†∣
∣

for all x ∈ X, where 〈•, •〉 denotes the duality pairing and ‖•‖p the p-norm on Rm.
Thus,

BΩ̃
ξ†(x, x

†) = Ω̃(x)− Ω̃(x†)− 〈ξ†, x− x†〉 ≤ Ω̃(x)− Ω̃(x†) + c
m
∑

i=1

∣

∣DiÃx−DiÃx
†∣
∣

for all x ∈ X̃ and any c ≥ ‖η†‖2.

The next lemma is an important step in constituting a connection between SY from
Proposition 8.5 and the inequality obtained in Lemma 8.6.
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Lemma 8.7. For all ai, bi ≥ 0, i = 1, . . . ,m, the inequality





√

√

√

√

m
∑

i=1

bi +

m
∑

i=1

|ai − bi| −

√

√

√

√

m
∑

i=1

bi





2

≤
m
∑

i=1

(
√

ai −
√

bi
)2

is true.

Proof. We start with the inequality
∣

∣

√

ai −
√

bi
∣

∣ ≥
√

bi + |ai − bi| −
√

bi, (8.1)

which is obviously true for ai ≥ bi ≥ 0 and also for ai = 0, bi ≥ 0. We have to
verify the inequality only for 0 < ai < bi. In this case the inequality is equivalent to
2
√
bi ≥

√
2bi − ai+

√
ai. The function f(t) :=

√
2bi − t+

√
t is differentiable on (0, 2bi)

and monotonically increasing on (0, bi] because

f ′(t) =
−1

2
√
2bi − t

+
1

2
√
t
>

−1
2
√
2bi − bi

+
1

2
√
bi

= 0 for all t ∈ (0, bi].

Thus, f(t) ≤ f(bi) = 2
√
bi and therefore 2

√
bi ≥

√
2bi − ai +

√
ai if 0 < ai < bi.

From inequality (8.1) we now obtain

m
∑

i=1

(
√

ai −
√

bi
)2 ≥

m
∑

i=1

(
√

bi + |ai − bi| −
√

bi
)2

=

m
∑

i=1

|ai − bi|+ 2

m
∑

i=1

bi − 2

m
∑

i=1

√

bi + |ai − bi|
√

bi.

Interpreting the last of the three sums as an inner product in Rm we can apply the
Cauchy–Schwarz inequality. This yields

m
∑

i=1

(
√

ai −
√

bi
)2 ≥

m
∑

i=1

|ai − bi|+ 2

m
∑

i=1

bi − 2

√

√

√

√

m
∑

i=1

(

bi + |ai − bi|
)

√

√

√

√

m
∑

i=1

bi

=





√

√

√

√

m
∑

i=1

bi +
m
∑

i=1

|ai − bi| −

√

√

√

√

m
∑

i=1

bi





2

,

which proves the assertion of the lemma.

Now we are in the position to establish a variational inequality.

Theorem 8.8. Let x† ∈ X be an Ω-minimizing S-generalized solution to (1.1) for which
there is a subgradient ξ† ∈ ∂Ω̃(x†) ∩ R

(

(D ◦ Ã)∗
)

and assume that there are constants

β̃ ∈ (0, 1] and c̃ > 0 such that

β̃BΩ̃
ξ†(x, x

†)−
(

Ω̃(x)− Ω̃(x†)
)

≤ c̃ for all x ∈ X̃. (8.2)

Then

β̃BΩ̃
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c̄
√

SY
(

F (x), F (x†)
)

for all x ∈ X (8.3)

with c̄ > 0, that is, x† satisfies Assumption 4.7 with ϕ(t) = c̄
√
t, β = β̃, and M = X.
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8. The semi-discrete setting

Proof. By ‖•‖1 we denote the 1-norm on Rm. From Lemma 8.6 we know

BΩ̃
ξ†(x, x

†) ≤ Ω̃(x)− Ω̃(x†) + c‖DÃx−DÃx†‖1 for all x ∈ X̃

with c > 0 and Proposition 12.14 with ϕ replaced by the concave and monotonically

increasing function ϕ̃(t) :=
√

‖DÃx†‖1 + t−
√

‖DÃx†‖1, t ∈ [0,∞), yields

β̃BΩ̃
ξ†(x, x

†) ≤ Ω̃(x)− Ω̃(x†) + c̄ϕ̃
(

‖DÃx−DÃx†‖1
)

for all x ∈ X̃

with c̄ > 0. For x ∈ X we have ϕ̃
(

‖DÃx − DÃx†‖1
)

= ϕ̃
(

‖DF (x) − DF (x†)‖1
)

and
Lemma 8.7, in combination with Proposition 8.5, provides ϕ̃

(

‖DF (x) −DF (x†)‖1
)

≤
√

SY (F (x), F (x†)). Taking into account Ω̃ = Ω on X we arrive at

β̃BΩ̃
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c̄
√

SY
(

F (x), F (x†)
)

for all x ∈ X.

The assumption (8.2) is discussed in Remark 12.15.
Having the variational inequality (8.3) at hand we can apply the convergence rates

theorems of Part I (see Theorem 4.11, Theorem 4.24, Theorem 5.4) to the semi-discrete
setting for regularization with Poisson distributed data.

Note that R
(

(D ◦ Ã)∗
)

is a finite-dimensional subspace of X∗ and thus the source

condition ξ† ∈ R
(

(D ◦ Ã)∗
)

is a very strong assumption. Such a strong assumption for
obtaining convergence in terms of Bregman distances is quite natural because we only
have finite-dimensional data and thus cannot expect to obtain convergence rates for a
wide class of elements x†. To avoid difficulties arising from small data spaces we intro-
duced the notion of S-generalized solutions (see Section 3.1) and studied convergence
to such ones. But the Bregman distance does not follow this concept.

Eventually, we emphasize that the constant c in (8.3) does not depend on the dimen-
sion m of the data space. Thus, also the error estimates obtained in Theorem 4.11 and
Theorem 4.24 from such a variational inequality do not depend on m.
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9. The continuous setting

Next to the semi-discrete setting analyzed in the previous chapter we also suggested a
continuous model for regularization with Poisson distributed data in Chapter 7. The
solution space (X, τX) is an arbitrary topological space and the space (Y, τY ) of right-
hand sides is Y := {y ∈ L1(T, µ) : y ≥ 0 a.e.} equipped with the topology τY induced
by the weak L1(T, µ)-topology. Data comes from the same set as the right-hand sides,
that is, Z := Y . But the topology τZ on the data space Z shall be induced by the fitting
functional S (cf. Proposition 2.10). In the continuous setting this fitting functional is
given by

S(y1, y2) =

∫

T
s(y1(t), y2(t)) dµ(t) for y1, y2 ∈ Y

with s from (7.2). It was shown in Proposition 7.2 that the integral is well-defined.
Note that we use the letter y also for the second argument of S because Y = Z and
because we did so in Proposition 2.10.

In the present chapter we show that the fitting functional S (almost) satisfies the
assumptions of Proposition 2.10 and thus also the basic Assumption 2.1. A second step
consists in deriving variational inequalities (4.3) as a prerequisite for proving conver-
gence rates.

9.1. Fundamental properties of the fitting functional

In analyzing the fitting functional S we have to be very careful because the definition of
the integrand s depends on the zeros of the arguments y1, y2. To simplify expositions,
for y ∈ Y we denote by Ny ⊆ T a measurable set such that y = 0 almost everywhere
on Ny and y > 0 almost everywhere on T \Ny. Typically there are many sets Ny with
this property, but the difference between two such sets is always a set of measure zero.
Thus, the integral of a function over a set Ny does not depend on the concrete choice
of Ny.

With this notation at hand the fitting functional can be written as follows.

Lemma 9.1. For all y1, y2 ∈ Y the equality

S(y1, y2) =















∫

Ny2\Ny1

y1 dµ+

∫

T\Ny2

y2 ln
y2
y1

+ y1 − y2 dµ, if µ(Ny1 \Ny2) = 0,

∞, if µ(Ny1 \Ny2) > 0

is satisfied.

Proof. We write T as the union of mutually disjoint sets:

T = (Ny1 ∩Ny2) ∪ (Ny1 \Ny2) ∪ (Ny2 \Ny1) ∪
(

T \ (Ny1 ∪Ny2)
)

.
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9. The continuous setting

If µ(Ny1 \Ny2) > 0, then
∫

Ny1\Ny2
s(y1, y2) dµ =∞ and thus S(y1, y2) =∞.

Now assume µ(Ny1 \Ny2) = 0. Then

∫

Ny1∩Ny2

s(y1, y2) dµ = 0 and

∫

Ny1\Ny2

s(y1, y2) dµ = 0.

Further
∫

Ny2\Ny1

s(y1, y2) dµ =

∫

Ny2\Ny1

y1 dµ

and
∫

T\(Ny1∪Ny2 )

s(y1, y2) dµ =

∫

T\(Ny1∪Ny2 )

y2 ln
y2
y1

+ y1 − y2 dµ.

Writing the set under the last integral sign as

T \ (Ny1 ∪Ny2) = (T \Ny2) \ (Ny1 \Ny2)

we see that replacing it by T \Ny2 does not change the integral (because µ(Ny1 \Ny2) =
0). Summing up the four integrals the assertion of the lemma follows.

We now start to verify the assumptions of Proposition 2.10.

Proposition 9.2. The fitting functional S satisfies item (i) in Proposition 2.10.

Proof. Let y1, y2 ∈ Y . If y1 = y2 then µ(Ny1 \ Ny2) = 0 and µ(Ny2 \Ny1) = 0. Thus,
Lemma 9.1 provides

S(y1, y2) =

∫

T\Ny2

y2 ln
y2
y1

+ y1 − y2 dµ.

The integrand is zero a.e. on T \Ny2 and therefore S(y1, y2) = 0.

For the reverse direction assume S(y1, y2) = 0. Lemma 9.1 gives µ(Ny1 \Ny2) = 0 as
well as

∫

Ny2\Ny1

y1 dµ+

∫

T\Ny2

y2 ln
y2
y1

+ y1 − y2 dµ = 0.

Since both integrands are nonnegative both integrals vanish. From the first summand
we thus see y1 = 0 a.e. on Ny2 \ Ny1 , that is, y1 = 0 a.e. on Ny2 . From the second
summand we obtain y1 = y2 a.e. on T \Ny2 . This proves the assertion.

Next we prove the lower semi-continuity of S.

Proposition 9.3. The fitting functional S satisfies item (ii) in Proposition 2.10.
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9.1. Fundamental properties of the fitting functional

Proof. The proof is an adaption of the corresponding proofs in [Pös08, Theorem 2.19]
and [Gun06, Lemma 1.1.3]. We have to show that the sublevel setsMS(c) := {(y1, y2) ∈
Y × Y : S(y1, y2) ≤ c} ⊆ (L1(T, µ))2 are closed with respect to the weak (L1(T, µ))2-
topology for all c ≥ 0 (for c < 0 these sets are empty).

Since the MS(c) are convex (S is convex, cf. Lemma 7.1) and convex sets in Banach
spaces are weakly closed if and only if they are closed, it suffices to show the closedness of
MS(c) with respect to the (L1(T, µ))2-norm. So let (yk1 , y

k
2 )k∈N be a sequence in MS(c)

converging to some element (y1, y2) ∈ (L1(T, µ))2 with respect to the (L1(T, µ))2-norm.
Then there exists a subsequence (ykn1 , ykn2 )n∈N such that (ykn1 )n∈N and (ykn2 )n∈N converge
almost everywhere pointwise to y1 and y2, respectively (cf. [Kan03, Lemma 1.30]). By
the lower semi-continuity of s and Fatou’s lemma we now get

S(y1, y2) =

∫

T

s(y1, y2) dµ ≤
∫

T

lim inf
n→∞

s(ykn1 , ykn2 ) dµ

≤ lim inf
n→∞

∫

T

s(ykn1 , ykn2 ) dµ = lim inf
n→∞

S(ykn1 , ykn2 ) ≤ c,

that is, (y1, y2) ∈MS(c).

Before we go on in verifying the assumptions of Proposition 2.10 we prove the fol-
lowing lemma.

Lemma 9.4. Let c > 0. Then for all y1, y2 ∈ Y with y1 ≤ c a.e. and y2 ≤ c a.e. the
inequality

‖y1 − y2‖2L1(T,µ) ≤ (1 + 2c̃)cµ(T )S(y1, y2)

is true, where

c̃ := sup
u∈(0,∞)\{1}

(1− u)2
(1 + u)(u ln u+ 1− u) <∞.

Proof. If S(y1, y2) = ∞, then the assertion is trivially true. If S(y1, y2) < ∞, then
µ(Ny1 \Ny2) = 0 and

S(y1, y2) =

∫

Ny2\Ny1

y1 dµ+

∫

T\Ny2

y2 ln
y2
y1

+ y1 − y2 dµ

by Lemma 9.1. We write the L1(T, µ)-norm as

‖y1 − y2‖L1(T,µ) =

∫

T

|y1 − y2|dµ =

∫

Ny2\Ny1

y1 dµ+

∫

T\Ny2

|y1 − y2|dµ.

The first summand can be estimated by

∫

Ny2\Ny1

y1 dµ =

√

√

√

√

∫

Ny2\Ny1

y1 dµ

√

√

√

√

∫

Ny2\Ny1

y1 dµ ≤
√

cµ(Ny2 \Ny1)

√

√

√

√

∫

Ny2\Ny1

y1 dµ.
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9. The continuous setting

To bound the second summand we introduce a measurable set T̃ ⊆ T such that y1 6= y2
a.e. on T̃ and y1 = y2 a.e. on T \ T̃ . Then, following an idea in [Gil10, proof of Theorem
3],

∫

T\Ny2

|y1 − y2|dµ =

∫

T̃\Ny2

|y1 − y2|
√

y2 ln
y2
y1

+ y1 − y2

√

y2 ln
y2
y1

+ y1 − y2 dµ

≤
√

√

√

√

√

∫

T̃\Ny2

(y1 − y2)2
y2 ln

y2
y1

+ y1 − y2
dµ

√

√

√

√

√

∫

T̃\Ny2

y2 ln
y2
y1

+ y1 − y2 dµ.

Here we applied the Cauchy–Schwarz inequality. This is allowed because S(y1, y2) <∞
implies that the second factor is finite and

∫

T̃\Ny2

(y1 − y2)2
y2 ln

y2
y1

+ y1 − y2
dµ =

∫

T̃\Ny2

(

1− y2
y1

)2

(

1 + y2
y1

)(y2
y1

ln y2
y1

+ 1− y2
y1

)(y1 + y2) dµ

≤ 2cµ(T̃ \Ny2) sup
u∈(0,∞)\{1}

(1− u)2
(1 + u)(u ln u+ 1− u)

shows that also the second factor is finite if the supremum is. We postpone the dis-
cussion of the supremum to the end of this proof. Putting all estimates together we
obtain

‖y1 − y2‖L1(T,µ) ≤
√

cµ(T )

√

√

√

√

∫

Ny2\Ny1

y1 dµ+
√

2cc̃µ(T )

√

√

√

√

∫

T\Ny2

y2 ln
y2
y1

+ y1 − y2 dµ

and applying the Cauchy–Schwarz inequality of R2 gives

‖y1 − y2‖2L1(T,µ) ≤ (1 + 2c̃)cµ(T )S(y1, y2).

It remains to show that h(u) := (1−u)2
(1+u)(u lnu+1−u) is bounded on (0,∞)\{1}. Obviously

h(u) ≥ 0 for u ∈ (0,∞) \ {1}, limu→0 h(u) = 1, and limu→∞ h(u) = 0. Applying
l’Hôpital’s rule we see limu→1±0 h(u) = 1. Since h is continuous on (0,∞) \ {1} these
observations show that h is bounded.

Remark 9.5. From numerical maximization one sees that c̃ ≈ 1.12 in Lemma 9.4.

Instead of item (iii) in Proposition 2.10 we prove a weaker assertion. We require the
additional assumption that all involved elements from Y have a common upper bound
c > 0. This restriction is not very serious because in practical imaging problems the
range of the images is usually a finite interval.

Proposition 9.6. Let y ∈ Y and let (yk)k∈N be a sequence in Y such that S(y, yk)→ 0.
If there is some c > 0 such that y ≤ c a.e. and yk ≤ c a.e. for sufficiently large k, then
yk → y.
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9.1. Fundamental properties of the fitting functional

Proof. The assertion is a direct consequence of Lemma 9.4 because τY is weaker than
the norm topology on L1(T, µ).

Finally we show a weakened version of item (iv) in Proposition 2.10. The influence
of the modification is discussed in Remark 9.8 below.

Proposition 9.7. Let y, ỹ ∈ Y such that S(y, ỹ) <∞ and

ess sup
T\(Nỹ∪Ny)

∣

∣

∣

∣

ln
ỹ

y

∣

∣

∣

∣

<∞,

and let (yk)k∈N be a sequence in Y with S(ỹ, yk)→ 0. If there is some c > 0 such that
y ≤ c a.e. and yk ≤ c a.e. for sufficiently large k, then S(y, yk)→ S(y, ỹ).

Proof. From S(y, ỹ) <∞ we know µ(Ny \Nỹ) = 0 and S(ỹ, yk)→ 0 gives µ(Nỹ \Nyk) =
0 for sufficiently large k (cf. Lemma 9.1). Thus

0 ≤ µ(Ny \Nyk) ≤ µ
(

(Ny \Nỹ) ∪ (Nỹ \Nyk)
)

≤ µ(Ny \Nỹ) + µ(Nỹ \Nyk) = 0,

that is,

S(y, yk) =

∫

Nyk\Ny

y dµ+

∫

T\Nyk

yk ln
yk
y

+ y − yk dµ

for large k.
The assertion is proven if we can show

|S(y, yk)− S(y, ỹ)| ≤ c1S(ỹ, yk) + c2‖yk − ỹ‖L1(T,µ)

for some c1, c2 ≥ 0 (cf. Lemma 9.4). We start with
∫

Nyk\Ny

y dµ−
∫

Nỹ\Ny

y dµ =

∫

Nyk

y dµ−
∫

Nỹ

y dµ

=

∫

Nyk\Nỹ

y dµ+

∫

Nyk∩Nỹ

y dµ−
∫

Nỹ

y dµ =

∫

Nyk\Nỹ

y dµ.

The second equality follows from µ
(

Nỹ \ (Nyk ∩Nỹ)
)

= µ(Nỹ \Nyk) = 0. As the second
step we write the difference

∫

T\Nyk

yk ln
yk
y

+ y − yk dµ−
∫

T\Nỹ

ỹ ln
ỹ

y
+ y − ỹ dµ (9.1)

as a sum of three integrals over the mutually disjoint sets (T \ Nyk) \ (T \ Nỹ), (T \
Nyk)∩ (T \Nỹ), and (T \Nỹ) \ (T \Nyk). The integral over the first set is zero because
µ
(

(T \Nyk) \ (T \Nỹ)
)

= µ(Nỹ \Nyk) = 0. The second set can be replaced by T \Nyk

because µ
(

(T \Nyk) ∩ (T \Nỹ)
)

= µ
(

(T \Nyk) \ (Nỹ \Nyk)
)

= µ(T \Nyk). The third
set equals Nyk \Nỹ. Thus, the difference (9.1) is

∫

T\Nyk

yk ln
yk
y

+ y − yk − ỹ ln
ỹ

y
− y + ỹ dµ−

∫

Nyk\Nỹ

ỹ ln
ỹ

y
+ y − ỹ dµ.
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9. The continuous setting

Combining both steps we obtain

S(y, yk)− S(y, ỹ) =
∫

T\Nyk

yk ln
yk
y
− yk − ỹ ln

ỹ

y
+ ỹ dµ+

∫

Nyk\Nỹ

ỹ − ỹ ln ỹ
y
dµ (9.2)

The second integral can be bounded by

∫

Nyk\Nỹ

ỹ − ỹ ln ỹ
y
dµ ≤

(

ess sup
Nyk\Nỹ

∣

∣

∣

∣

1− ln
ỹ

y

∣

∣

∣

∣

)

∫

Nyk\Nỹ

ỹ dµ.

For the first integral we obtain the bound

∫

T\Nyk

yk ln
yk
y
− yk − ỹ ln

ỹ

y
+ ỹ dµ

=

∫

T\Nyk

yk ln
yk
ỹ

+ ỹ − yk + (yk − ỹ) ln
ỹ

y
dµ

≤
∫

T\Nyk

yk ln
yk
ỹ

+ ỹ − yk dµ+ ess sup
T\Nyk

∣

∣

∣

∣

ln
ỹ

y

∣

∣

∣

∣

‖yk − ỹ‖L1(T,µ).

Thus,

S(y, yk)− S(y, ỹ) ≤ c1S(ỹ, yk) + c2‖yk − ỹ‖L1(T,µ)

with

c1 := max

{

1, ess sup
T\(Nỹ∪Ny)

∣

∣

∣

∣

1− ln
ỹ

y

∣

∣

∣

∣

}

and c2 := ess sup
T\(Nỹ∪Ny)

∣

∣

∣

∣

ln
ỹ

y

∣

∣

∣

∣

.

Using the same arguments one shows

−
(

S(y, yk)− S(y, ỹ)
)

≤ c1S(ỹ, yk) + c2‖yk − ỹ‖L1(T,µ).

Therefore, the assertion of the proposition is true.

Remark 9.8. The additional assumption in Proposition 9.7 that there exists a common
bound c > 0 is not very restrictive as noted before Proposition 9.6. Also requiring
that ln ỹ

y is essentially bounded is not too strong: Careful inspection of the proofs in
Chapter 3 shows that this assumption is only of importance in the proof of Theorem 3.3
(stability). There ỹ := F (xyα). Thus, the additional assumption reduces to a similarity
condition between a data element y and the images of corresponding minimizers xyα of
the Tikhonov-type functional T yα .

9.2. Derivation of a variational inequality

The aim of this section is to obtain a variational inequality (4.3) from a source condition.
As in Section 8.2 we have to enrich the setting slightly to allow the formulation of source
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9.2. Derivation of a variational inequality

conditions. This enrichment is exactly the same as for the semi-discrete setting. But
to improve readability we repeat it here.

Assume that X is a subset of a normed vector space X̃ and that τX is the topology
induced by the weak topology on X̃. Let Ã : X̃ → L1(T, µ) be a bounded linear operator
and assume that X is contained in the convex and τX-closed set Ã−1Y = {x ∈ X̃ :
Ãx ≥ 0 a.e.}. Then we may define F : X → Y to be the restriction of Ã to X. Further
let Ω be a stabilizing functional on X which can be extended to a convex functional
Ω̃ : X̃ → (−∞,∞] on X̃. As error measure Ex† we use the associated Bregman distance

BΩ̃
ξ†(•, x†), where ξ† ∈ ∂Ω̃(x†) ⊆ X̃∗.
At first we determine the distance SY on Y defined in Definition 2.7 and appearing

in the variational inequality (4.3).

Proposition 9.9. For all y1, y2 ∈ Y the equality

SY (y1, y2) =

∫

T

(√
y1 −

√
y2
)2

dµ

is true.

Proof. At first we show

SY (y1, y2) = inf
y∈Y

(

S(y1, y) + S(y2, y)
)

≤
∫

T

(√
y1 −

√
y2
)2

dµ.

Take y =
√
y1y2. Then µ(Ny1 \N√

y1y2) = 0 and µ(Ny2 \N√
y1y2) = 0. Thus,

S(y1,
√
y1y2) + S(y2,

√
y1y2)

=

∫

N√
y1y2

\Ny1

y1 dµ+

∫

N√
y1y2

\Ny2

y2 dµ

+

∫

T\N√
y1y2

√
y1y2 ln

√
y2√
y1

+ y1 −
√
y1y2 +

√
y1y2 ln

√
y1√
y2

+ y2 −
√
y1y2 dµ

=

∫

T

(√
y1 −

√
y2
)2

dµ,

where we used the fact that the difference between N√
y1y2 and Ny1 ∪ Ny2 is a set of

measure zero.
It remains to show

S(y1,
√
y1y2) + S(y2,

√
y1y2) ≤ S(y1, y) + S(y2, y) for all y ∈ Y .

If the right-hand side of this inequality is finite (only this case is of interest), then

S(y1,
√
y1y2) + S(y2,

√
y1y2)− S(y1, y)− S(y2, y)

=

∫

Ny

(√
y1 −

√
y2
)2 − y1 − y2 dµ

+

∫

T\Ny

(√
y1 −

√
y2
)2 − y ln y

y1
− y1 + y − y ln y

y2
− y2 + y dµ
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9. The continuous setting

and simple rearrangements yield

S(y1,
√
y1y2) + S(y2,

√
y1y2)− S(y1, y)− S(y2, y)

=

∫

Ny

−2√y1y2 dµ+

∫

T\Ny

−2√y1y2
(

1− y√
y1y2

+
y√
y1y2

ln
y√
y1y2

)

dµ ≤ 0.

Thus, the proof is complete.

The starting point for obtaining a variational inequality is the following lemma.

Lemma 9.10. Let x† ∈ X be an Ω-minimizing S-generalized solution to (1.1) such
that there is a subgradient ξ† ∈ ∂Ω̃(x†) ∩R(Ã∗). Then there is some c > 0 such that

BΩ̃
ξ†(x, x

†) ≤ Ω̃(x)− Ω̃(x†) + c‖Ãx− Ãx†‖L1(T,µ) for all x ∈ X̃.

Proof. Let ξ† = Ã∗η† with η† ∈ L1(T, µ)∗. Then

−〈ξ†, x− x†〉 = −〈η†, Ã(x− x†)〉 ≤ ‖η†‖L1(T,µ)∗‖Ã(x− x†)‖L1(T,µ)

for all x ∈ X̃ , where 〈•, •〉 denotes the duality pairing. Thus,

BΩ̃
ξ†(x, x

†) = Ω̃(x)− Ω̃(x†)− 〈ξ†, x− x†〉 ≤ Ω̃(x)− Ω̃(x†) + c‖Ãx− Ãx†‖L1(T,µ)

for all x ∈ X̃ and any c ≥ ‖η†‖L1(T,µ)∗ .

The next lemma is an important step in constituting a connection between SY from
Proposition 9.9 and the inequality obtained in Lemma 9.10.

Lemma 9.11. For all y1, y2 ∈ Y the inequality

(√

‖y2‖L1(T,µ) + ‖y1 − y2‖L1(T,µ) −
√

‖y2‖L1(T,µ)

)2
≤
∫

T

(√
y1 −

√
y2
)2

dµ

is true.

Proof. In the proof of Lemma 8.7 we verified the inequality

∣

∣

√
a−
√
b
∣

∣ ≥
√

b+ |a− b| −
√
b for all a, b ≥ 0.

From this inequality we obtain

∫

T

(√
y1 −

√
y2
)2

dµ ≥
∫

T

(
√

y2 + |y1 − y2| −
√

y2
)2

dµ

=

∫

T

|y1 − y2|dµ+ 2

∫

T

y2 dµ− 2

∫

T

√

y2 + |y1 − y2|
√

y2 dµ.
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9.2. Derivation of a variational inequality

Interpreting the last of the three integrals as an inner product in L2(T, µ) we can apply
the Cauchy–Schwarz inequality. This yields

∫

T

(√
y1 −

√
y2
)2

dµ ≥
∫

T

|y1 − y2|dµ+ 2

∫

T

y2 dµ− 2

√

√

√

√

∫

T

y2 + |y1 − y2|dµ
√

√

√

√

∫

T

y2 dµ

=







√

√

√

√

∫

T

y2 dµ+

∫

T

|y1 − y2|dµ−
√

√

√

√

∫

T

y2 dµ







2

,

which proves the assertion of the lemma.

Now we are in the position to establish a variational inequality.

Theorem 9.12. Let x† ∈ X be an Ω-minimizing S-generalized solution to (1.1) for
which there is a subgradient ξ† ∈ ∂Ω̃(x†) ∩ R(Ã∗) and assume that there are constants
β̃ ∈ (0, 1] and c̃ > 0 such that

β̃BΩ̃
ξ†(x, x

†)−
(

Ω̃(x)− Ω̃(x†)
)

≤ c̃ for all x ∈ X̃. (9.3)

Then

β̃BΩ̃
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c̄
√

SY
(

F (x), F (x†)
)

for all x ∈ X (9.4)

with c̄ > 0, that is, x† satisfies Assumption 4.7 with ϕ(t) = c̄
√
t, β = β̃, and M = X.

Proof. From Lemma 9.10 we know

BΩ̃
ξ†(x, x

†) ≤ Ω̃(x)− Ω̃(x†) + c‖Ãx− Ãx†‖L1(T,µ) for all x ∈ X̃

with c > 0 and Proposition 12.14 with ϕ replaced by the concave and monotonically

increasing function ϕ̃(t) :=
√

‖Ãx†‖L1(T,µ) + t−
√

‖Ãx†‖L1(T,µ), t ∈ [0,∞), yields

β̃BΩ̃
ξ†(x, x

†) ≤ Ω̃(x)− Ω̃(x†) + c̄ϕ̃
(

‖Ãx− Ãx†‖L1(T,µ)

)

for all x ∈ X̃

with c̄ > 0. For x ∈ X we have ϕ̃
(

‖Ãx− Ãx†‖L1(T,µ)

)

= ϕ̃
(

‖F (x)− F (x†)‖L1(T,µ)

)

and

Lemma 9.11, in combination with Proposition 9.9, provides ϕ̃
(

‖F (x)−F (x†)‖L1(T,µ)

)

≤
√

SY (F (x), F (x†). Taking into account Ω̃ = Ω on X we arrive at

β̃BΩ̃
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c̄
√

SY
(

F (x), F (x†)
)

for all x ∈ X.

The assumption (9.3) is discussed in Remark 12.15.
Having the variational inequality (9.4) at hand we can apply the convergence rates

theorems of Part I (see Theorem 4.11, Theorem 4.24, Theorem 5.4) to the continuous
setting for regularization with Poisson distributed data.
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10. Numerical example

The present chapter shall provide a glimpse on the influence of the fitting functional
on regularized solutions. We consider the semi-discrete setting for regularization with
Poisson distributed data described in Chapter 8. The aim is not to present an exhaustive
numerical study but to justify the effort we have undertaken to analyze non-metric
fitting functionals in Part I. A detailed numerical investigation of different noise adapted
fitting functionals would be very interesting and should be realized in future. At the
moment only few results on this question can be found in the literature (see, e.g.,
[Bar08]).

10.1. Specification of the test case

Since Poisson distributed data mainly occur in imaging we aim to solve a typical de-
blurring problem. We restrict ourselves to a one-dimensional setting. This saves com-
putation time and allows for a detailed illustration of the results. Next to the fitting
functional and the operator a major decision is the choice of a suitable stabilizing func-
tional Ω. Common variants in the field of imaging are total variation penalties and
sparsity constraints. For our experiments we use a sparsity constraint with respect to
the Haar base. In the sequel of this section we make things more precise.

10.1.1. Haar wavelets

We consider square-integrable functions over the interval (0, 1). Each such function
u ∈ L2(0, 1) can be decomposed with respect to the Haar base {φ0,0} ∪ {ψk,l : l ∈
N0, k = 0, . . . , 2l − 1} ⊆ L2(0, 1), where we define φ, φl,k, ψ, ψl,k ∈ L2(0, 1) by

φ :≡ 1, ψ(t) :=

{

1, t ∈
(

0, 12
]

,

−1, t ∈
(

1
2 , 1
)

,
φl,k := 2

l
2φ(2l • − k), ψl,k := 2

l
2ψ(2l • − k)

for l ∈ N0 and k = 0, . . . , 2l − 1. The decomposition coefficients are given by

c0,0 := 〈u, φ0,0〉, dl,k := 〈u, ψl,k〉 for l ∈ N0 and k = 0, . . . , 2l − 1.

These coefficients can be arranged as a sequence x := (xj)j∈N ∈ l2(N) by

x1 := c0,0, x1+2l+k := dl,k for l ∈ N0 and k = 0, . . . , 2l − 1. (10.1)

The decomposition process is a linear mapping W : L2(0, 1) → l2(N), u 7→ x and the
synthesis of u from x is given by

V : l2(N0)→ L2(0, 1), x 7→ c0,0φ0,0 +
∞
∑

l=0

2l−1
∑

k=0

dl,kψl,k.
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10. Numerical example

A fast method for obtaining the corresponding coefficients is the fast wavelet trans-
form: Given a piecewise constant function u =

∑n
j=1 ujχ( j−1

n
, j
n
) with n := 2l̄+1, l̄ ∈ N0,

uj ∈ R, and χ(a,b) being one on (a, b) and zero outside this interval we first define

cl̄+1,k := 〈u, φl̄+1,k〉 = 2−
l̄+1
2 uk+1 for k = 0, . . . , 2l̄+1 − 1.

Then the numbers

cl,k := 〈u, φl,k〉 =
1√
2
(cl+1,2k + cl+1,2k+1), for k = 0, . . . , 2l − 1

and

dl,k := 〈u, ψl,k〉 =
1√
2
(cl+1,2k − cl+1,2k+1) for k = 0, . . . , 2l − 1

have to be computed gradually for l = l̄, . . . , 0. Now the function u can be written as

u = c0,0φ0,0 +

l̄
∑

l=0

2l−1
∑

k=0

dl,kψl,k.

There is also a fast algorithm for the synthesis of u from its Haar coefficients: Given
c0,0 and dl,k for l = 0, . . . , l̄ and k = 0, . . . , 2l − 1 we gradually compute

cl+1,k :=







1√
2

(

cl, k
2
+ dl, k

2

)

, k is even,

1√
2

(

cl, k−1
2
− dl, k−1

2

)

, k is odd,
k = 0, . . . , 2l+1 − 1

for l = 0, . . . , l̄. Then u is obtained from

u =

n
∑

j=1

ujχ( j−1
n
, j
n
) with uj = 2

l̄+1
2 cl̄+1,j−1.

Arranging the Haar coefficients as a sequence x = (xj)j∈N ∈ l2(N) (see (10.1)), only

the first n = 2l̄+1 elements of x are non-zero in case of the piecewise constant function u
from above. That is, the vector x := [x1, . . . , xn]

T contains the same information as the
vector u := [u1, . . . , un]

T. From this viewpoint the fast wavelet transform (as a linear
mapping) can be expressed by a matrixW ∈ Rn×n and the inverse transform (synthesis)
by a matrix V ∈ Rn×n. Note, that 1√

n
W and 1√

n
V are orthonormal matrices, that is,

WTW = nI and V TV = nI. The corresponding inverse matrices satisfy

V =W−1 =
1

n
WT and W = V −1 =

1

n
V T.

In the sequel we only use the matrix V and the relations

x =
1

n
V Tu and u = V x.

Further details on the Haar system are given in all books on wavelets (e.g. [Dau92,
GC99]).
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10.1. Specification of the test case

10.1.2. Operator and stabilizing functional

In our numerical tests we apply a linear blurring operator B : U → Y , where U :=
{u ∈ L2(0, 1) : u ≥ 0 a.e.} and Y is as in Chapter 8 with T := (0, 1), Ti := ( i−1

n , in)
for i = 1, . . . , n, and µ being the Lebesgue measure on T (see Chapter 8 for details on
the semi-discrete setting under consideration). For simplicity we use a constant kernel
1
bχ[− b

2
, b
2
] of width b ∈ (0, 1) and extend the functions u ∈ U by reflection to R: for

k ∈ Z and t ∈ (0, 1) define

ũ(k + t) :=

{

u(t), k is even,

u(1− t), k is odd.

Then the operator B is given by

(Bu)(t) =

∞
∫

−∞

1

b
χ[− b

2
, b
2
](t− s)ũ(s) ds =

1

b

b
2
∫

− b
2

ũ(t− s) ds

=



















































1
b

t
∫

− b
2

u(t− s) ds+ 1
b

b
2
∫

t

u(s− t) ds, 0 < t < b
2 ,

1
b

b
2
∫

− b
2

u(t− s) ds, b
2 ≤ t ≤ 1− b

2 ,

1
b

t−1
∫

− b
2

u(2 + s− t) ds+ 1
b

b
2
∫

t−1

u(t− s) ds, 1− b
2 < t < 1.

Instead of a function u ∈ U we would like to work with its Haar coefficients, that is,
the final operator F : X → Y in equation (1.1) reads as F := B ◦ V (restricted to X)
with V from Subsection 10.1.1 and X := {x ∈ l2(N) : V x ≥ 0 a.e.}. For the analysis
carried out in Part I the topology τX shall be induced by the weak topology on l2(N);
but for the numerical experiments this choice does not matter.

The reason for using the Haar decomposition is the choice of the stabilizing functional
Ω : X → [0,∞]. It shall penalize the values and the number of the Haar coefficients.
This can be achieved by

Ω(x) :=
∞
∑

j=1

wj |xj |,

where (wj)j∈N is a bounded sequence of weights satisfying wj > 0 for all j ∈ N. Such
sparsity constraints have been studied in detail during the last decade in the context
of inverse problems and turned out to be well suited for stabilizing imaging problems
(see, e.g., [DDDM04, FSBM10]).

Proposition 10.1. The operator F : X → Y is continuous with respect to τX and τY .
The functional Ω : X → [0,∞] has τX-compact sublevel sets.
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10. Numerical example

Proof. To prove continuity of F it suffices to show that B : L2(0, 1) → L1(0, 1) is
continuous with respect to the norm topologies. This is the case because for each
u ∈ L2(0, 1) we have

‖Bu‖L1(0,1) ≤
1

b

1
∫

0

b
2
∫

− b
2

|ũ(t− s)|ds dt ≤ 1

b

1
∫

0

3
2
∫

− 1
2

|ũ(s)|ds dt

≤ 2

b

1
∫

0

1
∫

0

|u(s)|ds dt ≤ 2

b
‖u‖L2(0,1).

We now show the weak compactness of the sublevel sets MΩ̃(c) := {x ∈ l2(N) :

Ω̃(x) ≤ c} of the functional Ω̃ : l2(N)→ [0,∞] defined by

Ω̃(x) :=
∞
∑

j=1

wj|xj |.

This functional is known to be weakly lower semi-continuous (that is, the setsMΩ̃(c) are

weakly closed) and coercive (see, e.g., [Gra10c]). Coercivity means that Ω̃(x) → ∞ if
‖x‖l2(N) →∞; therefore each sequence in MΩ̃(c) is bounded. Since bounded sequences
in a separable Hilbert space contain weakly convergent subsequences, the sets MΩ̃(c)
are relatively weakly compact.

The sublevel sets MΩ(c) := {x ∈ X : Ω(x) ≤ c} of Ω can be written as MΩ(c) =
MΩ̃(c)∩X. The set X as a subset of l2(N) is closed and convex, and hence also weakly
closed. Since the intersection of a weakly compact and a weakly closed set remains
weakly compact, the assertion is true.

The proposition and the results of Section 8.1 show that the basic Assumption 2.1 is
satisfied and thus the theory developed in Part I applies to the present example.

10.1.3. Discretization

For given data z = [z1, . . . , zm]
T ∈ [0,∞)m we aim to approximate a minimizer of the

Tikhonov-type functional

T zα(x) =

m
∑

i=1

s(DiF (x), zi) + αΩ(x), x ∈ X,

numerically (note that we write z instead of z in this chapter to emphasize that it is
a finite-dimensional vector). The function s is defined in (7.2) and the operator F and
the stabilizing functional Ω have been introduced in Subsection 10.1.2. Remember the
definition of the operators Di:

Diy =

∫

Ti

y dµ =

i
m
∫

i−1
m

y(t) dt, i = 1, . . . ,m.
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10.1. Specification of the test case

We discretize the minimization problem by cutting off the Haar coefficients of fine
levels l, which results in restricting the minimization to a finite-dimensional subspace
of X. For l̄ ∈ N define

Xl̄ :=
{

x ∈ X : xj = 0 for j > 2l̄+1
}

;

the dimension of this subspace is n := 2l̄+1 (here ‘dimension’ means the dimension of
the affine hull of Xl̄ in l

2(N)).
For x ∈ Xl̄ the corresponding function V x ∈ L2(0, 1) (see Subsection 10.1.1 for the

definition of V ) is piecewise constant and we may write it as

V x =
n
∑

j=1

ujχ( j−1
n
, j
n
)

with u = [u1, . . . , un]
T ∈ [0,∞)n. Identifying x = (x1, . . . , xn, 0, . . .) ∈ Xl̄ with x =

[x1, . . . , xn]
T ∈ Rn yields u = V x with V from Subsection 10.1.1 and therefore

Xl̄ =
{

x = (x1, . . . , xn, 0, . . .) ∈ l2(N) : V x ≥ 0
}

.

Since DBV x is in [0,∞)m, the restriction of the operator D ◦B to piecewise constant
functions V x, x ∈ Xl̄, can be expressed by a matrix B ∈ Rm×n. Then DF (x) =
DBV x = BV x. For later use we set A := BV . The matrix B is given below for the
special case m = n. On Xl̄ the stabilizing functional Ω reduces to Ω(x) =

∑n
j=1wj|xj |.

Next we verify that the chosen discretization yields arbitrarily exact approximations
of minimizers of T

z
α over X if l̄ is large enough.

Proposition 10.2. The sequence (Xl̄)l̄∈N of τX-closed subspaces X1 ⊆ X2 ⊆ · · · ⊆ X
satisfies Assumption 3.6 (with n replaced by l̄ there).

Proof. For x ∈ X choose the sequence (xl̄)l̄∈N with xl̄ := (x1, . . . , x2l̄+1 , 0, . . .) ∈ Xl̄

(by the construction of the Haar system we have V xl̄ ≥ 0 a.e. if V x ≥ 0 a.e.). Then
‖xl̄ − x‖l2(N) → 0 if l̄→∞.

From the proof of Proposition 10.1 we know that B is continuous with respect to
the norm topologies on L2(0, 1) and L1(0, 1). Therefore D ◦ B ◦ V is continuous with
respect to the norm topologies on l2(N) and Rm, that is, ‖DF (xl̄) − DF (x)‖Rm → 0
if l̄ → ∞. Since s(•, w) : [0,∞) → [0,∞] is continuous for each w ∈ [0,∞), we obtain
∑m

i=1 s(DiF (xl̄), zi)→
∑m

i=1 s(DiF (x), zi) if l̄ →∞ for all z ∈ [0,∞)m.
For the stabilizing functional we obviously have

Ω(xl̄) =

2l̄+1
∑

j=1

wj |xj| →
∞
∑

j=1

wj |xj | = Ω(x)

if l̄→∞.

The proposition shows that Corollary 3.10 in Section 3.5 on the discretization of
Tikhonov-type minimization problems applies to the present example.

For simplicity we assume m = n in the sequel, that is, the solution space Xl̄ shall
have the same dimension as the data space Z = [0,∞)m. In this case we can explicitly
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10. Numerical example

calculate the matrix B ∈ Rn×n. If the kernel width b of the blurring operator B is of
the form b = 2q

n with q ∈ {1, . . . , n2 −1}, then simple but lengthy calculations show that
the elements bij of the matrix B are given by

bij =







































































































4
4qn for i = 1, . . . , q and j = 1, . . . , q − i,
3

4qn for i = 1, . . . , q and j = q − i+ 1,
2

4qn for i = 1, . . . , q and j = q − i+ 2, . . . , q + i− 1,
1

4qn for i = 1, . . . , q and j = q + i,
1

4qn for i = q + 1, . . . , n − q and j = i− q,
2

4qn for i = q + 1, . . . , n − q and j = i− q + 1, . . . , i+ q − 1,
1

4qn for i = q + 1, . . . , n − q and j = i+ q,
1

4qn for i = n− q + 1, . . . , n and j = i− q,
2

4qn for i = n− q + 1, . . . , n and j = i− q + 1, . . . , 2n− i− q,
3

4qn for i = n− q + 1, . . . , n and j = 2n− q − i+ 1,
4

4qn for i = n− q + 1, . . . , n and j = 2n− q − i+ 2, . . . , n,

0 else.

Eventually, the discretized minimization problem reads as

n
∑

i=1

s([Ax]i, zi) + α

n
∑

j=1

wj |xj | → min
x∈Rn:V x≥0

.

The nonnegativity constraint can also be included in the stabilizing functional by setting

Ω(x) :=











n
∑

j=1

wj |xj|, V x ≥ 0,

∞, else

for x ∈ Rn. Then the minimization problem to be solved becomes

n
∑

i=1

s([Ax]i, zi) + αΩ(x)→ min
x∈Rn

. (10.2)

At points x where
∑n

i=1 s([Ax]i, zi) is not defined the stabilizing functional is infinite
and thus the whole objective function can be assumed to be infinite at such points.

In the sequel we only consider the discretized minimization problem (10.2). But the
analytic results and also the minimization algorithm are expected to work in infinite
dimensions, too. Only few modifications would be required.

10.2. An optimality condition

Before we provide an algorithm for solving the minimization problem (10.2) we have
to think about a stopping criterion. If the objective function would be differentiable,
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10.2. An optimality condition

then we would search for vectors x ∈ Rn where the gradient norm of the objective
function becomes zero (or at least very small). The objective function in (10.2) is not
differentiable. Thus, we have to apply techniques from non-smooth convex analysis.

At first we calculate the gradient of the mapping

Sz : Xl̄ → [0,∞], Sz(x) :=

n
∑

i=1

s([Ax]i, zi). (10.3)

For some vector v ∈ Rn we define sets

I0(v) := {i ∈ {1, . . . , n} : vi = 0} and I∗(v) := {1, . . . , n} \ I0(v).

Then Sz(x) =∞ if I0(Ax) ∩ I∗(z) 6= ∅ and

Sz(x) =
∑

i∈I0(z)
[Ax]i +

∑

i∈I∗(z)

(

zi ln
zi

[Ax]i
+ [Ax]i − zi

)

<∞ (10.4)

if I0(Ax) ∩ I∗(z) = ∅. In the last case we used I∗(Ax) ∩ I∗(z) = I∗(z). The essential
domain of Sz is thus given by

D(Sz) := {x ∈ Xl̄ : I0(Ax) ∩ I∗(z) = ∅}.

Lemma 10.3. For all x ∈ D(Sz) the mapping Sz has partial derivatives ∂
∂xj

Sz(x),

j = 1, . . . , n. If I0(Ax) ∩ I0(z) 6= ∅ for some x ∈ D(Sz), then the corresponding partial
derivatives have to be understood as one-sided derivatives. The gradient ∇Sz is given
by

∇Sz(x) = ATh(Ax), x ∈ D(Sz),

with

h : [0,∞)n → [0,∞), [h(y)]i :=

{

1, i ∈ I0(z),
1− zi

yi
, i ∈ I∗(z).

Proof. The assertion follows from (10.4) and from the chain rule.

Obviously a minimizer x∗ ∈ Rn of (10.2) has to satisfy x∗ ∈ D(Sz) and V x∗ ≥ 0. We
state a first optimality criterion in terms of subgradients.

Lemma 10.4. A vector x∗ ∈ D(Sz) with V x∗ ≥ 0 minimizes (10.2) if and only if

− 1

α
∇Sz(x∗) ∈ ∂Ω(x∗).

Proof. This is a standard result in convex analysis. See, e.g., [ABM06, Proposition
9.5.3] in combination with [ABM06, Theorem 9.5.4].

Lemma 10.5. Let x ∈ Rn satisfy V x ≥ 0. A vector ξ ∈ Rn belongs to the subdifferential

∂Ω(x) if and only if it has the form ξ = η + V Tζ with vectors η, ζ ∈ Rn satisfying

ηj = (sgnxj)wj if xj 6= 0, ηj ∈ [−wj , wj ] if xj = 0

and
ζi = 0 if [V x]i > 0, ζi ∈ (−∞, 0] if [V x]i = 0.

83



10. Numerical example

Proof. We write Ω = Γ + Λ with

Γ(x) :=
n
∑

j=1

wj |xj| and Λ(x) :=

{

0, V x ≥ 0,

∞, else

for x ∈ Rn. Then ∂Ω(x) = ∂Γ(x) + ∂Λ(x) for x with V x ≥ 0 (cf. [ABM06, Theorem
9.5.4]). Thus, it suffices to show that ∂Γ(x) consists exactly of the vectors η described in

the lemma and that ∂Λ(x) consists exactly of the vectors V Tζ with ζ as in the lemma.

So let η ∈ ∂Γ(x). Then the subgradient inequality reads as

n
∑

j=1

wj(|x̃j | − |xj |) ≥
n
∑

j=1

ηj(x̃j − xj) for all x̃ ∈ Rn. (10.5)

Fixing j and setting all but the j-th component of x̃ to the values of the corresponding
components of x the inequality reduces to

wj(|x̃j | − |xj |) ≥ ηj(x̃j − xj) for all x̃j ∈ R.

If xj > 0, then x̃j := 1+xj and x̃j := 0 lead to ηj = wj. For xj < 0 we set x̃j := −1+xj
and x̃j := 0, which gives ηj = −wj. And in the case xj = 0 the bounds −wj ≤ ηj ≤ wj
follow from x̃j := ±1.

Now let η be as in the lemma. Then the subgradient inequality (10.5) follows imme-
diately from the three implications

xj > 0 ⇒ ηj(x̃j − xj) = wj(x̃j − |xj |) ≤ wj(|x̃j | − |xj |),
xj < 0 ⇒ ηj(x̃j − xj) = wj(−x̃j − |xj |) ≤ wj(|x̃j | − |xj |),
xj = 0 ⇒ ηj(x̃j − xj) = ηj x̃j ≤ |ηj||x̃j | ≤ wj |x̃j|.

Let ζ̃ ∈ ∂Λ(x). Since V is invertible the vector V −T ζ̃ is well-defined and if we could

show that V −T ζ̃ is of the same form as ζ in the lemma, then ζ̃ = V T
(

V −T ζ̃
)

satisfies
the desired representation.

The subgradient inequality is equivalent to

0 ≥
(

V −T ζ̃
)T

(V x̃− V x) for all x̃ ∈ Rn with V x̃ ≥ 0. (10.6)

Thus, setting x̃ := x + V −1ei the inequality implies
[

V −T ζ̃
]

i
≤ 0 (here ei has a one

in the i-th component and zeros in all other components). And if [V x]i > 0, then
x̃ := x− [V x]iV

−1ei yields
[

V −T ζ̃
]

i
≥ 0.

Finally, we have to show that ζ̃ := V Tζ with ζ as in the lemma belongs to ∂Λ(x).
Therefore, we observe

ζ̃
T
(x̃− x) = ζT(V x̃− V x) ≤ 0 for all x̃ ∈ Rn with V x̃ ≥ 0.

This is equivalent to (10.6) and (10.6) is equivalent to the subgradient inequality.
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10.2. An optimality condition

Combining the two lemmas we have the following optimality criterion: A vector x∗

is a minimizer of the discretized Tikhonov functional (10.2) if and only if

− 1

α
∇Sz(x∗) = η + V Tζ

with η and ζ from the previous lemma. There is no chance to check this condition
numerically. Thus, we cannot use it for stopping a minimization algorithm.

The following proposition provides a more useful characterization of the subgradients
of Ω.

Proposition 10.6. Let x ∈ Rn satisfy V x ≥ 0 and denote the elements of V by vij ,
i, j = 1, . . . , n. A vector ξ ∈ Rn belongs to the subdifferential ∂Ω(x) if and only if

n
∑

j=1

(

ξj − (sgn xj)wj
)

xj = 0 and

n
∑

j=1

(

ξj − (sgn xj)wj
)

vij ≤
∑

j:xj=0

wj |vij | for i = 1, . . . , n.

Proof. From Lemma 10.5 we know that ξ ∈ ∂Ω(x) if and only if there are η, ζ ∈ Rn as

in the lemma such that ξ − η = V Tζ or, equivalently, V −T(ξ − η) = ζ. We reformulate
the last equality as

(ξ − η)Tx = 0, V −T(ξ − η) ≤ 0, (10.7)

that is, we suppress ζ. Necessity follows from (ξ−η)Tx =
(

V −T (ξ−η)
)T
V x = ζTV x = 0

and V −T(ξ − η) = ζ ≤ 0. To show sufficiency we set ζ := V −T(ξ − η) and verify that ζ
is as in Lemma 10.5. Obviously ζ ≤ 0. If there would by an index i with [V x]i > 0 and

ζ
i
< 0, then we would obtain the contradiction 0 = (ξ − η)Tx = ζTV x ≤ ζ

i
[V x]i < 0.

Next, we write (10.7) as

n
∑

j=1

(

ξj − (sgnxj)wj
)

xj = 0, V (ξ − η) ≤ 0

(remember V −T = 1
nV , see Subsection 10.1.1). Thus, it remains to show

[

V (ξ − η)
]

i
≤ 0 ⇔

n
∑

j=1

(

ξj − (sgnxj)wj
)

vij −
∑

j:xj=0

wj|vij | ≤ 0

for each i ∈ {1, . . . , n}. To verify the ‘⇒’ direction, first note that

n
∑

j=1

(

ξj − (sgnxj)wj
)

vij −
∑

j:xj=0

wj|vij | =
∑

j:xj 6=0

(ξj − ηj)vij +
∑

j:xj=0

(ξjvij − wj |vij |).

For j with xj = 0 we have wj ≥ (sgn vij)ηj , which implies

∑

j:xj 6=0

(ξj − ηj)vij +
∑

j:xj=0

(ξjvij − wj |vij|) ≤
n
∑

j=1

(ξj − ηj)vij =
[

V (ξ − η)
]

i
≤ 0.

The ‘⇐’ direction follows if we set ηj := (sgn vij)wj for j with xj = 0.
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The proposition provides a numerical measure of optimality. That is, we can check
the optimality criterion in Lemma 10.4 numerically and use it as a stopping criterion
for minimization algorithms, or at least to assess the quality of an algorithm’s output.
We should note, that this optimality measure is not invariant with respect to scaling
in x and ξ = − 1

α∇Sz(x). Dividing the equality in the proposition by ‖x‖2 might be a
good idea, but does not solve the scaling problem completely.

10.3. The minimization algorithm

In this section we describe an algorithm for solving the minimization problem (10.2).
We combine the generalized gradient projection method investigated in [BL08] with a
framework for gradient projection methods applied in [BZZ09]. Under suitable assump-
tions the authors of [BL08] show convergence of generalized gradient projection methods
in infinite-dimensional spaces. Thus, we expect that our concrete algorithm is not too
sensitive with respect to the discretization level n. The method works as follows:

Algorithm 10.7.

0. Set starting point

x0 :=
1

n

(

n
∑

i=1

zi

)

V Te,

where e := [1, . . . , 1]T. One can show [Ax0]ι = 1
n

∑n
i=1 zi for ι = 1, . . . , n and

Sz(x0) + αΩ(x0) <∞ (see (10.3) for the definition of Sz).

1. Iterate for k = 0, 1, 2, . . .:

2. Calculate the gradient ∇Sz(xk) (see Lemma 10.3) and choose a step length
sk > 0 (see Subsection 10.3.1).

3. Set xk+ 1
2
to the generalized projection of xk − sk∇Sz(xk) (see Subsection

10.3.2).

4. Do a line search in direction of the projected step:

4a. Set λk := 1. Choose line search parameters β := 10−4 and θ := 0.5.

4b. Multiply λk by θ until

Sz
(

xk + λk(xk+ 1
2
− xk)

)

≤ Sz(xk) + βλk∇Sz(xk)T(xk+ 1
2
− xk).

5. Set xk+1 := xk + λk(xk+ 1
2
− xk).

6. If ‖xk+1−xk‖22 < 10−15 and the same was true for the previous 10 iterations,
then stop iteration.

The important step is the generalized projection because this technique allows to
combine sparsity and nonnegativity constraints.
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10.3. The minimization algorithm

10.3.1. Step length selection

Following [BZZ09] we choose the step length sk in the k-th iteration by alternating two
so called Barzilai–Borwein step lengths. Such step lengths were introduced in [BB88].
The algorithm works as follows:

Algorithm 10.8. Let smin ∈ (0, 1) and smax > 1 be bounds for the step length. The
step length in the k-th iteration (k > 0) of the minimization algorithm is based on an
alternation parameter τk, on the iterates xk−1 and xk, and on the gradients ∇Sz(xk−1)
and ∇Sz(xk).

1. If k = 0, then set sk := 1 and set the alternation parameter to τ1 := 0.5.

2. If k > 0 and (xk − xk−1)
T
(

∇Sz(xk)−∇Sz(xk−1)
)

≤ 0, then set sk := smax.

3. If k > 0 and (xk − xk−1)
T
(

∇Sz(xk)−∇Sz(xk−1)
)

> 0, then calculate

s
(1)
k := max

{

smin,min

{

‖xk − xk−1‖22
(xk − xk−1)

T
(

∇Sz(xk)−∇Sz(xk−1)
) , smax

}}

and

s
(2)
k := max

{

smin,min

{

(xk − xk−1)
T
(

∇Sz(xk)−∇Sz(xk−1)
)

‖∇Sz(xk)−∇Sz(xk−1)‖22
, smax

}}

and set

sk :=











s
(1)
k , if

s
(2)
k

s
(1)
k

> τk,

s
(2)
k , if

s
(2)
k

s
(1)
k

≤ τk,
τk+1 :=











1.1τk, if
s
(2)
k

s
(1)
k

> τk,

0.9τk, if
s
(2)
k

s
(1)
k

≤ τk.

10.3.2. Generalized projection

Let x̃ ∈ Rn with V x̃ ≥ 0 be a given point (the current iterate), let p ∈ Rn be a step
direction (negative gradient), and let s > 0 be a step length. The generalized projection
of x̃+ sp with respect to the functional αΩ is defined as the solution of

1

2
‖x− (x̃+ sp)‖22 + sαΩ(x)→ min

x∈Rn
. (10.8)

Thus, in each iteration of Algorithm 10.7 we have to solve this minimization problem.
If the structure of Ω is not too complex, there might be an explicit formula for the
minimizer.

Assume, for a moment, that we drop the nonnegativity constraint, that is, Ω(x) =
∑n

j=1wj|xj |. Then the techniques of Section 10.2 applied to (10.8) show that the
minimizer is x∗ ∈ Rn with

x∗j = max{0, |x̃j + spj| − sαwj} sgn(x̃j + spj). (10.9)
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This expression is known in the literature as soft-thresholding operation. On the other
hand we could drop the sparsity constraint, that is, Ω(x) = 0 if V x ≥ 0 and Ω(x) =∞
else. Then one easily shows that the minimizer is

x∗ = V −1h with hi := max{0, [V (x̃+ sp)]i}, (10.10)

which is a cut-off operation for the function associated with the Haar coefficients x̃+sp.
A composition of soft-thresholding and cut-off operation yields a feasible point (V x ≥
0), but we cannot expect that this point is a minimizer of (10.8). Therefore we have to
solve the minimization problem numerically.

We reformulate (10.8) as a convex quadratic minimization problem over R2n: For
this purpose write x = x+ − x− with x+j := max{0, xj} and x−j := −min{0, xj}. Then
|xj | = x+j + x−j and (10.8) is equivalent to

1

2

[

x+

x−

]T [
I −I
−I I

] [

x+

x−

]

+

[−(x̃+ sp) + sαw

x̃+ sp+ sαw

]T [
x+

x−

]

→ min
[x+,x−]T∈R2n

subject to

[

x+

x−

]

≥ 0,
[

V −V
]

[

x+

x−

]

≥ 0.

There are many algorithms for solving such minimization problems. We use an interior
point method suggested in [NW06, Algorithm 16.4]. We do not go into the details here,
but we provide as much information as is necessary to implement the method. The
algorithm works as follows:

Algorithm 10.9. To shorten formulas we set

G :=

[

I −I
−I I

]

, C :=





I 0
0 I
V −V



 , Λ := diag(λ), Y := diag(y)

for λ, y ∈ R3n.

0. Choose initial points x+0 := x̃+0 , x
−
0 := x̃−0 , y0 := [1, . . . , 1]T ∈ R3n (slack vari-

ables), and λ0 ∈ R3n (Lagrange multipliers) with

[λ0]j :=











[−(x̃+ sp) + sαw]j, j ∈ {1, . . . , n},
[x̃+ sp+ sαw]j−n, j ∈ {n + 1, . . . , 2n},
1, j ∈ {2n + 1, . . . , 3n}.

These values are obtained from the starting point heuristic given in [NW06, end
of Section 6.6].

1. Iterate for k = 0, 1, 2, . . .:

2. Solve





G 0 −CT

C −I 0
0 Λk Y k













[

x̂+

x̂−

]

ŷ

λ̂









=













−G
[

x+k
x−k

]

+ CTλk −
[−(x̃+ sp) + sαw

x̃+ sp+ sαw

]

−C
[

x+k
x−k

]

+ y
k

−ΛkY ke
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10.3. The minimization algorithm

for x̂+, x̂−, ŷ, λ̂, where e := [1, . . . , 1]T ∈ R3n.

3. Calculate

µ :=
1

3n
yT
k
λk,

â := max
{

a ∈ (0, 1] : y
k
+ aŷ ≥ 0, λk + aλ̂ ≥ 0

}

,

µ̂ :=
1

3n
(y
k
+ âŷ)T(λk + aλ̂),

σ :=

(

µ̂

µ

)3

.

4. Solve





G 0 −CT

C −I 0
0 Λk Y k













[

x+

x−

]

y

λ









=













−G
[

x+k
x−k

]

+ CTλk −
[−(x̃+ sp) + sαw

x̃+ sp+ sαw

]

−C
[

x+k
x−k

]

+ y
k

−ΛkY ke− Λ̂Ŷ e+ σµe













for x+, x−, y, λ, where e := [1, . . . , 1]T ∈ R3n.

5. Calculate

a1 := max
{

a ∈ (0, 1] : y
k
+ 2ay ≥ 0

}

,

a2 := max
{

a ∈ (0, 1] : λk + 2aλ ≥ 0
}

.

6. Set








[

x+k+1

x−k+1

]

y
k+1

λk+1









:=









[

x+k
x−k

]

y
k
λk









+min{a1, a2}









[

x+

x−

]

y

λ









.

7. Stop iteration if ‖x+k+1 − x+k ‖22 + ‖x−k+1 − x−k ‖22 is small enough.

In each iteration of the algorithm we have to solve two (8n)× (8n) systems. Due to
the simple structure of the matrices G and C we can reduce both to n × n systems.
Indeed, the solution of the system

























I −I 0 0 0 −I 0 −V T

−I I 0 0 0 0 −I V T

I 0 −I 0 0 0 0 0
0 I 0 −I 0 0 0 0
V −V 0 0 −I 0 0 0
0 0 Λ1

k 0 0 Y 1
k 0 0

0 0 0 Λ2
k 0 0 Y 2

k 0
0 0 0 0 Λ3

k 0 0 Y 3
k

















































x+

x−

y1

y2

y3

λ1

λ2

λ3

























=

























ρ+

ρ−

r1

r2

r3

q1

q2

q3
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(all occurring vectors are in Rn) is given by solving

(

V T −
(

I + (Λ1
k)

−1Y 1
k + (Λ2

k)
−1Y 2

k

)

V T
(

I + 1
n(Λ

3
k)

−1Y 3
k

)

)

λ3

= r1 − ρ+ − r2 + (Λ1
k)

−1q1 − (Λ2
k)

−1q2 +
(

I + (Λ1
k)

−1Y 1
k

)(

ρ+ + ρ−
)

−
(

I + (Λ1
k)

−1Y 1
k + (Λ2

k)
−1Y 2

k

)(

1
nV

Tr3 + ρ− + 1
nV

T(Λ3
k)

−1q3
)

for λ3 and gradually calculating

λ2 = 1
nV

T
(

−r3 − (Λ3
k)

−1q3 + (Λ3
k)

−1Y 3
kλ

3 + nλ3
)

− ρ−,
λ1 = −ρ+ − ρ− − λ2,
y3 = (Λ3

k)
−1
(

q3 − Y 3
kλ

3
)

,

y2 = (Λ2
k)

−1
(

q2 − Y 2
kλ

2
)

,

y1 = (Λ1
k)

−1
(

q1 − Y 1
kλ

1
)

,

x− = r2 + y2,

x+ = ρ+ + x− + λ1 + V Tλ3.

This result can be obtained by Gaussian elimination. Note that the matrices Λik and
Y i
k are diagonal. Thus matrix multiplication and inversion is not expensive.

10.3.3. Problems related with the algorithm

In this subsection we comment on some problems and modifications of Algorithm 10.7.
A problem we did not mention so far is the situation that the algorithm could produce

iterates xk with [Axk]i = 0 for some i where zi > 0. In this case the fitting functional
Sz(xk) would be infinite and not differentiable. In numerical experiments we never
observed this problem. Having a look at the algorithm we see that the choice of x0 and
the line search prevent such situations.

A second problem concerns the stopping criterion. In Section 10.2 we derived an
optimality criterion which can be checked numerically (cf. Proposition 10.6). But in
Algorithm 10.7 we stop if the iterates do not change. The reason is that numerical
experiments have shown that there is no convergence to exact satisfaction of the op-
timality criterion. Thus, we cannot give bounds or the bounds have to depend on n
and on the underlying exact solution. A kind of normalization could solve this scaling
problem. Nonetheless for all numerical examples provided below we check whether the
optimality criterion seems to be approximately satisfied.

In each iteration of Algorithm 10.7 we have to solve the minimization problem (10.8).
Algorithm 10.9 provides us with a minimizer but is expensive with respect to compu-
tation time. In numerical experiments we observed that applying the cut-off operation
(10.10) to the result of the soft-thresholding operation (10.9) gives almost always the
same result as Algorithm 10.9. In the rare situation that the soft-thresholding yields
the Haar coefficients of a nonnegative function this observation is easy to comprehend.
But in general we could not prove any relation between the minimizers of (10.8) and
the outcome of the soft-thresholding and the cut-off operation. Only in very few cases
the composition of the two simple operations fails to give a minimizer. In such a case
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we could look at the resulting (incorrect) iterate xk as a new starting point for Algo-
rithm 10.7. Consequently, replacing Algorithm 10.9 by soft-thresholding and cut-off
saves computation time while providing similar results.

A fourth and last point concerns the implementation. The matrix A is sparse as
can be seen in Table 10.1. Thus, matrix vector multiplication could be accelerated by
exploiting this fact. But for the sake of simplicity our implementation does not take
advantage of sparsity.

n non-zero elements [%]

16 39.84
32 26.17
64 16.21
128 10.35
256 7.06
512 5.22

1024 4.22
2048 3.67
4096 3.37

Table 10.1.: Share of non-zero elements in the matrix A for different discretization levels n and
fixed kernel width b = 1

8
.

10.4. Numerical results

We are now ready to perform some numerical experiments. The aim is to compare the
results obtained by the standard Tikhonov-type approach (adapted to Gaussian noise)

1

2
‖Ax− z‖22 + αΩ(x)→ min

x∈Rn

with the results from the Poisson noise adapted version described in this part of the
thesis. Note that the Gaussian noise adapted Tikhonov-type method with nonnegativity
and sparsity constraints is also given by Algorithm 10.7 but the gradient in step 2 has
to be replaced by AT(Axk − z).

The synthetic data is produced as follows: Given an exact solution x† first calculate
y† := Ax†. In case of Gaussian distributed data generate a vector z such that zi follows

a Gaussian distribution with mean y†i and standard deviation σ > 0. In case of Poisson
distributed data generate a vector z such that

γ

max
{

y†1, . . . , y
†
n

}
zi ∼ Poisson

(

γ

max
{

y†1, . . . , y
†
n

}
y†i

)

,

where γ > 0 controls the noise level (in the language of imaging: γ is the average
number of photons impinging on the pixel with highest light intensity).

Note, that using the same discretization level and the same discretized operator for
direct and inverse calculations is an inverse crime. But in our case it is a way to eliminate
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the influence of discretization on the regularization error. We are solely interested in
the influence of the fitting functional.

Due to the same reason the regularization parameter α will be chosen by hand such
that ‖xzα−x†‖2 attains its minimum. Of course, for real world problems we do not know
the exact solution x†, but in our experiments we have this information at hand. The
interested reader finds an attempt to develop Poisson noise adapted parameter choices
in [ZBZB09].

For all experiments we use the discretization level l̄ = 8, that is, n = 512, and the
kernel width b = 1

8 . The weights w1, . . . , wn in the definition of Ω shall be one. As
bounds for the step length in Algorithm 10.8 we set smin := 10−10 and smax := 105.

All computations were carried out using the software MATLAB by The MathWorks,
Inc., version R2011a.

10.4.1. Experiment 1: astronomical imaging

Our first example can be seen as a one-dimensional version of a typical astronomic
image: a bright star surrounded by smaller and less bright objects. The exact solution
x† is depicted in Figure 10.1. Here as well as in the sequel, variables without underline
denote the step function corresponding to the same variable with underline (a vector
in Rn).

We start with relatively high Poisson noise (γ = 100). Figure 10.2 shows the exact
data Ax† and the noisy data z.

The dependence of the regularization error ‖xzα−x†‖2 on the parameter α is depicted
in Figure 10.3 for both the Poisson noise adapted Tikhonov functional and the standard
(Gaussian noise adapted) Tikhonov functional. The regularization error is constant for
large α because the corresponding regularized solutions all represent the same constant
function. We do not have an explanation for the strong oscillations near the constant
region. But since those oscillations do not effect the minima of the curves we are
not going to investigate this phenomenon in more detail. Perhaps, it results from a
combination of sparsity constraints and incomplete minimization.

The regularized solutions x
z
α obtained from the Poisson noise adapted and the stan-

dard Tikhonov method are shown in Figure 10.4 and Figure 10.5, respectively. Remem-
ber, that we choose the optimal regularization parameter α for comparing the results of
the two Tikhonov-type methods. This eliminates the influence of (imperfect) parameter
choice rules.

The regularization error ‖xzα−x†‖2 is 0.63227 in the Poisson case (algorithm stopped
after 609 iterations) and 0.83155 in the standard case (algorithm stopped after 58
iterations). Comparing the two graphs we see the following:

• In the Poisson case the region between t = 0.3 and t = 0.5 is reconstructed quite
exact, but in the Gaussian case this region shows oscillations.

• The Poisson noise adapted method pays attention to the three smaller objects on
the right-hand side such that they can be identified from the regularized solution.
In contrast, the standard method blurs them too much.

If we reduce the noise by setting γ = 1000 (that is, ten times more photons as
before), we obtain the regularized solutions depicted in Figure 10.7 and Figure 10.8.
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Exact and noisy data are shown in Figure 10.6. Now the areas with low function
values are reconstructed well by both methods. But, contrary to the Poisson case,
the standard Tikhonov method produces strong oscillations between t = 0.3 and t =
0.5. The regularization errors are 0.2224 in the Poisson case (algorithm stopped after
3574 iterations) and 0.5846 for the standard method (algorithm stopped after 1036
iterations).

The experiments carried out so far indicate that the Poisson noise adapted method
yields more accurate results than the standard method in case of Poisson distributed
data. Of course we have to check whether the roles change if the data follows a Gaussian
distribution. Therefore we generate Gaussian distributed data with standard deviation
σ = 0.0006 and cut off negative values (see Figure 10.9).

The regularized solution obtained from the Poisson noise adapted method (see Fig-
ure 10.10) shows oscillations outside the interval (0.3, 0.5), whereas the standard Tik-
honov method (see Figure 10.11) yields a quite exact reconstruction. In the Poisson
case the regularization error is 0.7864 (algorithm stopped after 133 iterations) and for
the standard method it is 0.6123 (algorithm stopped after 178 iterations).

t
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Figure 10.1.: The exact solution x† represents a bright star surrounded by smaller objects.
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Figure 10.2.: Exact data Ax† (black line) and noisy data z (gray line) corrupted by Poisson
noise with γ = 100.
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Figure 10.3.: Regularization error ‖xzα − x†‖2 in dependence of α for the Poisson noise adapted
(black line) and the standard Tikhonov method (gray line).
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Figure 10.4.: Regularized solution x
z
α (black line) obtained from the Poisson noise adapted Tik-

honov functional (α = 8.41 · 10−4). The exact solution x† is depicted in gray.
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Figure 10.5.: Regularized solution x
z
α (black line) obtained from the standard Tikhonov func-

tional (α = 6.82 · 10−6). The exact solution x† is depicted in gray.
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Figure 10.6.: Exact data Ax† (black line) and noisy data z (gray line) corrupted by Poisson
noise with γ = 1000.
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Figure 10.7.: Regularized solution x
z
α (black line) obtained from the Poisson noise adapted Tik-

honov functional (α = 3.68 · 10−4). The exact solution x† is depicted in gray.
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Figure 10.8.: Regularized solution x
z
α (black line) obtained from the standard Tikhonov func-

tional (α = 8.30 · 10−7). The exact solution x† is depicted in gray.
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Figure 10.9.: Exact data Ax† (black line) and noisy data z (gray line) corrupted by Gaussian
noise with σ = 0.0006.
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Figure 10.10.: Regularized solution x
z
α (black line) obtained from the Poisson noise adapted

Tikhonov functional (α = 1.14 · 10−3). The exact solution x† is depicted in gray.
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Figure 10.11.: Regularized solution x
z
α (black line) obtained from the standard Tikhonov func-

tional (α = 1.29 · 10−6). The exact solution x† is depicted in gray.
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10.4.2. Experiment 2: high count rates

In our second experiment we consider the typical situation in imaging with high photon
counts. The characteristic property is that there is a strong background radiation and
only relatively small perturbations of this high light intensity. But from these small
perturbations the human eye forms an image, where the smallest (but nonetheless high)
photon count is regarded as black. A concrete example is provided in Figure 10.12. All
function values lie above 48.

From the exact data Ax† we generate Poisson distributed data z with photon level
γ = 500000 (see Figure 10.13). Due to the high but similar values of x† the standard
deviation of a Poisson distributed random variable with mean c[Ax†]i, c > 0, is very
insensitive with respect to i. In addition a Poisson distribution with parameter λ
approximates a Gaussian distribution with mean λ and variance λ if λ goes to infinity.
Thus, using Gaussian distributed data instead of Poisson distributed data would lead
to a similar appearance of the noisy data. Numerical simulations have shown that
σ = 0.00015 would yield the same noise level as γ = 500000 in the present example.

As a consequence of these considerations we expect that the Poisson noise adapted
and the standard Tikhonov method yield similar results. The regularized solutions
depicted in Figure 10.14 and Figure 10.15 verify this conjecture. The regularization
error is 0.1502 in the Poisson case (algorithm stopped after 81 iterations) and 0.1512
in the standard case (algorithm stopped after 70 iterations).

10.4.3. Experiment 3: organic structures

One application for imaging with low photon counts is confocal laser scanning mi-
croscopy (CLSM), see [Wil]. This technique is used for observing processes in living
tissue. Thus, in our third and last experiment we have a look at an exact solution
x† which represents the typical features of organic structures: smooth and often also
periodic appearance. The exact solution x† given in Figure 10.16 is not sparse with
respect to the Haar system. Thus, we cannot expect accurate results.

We perturb the exact data Ax† by Poisson noise with photon level γ = 500 (see
Figure 10.17).

The regularized solutions are given in Figure 10.18 and Figure 10.19. As in the
first experiment we see that the solution obtained from the standard Tikhonov method
is too smooth in regions of small function values, whereas the Poisson noise adapted
method yields quite good results. The regularization error is 0.04284 in the Poisson
case (algorithm stopped after 65 iterations) and 0.04286 in the standard case (algorithm
stopped after 23 iterations).

99



10. Numerical example

t

x
† (
t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
48.5

49

49.5

50

50.5

51

51.5

52

Figure 10.12.: The exact solution x† has only a small range but high function values (the vertical
axis does not start at zero).

t

(A
x
† )
(t
)
an

d
z
(t
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.095

0.096

0.097

0.098

0.099

0.1

0.101

0.102

Figure 10.13.: Exact data Ax† (black line) and noisy data z (gray line) corrupted by Poisson
noise with γ = 500000 (the vertical axis does not start at zero).
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Figure 10.14.: Regularized solution x
z
α (black line) obtained from the Poisson noise adapted

Tikhonov functional (α = 8.40 · 10−6). The exact solution x† is depicted in gray.
Note, that the vertical axis does not start at zero.
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Figure 10.15.: Regularized solution x
z
α (black line) obtained from the standard Tikhonov func-

tional (α = 9.00 ·10−7). The exact solution x† is depicted in gray. Note, that the
vertical axis does not start at zero.
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Figure 10.16.: The exact solution x† is smooth and to some extent also periodic.
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Figure 10.17.: Exact data Ax† (black line) and noisy data z (gray line) corrupted by Poisson
noise with γ = 500.
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Figure 10.18.: Regularized solution x
z
α (black line) obtained from the Poisson noise adapted

Tikhonov functional (α = 5.75 · 10−4). The exact solution x† is depicted in gray.
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Figure 10.19.: Regularized solution x
z
α (black line) obtained from the standard Tikhonov func-

tional (α = 4.54 · 10−7). The exact solution x† is depicted in gray.
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10.5. Conclusions

The numerical experiments presented above have shown that the regularized solu-
tions obtained from the Poisson noise adapted and from the standard (Gaussian noise
adapted) Tikhonov method are different. We made the following observations:

• In case of Poisson distributed data the standard Tikhonov method yields solutions
which are too smooth in regions of small function values and which oscillate too
much in regions of high function values.

• In case of Gaussian distributed data regularized solutions obtained from the Pois-
son noise adapted method oscillate if the function values are small.

We try to explain these observations. The squared norm as a fitting functional pe-
nalizes deviations of Ax from the data z for all i = 1, . . . , n in the same way, regardless
of the value of zi. But if the data follows a Poisson distribution, then the deviation of
[Ax†]i from zi is small if zi is small and it is very high if zi has a large value. Thus,
in regions of small function values the penalization is too weak (causing overregulariza-
tion) and in regions of high function values the penalization is too strong (resulting in
underregularization).

On the other hand, the Kullback–Leibler distance used as the fitting functional in
the Poisson noise adapted method varies the strength of penalization depending on the
values zi. This fact is advantageous in case of Poisson distributed data, since deviations
of [Ax†]i from zi are small if zi is small and they are high if zi has a larger value. But
for Gaussian distributed data, which shows the same variance for all i = 1, . . . , n,
similar effects as described above for the standard method with Poisson distributed
data occur. In regions of small function values the penalization is too strong (resulting
in underregularization) and in regions of large function values the penalization is too
weak (causing overregularization).

We see that in case of Poisson distributed data the Poisson noise adapted Tikhonov
method is superior to the standard method with respect to reconstruction quality. But
the experiments have also shown that the Poisson noise adapted method requires more
iterations and, thus, more computation time. Another drawback of this method is
the lack of parameter choice rules. The discrepancy principle known for the standard
Tikhonov method is not applicable because in case of Poisson distributed data we have
now means of noise level. An attempt to develop Poisson noise adapted parameter
choices is given in [ZBZB09].
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Part III.

Smoothness assumptions
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11. Introduction

The third and last part of this thesis on the one hand supplements Part I by discussing
the variational inequality (4.3), which allows to derive convergence rates for general
Tikhonov-type regularization methods. On the other hand the findings we present
below are of independent interest because they provide new and extended insights into
the interplay of different kinds of smoothness assumptions frequently occurring in the
context of regularization methods.

To make the material accessible to readers who did not work through Part I in detail
we keep the present part as self-contained as possible; only few references are made to
results from Part I. In particular we restrict our attention to Banach and sometimes
also to Hilbert spaces and corresponding Tikhonov-type regularization approaches, even
though some of the results remain still valid in more general settings.

The rate of convergence of regularized solutions to an exact solution depends on
the (abstract) smoothness of all involved quantities. Typically the operator of the
underlying equation has to be differentiable, the spaces should be smooth (that is, they
should have differentiable norms), and the exact solution has to satisfy some abstract
smoothness assumption with respect to the operator. This last type of smoothness is
usually expressed in form of source conditions (see below).

If one of the three components (operator, spaces, exact solution) lacks smoothness, the
other components have to compensate this lack. Thus, the obvious idea is to combine
all required types of smoothness into one sufficient condition for deriving convergence
rates. Since the aim of convergence rates theory is to provide upper bounds for rates on
a whole class of exact solutions, such an ‘all-inclusive’ condition has to be independent
of noisy data used for the regularization process. Otherwise the condition cannot be
checked in advance. This restriction makes the construction very challenging.

In 2007 a sufficient condition for convergence rates combining all necessary smooth-
ness assumptions has been suggested in [HKPS07]. The authors formulated a so called
variational inequality which allows to prove convergence rates without any further as-
sumption on the operator, the spaces, or the exact solution. Inequality (4.3) in Part I
is a generalization of this original variational inequality. The development from the
original to the very general form is sketched in Section 12.1.4.

Our aim is to bring the cross connections between variational inequalities and classical
smoothness assumptions to light. Here smoothness of the involved spaces will play only
a minor role. We concentrate on solution smoothness and provide also some results
related to properties of the possibly nonlinear operator of the underlying equation.

The material of this part is split into two chapters. The first discusses smoothness in
Banach spaces and contains the major results. In the second chapter on smoothness in
Hilbert spaces we specialize and extend some of the results obtained for Banach spaces.
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12. Smoothness in Banach spaces

As noted in the introductory chapter we restrict our attention to Banach spaces, though
some of the results also hold in more general situations. The setting in the present
chapter is the same as in Example 1.2. That is, X and Y are Banach spaces, F :
D(F ) ⊆ X → Y is a possibly nonlinear operator with domain D(F ), and we aim to
solve the equation

F (x) = y0, x ∈ D(F ), (12.1)

with exact right-hand side y0 ∈ Y . In practice y0 is not known to us, instead we only
have some noisy measurement yδ ∈ Y at hand satisfying ‖yδ − y0‖ ≤ δ with noise level
δ > 0. To overcome ill-posedness of F we regularize the solution process by minimizing
the Tikhonov functional

T y
δ

α (x) := 1
p‖F (x)− yδ‖p + αΩ(x) (12.2)

over x ∈ D(F ), where p ≥ 1, α > 0, and Ω : X → (−∞,∞] is convex.

The assumptions made in Part I can be summarized as follows (cf. Section 2.2):

• D(F ) is weakly sequentially closed.

• F is sequentially continuous with respect to the weak topologies on X and Y .

• The sublevel sets MΩ(c) := {x ∈ X : Ω(x) ≤ c} are weakly sequentially compact
for all c ∈ R.

Since we solely consider the sequential versions of weak closedness, weak continuity,
and weak compactness, we drop the ‘sequential’ below.

In addition we assume the existence of solutions to (12.1) which lie in the essential
domain D(Ω) := {x ∈ X : Ω(x) < ∞} of Ω. Then Proposition 3.1 guarantees the
existence of Ω-minimizing solutions. Throughout this chapter let x† be one fixed Ω-
minimizing solution with ∂Ω(x†) 6= ∅.

12.1. Different smoothness concepts

In this section we collect different types of smoothness assumptions which can be used

to derive upper bounds for the Bregman distance BΩ
ξ†

(

xy
δ

α(δ), x
†) with ξ† ∈ Ω(x†) and an

a priori parameter choice δ 7→ α(δ). As in Part I the element xy
δ

α ∈ argminx∈D(F ) T
yδ
α (x)

is a regularized solution to the noisy measurement yδ with noise level δ.
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12. Smoothness in Banach spaces

12.1.1. Structure of nonlinearity

To control the nonlinear structure of the operator F one typically assumes that x†

is an interior point of D(F ) and that F is Gâteaux differentiable at x†. If x† is a
boundary point of D(F ) and D(F ) is convex or at least starlike with respect to x† (see
Definition 12.1), then alternative constructions are possible. In both cases one assumes
that limt→+0

1
t

∥

∥F
(

x† + t(x− x†)
)

− F (x†)
∥

∥ exists for all x ∈ D(F ) and that there is a
bounded linear operator F ′[x†] : X → Y such that

F ′[x†](x− x†) = lim
t→+0

1

t

∥

∥F
(

x† + t(x− x†)
)

− F (x†)
∥

∥ for all x ∈ D(F ).

Definition 12.1. A set M ⊆ X is called starlike with respect to x̄ ∈ X if for each
x ∈M there is some t0 > 0 such that x̄+ t(x− x̄) ∈M for all t ∈ [0, t0].

The reason for linearizing F is that classical assumptions on the smoothness of the
exact solution x† were designed for linear operators. To extend the applicability of
these classical techniques to nonlinear operators the smoothness of x† is expressed with
respect to F ′[x†]. But to obtain convergence rates this way additional assumptions on
the connection between F and F ′[x†] are required.

Literature provides different kinds of such structural assumptions connecting F with
its linearization. We do not go into the details here. In the sequel we only use the
simplest form

‖F ′[x†](x− x†)‖ ≤ c‖F (x) − F (x†)‖ for all x ∈M

with c ≥ 0. The set M ⊆ D(F ) has to be sufficiently large to contain the regularized

solutions xy
δ

α(δ)
for all sufficiently small δ > 0 with a given parameter choice δ 7→ α(δ).

More sophisticated formulations are given for instance in [BH10, formulas (3.8) and
(3.9)].

12.1.2. Source conditions

The most common assumption on the smoothness of the exact solution x† is a source
condition with respect to Ω and F ′[x†] as formulated in the following definition (with
F ′[x†] defined as in Subsection 12.1.1).

Definition 12.2. The exact solution x† satisfies a source condition with respect to the
stabilizing functional Ω and to the operator F ′[x†] if there are a subgradient ξ† ∈ ∂Ω(x†)
and a source element η† ∈ Y ∗ such that

ξ† = F ′[x†]∗η†.

Source conditions are discussed for instance in [EHN96] in Hilbert spaces. For Banach
space settings we refer to more recent literature, e.g., [BO04] and [SGG+09, Proposi-
tion 3.35].

In Hilbert spaces spectral theory allows to modify the operator in the source condi-
tion to weaken or strengthen the condition (see Subsection 13.1.1). For Banach space
settings there are only two source conditions, the one given above and a stronger

110



12.1. Different smoothness concepts

one involving duality mappings and re-enacting the Hilbert space source condition
ξ† = F ′[x†]∗F ′[x†]∗η†, where X and Y are identified with there duals X∗ and Y ∗. The
stronger source condition for Banach spaces was introduced in [Hei09, Neu09, NHH+10].

The convergence rate obtained from the source condition ξ† = F ′[x†]∗η† depends on
the structure of nonlinearity of F (see Subsection 12.1.1). For a linear operator A := F
with D(F ) = X and F ′[x†] = A we have the following result.

Proposition 12.3. Let A := F be bounded and linear. If there are ξ† ∈ ∂Ω(x†) and
η† ∈ Y ∗ such that ξ† = A∗η†, then

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O(δ) if δ → 0

for an appropriate a priori parameter choice δ 7→ α(δ).

Proof. A proof is given in [SGG+09] (Theorem 3.42 in combination with Proposi-
tion 3.35 there). Alternatively the assertion follows from Theorem 4.11 of this thesis in
combination with Proposition 12.28 below.

12.1.3. Approximate source conditions

Source conditions as described in the previous subsection provide only a very imprecise
classification of solution smoothness; either x† satisfies a source condition or it does
not. In Hilbert spaces this problem is compensated by a wide scale of different source
conditions. But in Banach spaces other techniques for expressing solutions smoothness
have to be used.

In [Hof06] the idea of approximate source conditions has been introduced and an
extension to Banach spaces has been described in [Hei08b, HH09]. Instead of deciding
whether a subgradient ξ† ∈ ∂Ω(x†) satisfies a source conditions, one measures how far
away ξ† is from satisfying a source condition. This measuring is realized as a so called
distance function

d(r) := inf
{∥

∥ξ† − F ′[x†]η
∥

∥ : η ∈ Y ∗, ‖η‖ ≤ r
}

, r ≥ 0. (12.3)

Here the operator F ′[x†] shall be defined as in Subsection 12.1.1. Obviously d is mono-
tonically decreasing and 0 ≤ d(r) ≤ ‖ξ†‖ for all r ≥ 0. In case of reflexive Banach
spaces the infimum is attained (see [HH09, Section 3]) and analysis can be based on the
corresponding minimizers. In the following we do not assume reflexivity, but applying
slightly refined techniques we obtain the same results as in [HH09], even if the infimum
in (12.3) is not attained.

The following proposition states that d is convex, which in combination with d(r) <∞
for all r ≥ 0 implies continuity of d on (0,∞).

Proposition 12.4. The distance function d defined by (12.3) is convex.

Proof. The proof generalizes the corresponding one given in [FHM11] for distance func-
tions in Hilbert spaces. For reflexive Banach spaces the assertion has been proven in
[BH10] by arguments from convex analysis. Our proof is elementary and works for
general Banach spaces.
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12. Smoothness in Banach spaces

Let r, r̃ ≥ 0 and λ ∈ [0, 1]. We want to show d(λr + (1− λ)r̃) ≤ λd(r) + (1− λ)d(r̃).
For each η ∈ Y ∗ with ‖η‖ ≤ r and each η̃ ∈ Y ∗ with ‖η̃‖ ≤ r̃ we have ‖λη+(1−λ)η̃‖ ≤
λr + (1− λ)r̃. Thus,

d
(

λr + (1− λ)r̃
)

≤
∥

∥ξ† − F ′[x†]∗
(

λη + (1− λ)η̃
)∥

∥

=
∥

∥λ(ξ† − F ′[x†]∗η) + (1− λ)(ξ† − F ′[x†]∗η̃)
∥

∥

≤ λ
∥

∥ξ† − F ′[x†]∗η
∥

∥+ (1− λ)
∥

∥ξ† − F ′[x†]∗η̃
∥

∥.

Since this is true for all η, η̃ ∈ Y ∗ with ‖η‖ ≤ r and ‖η̃‖ ≤ r̃, we may pass to the
infimum over η and η̃, yielding d(λr + (1− λ)r̃) ≤ λd(r) + (1− λ)d(r̃).

One easily verifies that d(r) decays to zero at infinity if and only if ξ† ∈ R
(

F ′[x†]∗
)

.
See [HH09, Remark 4.2] for a discussion of this last condition. The case ξ† ∈ R

(

F ′[x†]∗
)

can be characterized as follows.

Proposition 12.5. Let ξ† ∈ ∂Ω(x†) and let d be the associated distance function defined
by (12.3). There exists some r0 ≥ 0 with d(r0) = 0 if and only if there is some η† ∈ Y ∗

with ‖η†‖ ≤ r0 such that ξ† = F ′[x†]∗η†.

Proof. Assume d(r0) = 0 for some r0 ≥ 0. Then there is a sequence (ηk)k∈N in Y ∗ with
‖ηk‖ ≤ r0 and ‖ξ†−F ′[x†]∗ηk‖ → 0. Thus, for each x ∈ X we have 〈ξ†−F ′[x†]∗ηk, x〉 →
0 or, equivalently, 〈F ′[x†]∗ηk, x〉 → 〈ξ†, x〉. Since 〈F ′[x†]∗ηk, x〉 ≤ r0‖F ′[x†]x‖ for all k,
we obtain 〈ξ†, x〉 ≤ r0‖F ′[x†]x‖ for all x ∈ X. The first direction of the assertion follows
now from [SGG+09, Lemma 8.21].

If there is some η† ∈ Y ∗ with ‖η†‖ ≤ r0 and ξ† = F ′[x†]∗η†, then

d(r0) ≤ ‖ξ† − F ′[x†]∗η†‖ = 0.

Thus, also the second direction of the assertion is true.

The proposition shows that the only interesting case is d(r) > 0 for all r ≥ 0. For
obtaining convergence rates we furthermore assume d(r) → 0 if r → ∞ or, equiva-

lently, ξ† ∈ R
(

F ′[x†]∗
)

. Exploiting convexity one easily shows that d has to be strictly
monotonically decreasing in this case.

We formalize the concept of approximate source conditions in a definition.

Definition 12.6. The exact solution x† satisfies an approximate source condition with
respect to the stabilizing functional Ω and to the operator F ′[x†] if there is a subgradient
ξ† ∈ ∂Ω(x†) such that the associated distance function d defined by (12.3) decays to
zero at infinity.

Depending on the decay rate of the distance function convergence rates were obtained
in [HH09] in case of reflexive Banach spaces. Under the additional assumption that the
Bregman distance BΩ

ξ†(•, x†) is q-coercive (see [HH09, Example 2.3] or Section 12.5)
higher rates were shown in the same article.

Following similar arguments as in [HH09] we prove convergence rates depending on
the distance function d without reflexivity assumption. We restrict ourselves to bounded
linear operators A := F with D(F ) = X and F ′[x†] = A, since we only want to
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12.1. Different smoothness concepts

demonstrate the ideas of the proof. The proposition can be extended to nonlinear
operators (by imposing assumptions on the structure of nonlinearity) and also to q-
coercive Bregman distances (cf. Proposition 12.35) along the lines of the corresponding
proofs given in [HH09].

Proposition 12.7. Assume p > 1 in (12.2) and that A := F is bounded and linear.
Further assume that x† satisfies an approximate source condition with ξ† ∈ ∂Ω(x†) such
that the associated distance function fulfills d(r) > 0 for all r ≥ 0. Define functions Φ

and Ψ by Φ(r) := d(r)
r and Ψ(r) := r−pd(r)p−1 for r ∈ (0,∞). Then

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O

(

d
(

Φ−1(δ)
))

if δ → 0

with the a priori parameter choice δ 7→ α(δ) defined by δp = α(δ)d
(

Ψ−1(α)
)

.

Proof. Obviously the functions Φ and Ψ are strictly monotonically decreasing with
range (0,∞). Thus, the inverse functions Φ−1 and Ψ−1 are well-defined on (0,∞)
and also strictly monotonically decreasing with range (0,∞). As a consequence the
parameter choice is uniquely determined by δp = α(δ)d

(

Ψ−1(α(δ))
)

(the right-hand
side is strictly monotonically increasing with respect to α and has range (0,∞)). From
this equation we immediately obtain α(δ) → 0 if δ → 0 and also δp

α(δ) → 0 if δ → 0.
These facts will be used later in the proof.

For the sake of brevity we now write α instead of α(δ).

The first of two major steps of the proof is to show the existence of δ̄ > 0 such that
the set

M :=
⋃

δ∈(0,δ̄]

⋃

{yδ:‖yδ−y0‖≤δ}
argmin
x∈X

T y
δ

α (x)

is bounded. Assume the contrary, which means that there are sequences (δk)k∈N in
(0,∞) converging to zero, (yk)k∈N in Y with ‖yk − y0‖ ≤ δk, and (xk)k∈N in X with

xk ∈ argminx∈X T
yδk
αk such that ‖xk‖ → ∞ (where αk = α(δk)). Since αk → 0 and

δpk
αk
→ 0, by Corollary 4.2 there is a weakly convergent subsequence (xkl)l∈N of (xk).

Weakly convergent sequences in Banach spaces are bounded and thus ‖xkl‖ → ∞ cannot
be true. Consequently, there is some δ̄ > 0 such that M is bounded.

In the second step we estimate the Bregman distance BΩ
ξ†

(

xy
δ

α , x†
)

. For fixed r ≥ 0

and each η ∈ Y ∗ with ‖η‖ ≤ r we have

BΩ
ξ†
(

xy
δ

α , x
†) = Ω(xy

δ

α )− Ω(x†) + 〈A∗η − ξ†, xyδα − x†〉+ 〈A∗(−η), xyδα − x†〉
≤ Ω(xy

δ

α )− Ω(x†) + ‖ξ† −A∗η‖‖xyδα − x†‖+ ‖η‖‖A(xy
δ

α − x†)‖
≤ Ω(xy

δ

α )− Ω(x†) + c‖ξ† −A∗η‖+ r‖A(xyδα − x†)‖,

where c ≥ 0 denotes the bound on the set M − x†, that is, ‖x− x†‖ ≤ c for all x ∈M .
Taking the infimum over all η ∈ Y ∗ with ‖η‖ ≤ r yields

BΩ
ξ†
(

xy
δ

α , x
†) ≤ Ω(xy

δ

α )− Ω(x†) + cd(r) + r‖A(xyδα − x†)‖.
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Due to the minimizing property of xy
δ

α we further obtain

Ω(xy
δ

α )− Ω(x†) =
1

α

(

T y
δ

α (xy
δ

α )− 1

p
‖A(xyδα − x†)‖p

)

− Ω(x†)

≤ δp

pα
− 1

pα
‖A(xyδα − x†)‖p

and in combination with the previous estimate

BΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
+ r‖A(xyδα − x†)‖ −

1

pα
‖A(xyδα − x†)‖p + cd(r).

Young’s inequality

ab ≤ 1
pa

p + p−1
p b

p
p−1 , a, b ≥ 0,

with a := α− 1
p ‖A(xyδα − x†)‖ and b := rα

1
p yields

r‖A(xyδα − x†)‖ ≤
1

pα
‖A(xyδα − x†)‖p +

p− 1

p
α

1
p−1 r

p
p−1 .

Therefore,

BΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
+
p− 1

p
α

1
p−1 r

p
p−1 + cd(r)

for all δ ∈ (0, δ̄] and all r ≥ 0. We choose r = rα := Ψ−1(α), which is equivalent

to r−pα d(rα)
p−1 = α and thus also to d(rα) = α

1
p−1 r

p
p−1
α . With this specific r the last

estimate becomes

BΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
+
(p− 1

p
+ c
)

d(rα)

and taking into account that the parameter choice satisfies δp = αd(rα), we obtain

BΩ
ξ†
(

xy
δ

α , x
†) ≤ (1 + c)d(rα).

To complete the proof it remains to show rα = Φ−1(δ) or equivalently Φ(rα) = δ, which
is a simple consequence of the parameter choice:

Φ(rα) =
d(rα)

rα
=

(

d(rα)
p−1

rpα
d(rα)

)
1
p

=
(

Ψ(rα)d(rα)
)

1
p =

(

αd(rα)
)

1
p = δ.

Remark 12.8. As already mentioned in [HH09] the proposition remains true if the
distance function d in the parameter choice and in the O-expression is replaced by
some strictly decreasing majorant of d.

By the definition of Φ in Proposition 12.7 we may write d
(

Φ−1(δ)
)

= δΦ−1(δ). Thus,
the convergence rate stated in the proposition is the higher the faster the distance
function d decays to zero at infinity. We also see that the convergence rate always lies
below O(δ) (because Φ−1(δ)→∞ if δ → 0).
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12.1. Different smoothness concepts

Convergence rates results based on source conditions provide a common rate bound
for all x† with a subgradient ξ† ∈ ∂Ω(x†) satisfying ξ† ∈ {F ′[x†]∗η : η ∈ Y ∗, ‖η‖ ≤ c}
with some fixed c > 0. If we replace d by a majorant of d, in analogy to source conditions
Proposition 12.7 provides a common rate bound for all x† which have a subgradient
ξ† ∈ ∂Ω(x†) such that the associated distance function lies below the fixed majorant.
Thus, we can extend the elementwise convergence rates result based on approximate
source conditions to a rates result for whole classes of exact solutions x†.

12.1.4. Variational inequalities

Approximate source conditions overcome the coarse scale of solution smoothness pro-
vided by source conditions, but two major problems remain unsolved: approximate
source conditions require additional assumptions on the nonlinearity structure of the
operator F to provide convergence rates and approximate source conditions rely on
norm based fitting terms in the Tikhonov functional.

To avoid assumptions on the nonlinearity of F , the new concept of variational in-
equalities was introduced in [HKPS07]. It was show there that an inequality

〈−ξ†, x− x†〉 ≤ β1BΩ
ξ†(x, x

†) + β2‖F (x) − F (x†)‖ for all x ∈M

with ξ† ∈ Ω(x†), β1 ∈ [0, 1), and β2 ≥ 0 holding on a sufficiently large set M ⊆ D(F )
yields the convergence rate

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O(δ) if δ → 0

for a suitable parameter choice δ 7→ α(δ). In [HKPS07] a concrete set M is used,
but careful inspection of the proofs shows that any set can be chosen if all regularized

solutions xy
δ

α(δ) belong to this set.
This first version of variational inequalities does not require any additional assump-

tion on the smoothness of x† or on the nonlinearity of F to provide convergence rates.
But as for source conditions the scale of smoothness is very coarse; either a variational
inequality is satisfied or not. Considering a certain assumption on the nonlinearity of
F in combination with a source condition the authors of [HH09] derived an inequality
of the form

〈−ξ†, x− x†〉 ≤ β1BΩ
ξ†(x, x

†) + β2‖F (x)− F (x†)‖κ for all x ∈M

with κ ∈ (0, 1] and obtained the convergence rate

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O(δκ) if δ → 0

from it. Thus, introducing the exponent κ extends the scale of convergence rates to
powers of δ.

A further step of generalization was undertaken in [BH09] (published in final form
as [BH10]). There the exponent κ has been replaced by some strictly monotonically
increasing and concave function ϕ : [0,∞) → [0,∞) satisfying ϕ(0) = 0. Thus, the
variational inequality reads as

〈−ξ†, x− x†〉 ≤ β1BΩ
ξ†(x, x

†) + ϕ
(

‖F (x)− F (x†)‖
)

for all x ∈M
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and the corresponding convergence rate is

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O(ϕ(δ)) if δ → 0.

As in Part I we prefer to write variational inequalities in the form

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + ϕ
(

‖F (x)− F (x†)‖
)

for all x ∈M,

where β = 1− β1 ∈ (0, 1]. The advantage is that the right-hand side satisfies

Ω
(

xy
δ

α(δ)

)

− Ω(x†) + ϕ
(∥

∥F
(

xy
δ

α(δ)

)

− F (x†)
∥

∥

)

= O(ϕ(δ)) if δ → 0

for a suitable a priori parameter choice (cf. Sections 4.1 and 4.2). Thus, assuming a
variational inequality means that the error measure BΩ

ξ†(•, x†) shall be bounded by a
term realizing the desired convergence rate. Note that a variational inequality with β >
1 implies a variational inequality with β = 1 (or below). Therefore it suffices to consider
β ∈ (0, 1], which has the advantage that the difference βBΩ

ξ†(x, x
†)− (Ω(x)− Ω(x†)) is

a concave function in x. This observation will turn out very useful in the subsequent
sections.

Remark 12.9. For p > 1 the function ϕ used in the present part is different from the
function ϕ in the variational inequality (4.3) of Part I. The difference lies in the fact that

we wrote variational inequalities in Part I with the term ϕ
(

21−p

p ‖F (x) − F (x†)‖p
)

(cf.

Proposition 2.13) instead of ϕ(‖F (x)−F (x†)‖), which we use now. But this is simply a
matter of scaling. In fact the additional exponent p occurring in the form used in Part I
is compensated by the function ψ(δ) = 1

pδ
p in the data model (see Assumption 4.1 and

Example 4.3).

In [Pös08] variational inequalities were adapted to Tikhonov-type regularization with
more general fitting functionals not based on the norm in Y . And [Gra10a] contains
a variational inequality yielding convergence rates for general fitting functionals and
error measures other than the Bregman distance BΩ

ξ†(•, x†). To our knowledge the
most general form of variational inequalities, including all previous versions as special
cases, is the one suggested in Part I (see (4.3) and the discussion thereafter).

Next to the articles cited above, variational inequalities are also applied in [Hei08a,
KH10, AR11] to obtain convergence rates. One also finds a multiplicative form of
variational inequalities in the literature (see [KH10]), which we do not discuss here.

A difficult question is which classes of functions ϕ should be considered in a variational
inequality. The difficulty arises from the fact that only the local behavior of ϕ around
zero has influence an the obtained convergence rate. In Section 4.2 we struggled through
the technicalities of such local considerations (cf. Assumption 4.9), but now we restrict
our attention to the more pleasing case that ϕ is monotonically increasing and concave
on its whole domain [0,∞).

Of course the question arises whether convex functions ϕ should be considered, too.
As we indicate now, the answer is ‘no’. If ϕ is convex with ϕ(0) = 0 then t 7→ ϕ(t)

t is

monotonically increasing on (0,∞) and thus limt→+0
ϕ(t)
t <∞. In case the limit is not

zero, the function ϕ behaves linearly near zero and thus the corresponding convergence
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12.1. Different smoothness concepts

rate is the same as obtained from a variational inequality with linear (that is concave)
ϕ. As the following proposition shows, under reasonable assumptions on the operator
F and on the set M the remaining case limt→+0

ϕ(t)
t = 0 can only occur in the singular

situation that x† minimizes Ω over M .

Proposition 12.10. Let ξ† ∈ ∂Ω(x†), M ⊆ X, and β ∈ (0, 1]. Assume that M is
starlike and that there is an operator F ′[x†] as defined in Subsection 12.1.1. If ϕ :

[0,∞)→ [0,∞) satisfies ϕ(0) = 0 and limt→+0
ϕ(t)
t = 0, then the variational inequality

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + ϕ
(

‖F (x) − F (x†)‖
)

for all x ∈M

implies Ω(x†) ≤ Ω(x) for all x ∈M .

Proof. We apply the variational inequality to x := x† + t(x̃ − x†) with x̃ ∈ M and
t ∈ (0, t0(x̃)], where t0(x̃) is small enough to ensure x ∈M . With out loss of generality
we assume t0(x̃) ≤ 1. Multiplying the resulting inequality by 1

t yields

1− β
t

(

Ω(x†)− Ω(x† + t(x̃− x†))
)

− β〈ξ†, x̃− x†〉 ≤ ϕ
(

‖F (x† + t(x̃− x†))− F (x†)‖
)

t
.

The convexity of Ω gives

Ω(x†)− Ω(x† + t(x̃− x†)) = Ω(x†)− Ω((1− t)x† + tx̃)

≥ Ω(x†)− (1− t)Ω(x†)− tΩ(x̃) = tΩ(x†)− tΩ(x̃)

and together with the assumption ξ† ∈ ∂Ω(x†) and the previous inequality we obtain

Ω(x†)− Ω(x̃) ≤ (1− β)
(

Ω(x†)− Ω(x̃)
)

− β〈ξ†, x̃− x†〉

≤ ϕ
(

‖F (x† + t(x̃− x†))− F (x†)‖
)

t

for all t ∈ (0, t0(x̃)].
If there is some t ∈ (0, t0(x̃)] with ‖F (x†+t(x̃−x†))−F (x†)‖ = 0 then Ω(x†)−Ω(x̃) ≤ 0

follows. If ‖F (x† + t(x̃− x†))− F (x†)‖ > 0 for all t ∈ (0, t0(x̃)] then the inequality can
be written as

Ω(x†)− Ω(x̃) ≤ ‖F (x
† + t(x̃− x†))− F (x†)‖

t

ϕ
(

‖F (x† + t(x̃− x†))− F (x†)‖
)

‖F (x† + t(x̃− x†))− F (x†)‖ .

Since 1
t ‖F (x†+t(x̃−x†))−F (x†)‖ → ‖F ′[x†](x̃−x†)‖ and ‖F (x†+t(x̃−x†))−F (x†)‖ → 0

if t→ 0, the right-hand side goes to zero if t→ 0 and thus we have shown Ω(x†)−Ω(x̃) ≤
0 for all x̃ ∈M .

Under slightly stronger assumptions on Ω and F the result of the proposition was
also obtained in [HY10] for monomials ϕ(t) = tκ. In fact it was shown there that κ > 1
cannot occur in a variational inequality.

The investigation of cross connections between variational inequalities and other
smoothness concepts in subsequent sections will show that variational inequalities can
be divided into two distinct classes depending on the concave function ϕ. Variational
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inequalities with limt→+0
ϕ(t)
t = ∞ show a common behavior and variational inequal-

ities with limt→+0
ϕ(t)
t < ∞ form the second class. In the latter case the function ϕ

behaves linearly near zero and as the following proposition shows this second class of
variational inequalities can be reduced to variational inequalities with linear ϕ. Note
that a linear ϕ then yields the same convergence rate as the original ϕ.

Proposition 12.11. Let ξ† ∈ ∂Ω(x†), M ⊆ X, and β ∈ (0, 1]. Assume that ϕ :

[0,∞) → [0,∞) satisfies ϕ(0) = 0 and c := limt→+0
ϕ(t)
t < ∞. Then the variational

inequality

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + ϕ
(

‖F (x) − F (x†)‖
)

for all x ∈M

implies

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c‖F (x) − F (x†)‖ for all x ∈M.

Proof. By the concavity of ϕ and by the assumption ϕ(0) = 0 the function t 7→ ϕ(t)
t

is monotonically decreasing. Thus, for each t > 0 we have ϕ(t) = tϕ(t)t ≤ ct. The
assertion follows now with t = ‖F (x)− F (x†)‖.

We formalize the concept of variational inequalities as a definition.

Definition 12.12. Let M ⊆ D(F ) and let ϕ : [0,∞) → [0,∞) be a monotonically
increasing and concave function with ϕ(0) = 0 and limt→+0 ϕ(t) = 0, which is strictly
increasing in a neighborhood of zero. The exact solution x† satisfies a variational
inequality on M with respect to ϕ if there are ξ† ∈ ∂Ω(x†) and β ∈ (0, 1] such that

βBΩ
ξ†(x, x

†) ≤ Ω(x)−Ω(x†) + ϕ
(

‖F (x)− F (x†)‖
)

for all x ∈M. (12.4)

Proposition 12.13. Let x† satisfy a variational inequality with respect to a sufficiently
large set M and a function ϕ. Then

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O(ϕ(δ)) if δ → 0

with a parameter choice δ 7→ α(δ) depending on ϕ but not on M . In the context of this
proposition the set M is sufficiently large if there is some δ̄ > 0 such that

⋃

δ∈(0,δ̄]

⋃

{yδ :‖yδ−y0‖≤δ}
argmin
x∈D(F )

T y
δ

α(δ)(x) ⊆M.

Proof. The proposition is a special case of Theorem 4.11 (mind Remark 12.9).

Examples for a ‘sufficiently large’ set M and details on the parameter choice are
discussed in Sections 4.1 and 4.2.

As obvious from Proposition 12.13, the best rate is obtained from a variational in-
equality with ϕ(t) = ct, c > 0. The following proposition shows that such a variational
inequality is indeed stronger than a variational inequality with a different concave func-
tion ϕ.
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Proposition 12.14. Let x† satisfy a variational inequality

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c‖F (x)− F (x†)‖ for all x ∈M

with β ∈ (0, 1], c > 0, M ⊆ D(F ) and let ϕ be as in Definition 12.12. If there are
constants β̃ ∈ (0, β] and c̃ > 0 such that

β̃BΩ
ξ†(x, x

†)−
(

Ω(x)− Ω(x†)
)

≤ c̃ for all x ∈M,

then

β̃BΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) +
c̃

ϕ( c̃c)
ϕ
(

‖F (x)− F (x†)‖
)

for all x ∈M.

Proof. Set h(x) := β̃BΩ
ξ†(x, x

†)−
(

Ω(x)− Ω(x†)
)

for x ∈M . We only have to consider

x ∈ M with h(x) ∈ (0, c̃] (all other x ∈ M satisfy h(x) ≤ 0). Since ϕ is monotonically
increasing we may estimate

h(x) =
h(x)

ϕ
(

1
ch(x)

)ϕ
(

1
ch(x)

)

≤ h(x)

ϕ
(

1
ch(x)

)ϕ
(

1
cβB

Ω
ξ†(x, x

†)− 1
c

(

Ω(x)− Ω(x†)
))

≤ h(x)

ϕ
(

1
ch(x)

)ϕ
(

‖F (x) − F (x†)‖
)

.

The concavity of ϕ implies that t 7→ t
ϕ(t) is monotonically increasing. Thus

h(x)

ϕ
(

1
ch(x)

) = c
1
ch(x)

ϕ
(

1
ch(x)

) ≤ c
c̃
c

ϕ
(

c̃
c

) =
c̃

ϕ
(

c̃
c

) .

Combining the two estimates we obtain

h(x) ≤ c̃

ϕ
(

c̃
c

)ϕ
(

‖F (x)− F (x†)‖
)

for all x ∈M with h(x) ∈ (0, c̃] and thus for all x ∈M .

Remark 12.15. In Proposition 12.14 we assumed the existence of c̃ > 0 and β̃ > 0
such that

β̃BΩ
ξ†(x, x

†)−
(

Ω(x)−Ω(x†)
)

≤ c̃ for all x ∈M.

This assumption is not very strong and due to the weak compactness of the sublevel
sets of Ω we believe that this assumption is always satisfied, but we have no proof.

In case of Ω = 1
q‖•‖q with q ≥ 1 and M = X the assumption holds at least for

β̃ ≤ 1
2q−1+1

. Indeed, using ξ† ∈ ∂Ω(x†) and the inequality

‖x̃− x‖q ≤ 2q−1
(

‖x̃‖q + ‖x‖q
)

for x̃, x ∈ X

(see [SGG+09, Lemma 3.20]) we obtain

〈−ξ†, x− x†〉 = 〈ξ†, (2x† − x)− x†〉 ≤ 1

q

(

‖2x† − x‖q − ‖x†‖q
)

≤ 1

q

(

2q−1‖x‖q +
(

22q−1 − 1
)

‖x†‖q
)

.

119



12. Smoothness in Banach spaces

Thus,

β̃BΩ
ξ†(x, x

†)−
(

Ω(x)− Ω(x†)
)

=
1− β̃
q

(

‖x†‖q − ‖x‖q
)

+ β̃〈−ξ†, x− x†〉

≤
(

2q−1 + 1
)

β̃ − 1

q
‖x‖q +

(

22q−1 − 1
)

β̃ + 1

q
‖x†‖q

≤
(

22q−1 − 1
)

β̃ + 1

q
‖x†‖q =: c̃

for all x ∈M .

For Ω = 1
q‖•‖q one can even show that the assumption of Proposition 12.14 is satisfied

for all β̃ ∈ (0, 1). But this requires advanced techniques (duality mappings and their
relation to subdifferentials) which we do not want to introduce here.

One should be aware of the fact that due to the concavity of ϕ the best possible

convergence rate obtainable from a variational inequality is BΩ
ξ†

(

xy
δ

α(δ), x
†) = O(δ). As

we will see in Chapter 13 higher rates can be obtained in Hilbert spaces by extending
the concept of variational inequalities slightly.

12.1.5. Approximate variational inequalities

Before variational inequalities with exponent κ introduced in [HH09] have been ex-
tended to variational inequalities with a more general function ϕ (cf. Subsection 12.1.4)
another concept for expressing various types of smoothness was introduced in [Gei09]
and [FH10]: approximate variational inequalities.

The idea is to overcome the limited scale of convergence rates obtainable via varia-
tional inequalities with ϕ of power-type by measuring the violation of a fixed benchmark
variational inequality, thereby preserving the applicability to nonlinear operators and
to non-metric fitting terms in the Tikhonov-type functional. The benchmark inequality
should provide as high rates as possible because as for approximate source conditions
the convergence rate obtained from the approximate variant is limited by the rates
provided by the benchmark inequality. Thus, ϕ(t) = t is a suitable benchmark.

Given ξ† ∈ ∂Ω(x†), β ∈ (0, 1], and M ⊆ D(F ) with x† ∈ M we define the distance
function Dβ : [0,∞)→ [0,∞] by

Dβ(r) := sup
x∈M

(

βBΩ
ξ†(x, x

†)−
(

Ω(x)− Ω(x†)
)

− r‖F (x)− F (x†)‖
)

, r ≥ 0. (12.5)

Obviously Dβ is monotonically decreasing and since x† ∈ M , we have Dβ(r) ≥ 0 for
all r ≥ 0. It might happen that Dβ(r) = ∞ for some r. As a supremum of affine
functions Dβ is a convex function and thus continuous on the interior of its essential
domain {r ≥ 0 : Dβ(r) <∞}.

From (12.5) we immediately see that there is some r0 ≥ 0 with Dβ(r0) = 0 if and
only if the variational inequality

βBΩ
ξ†(x, x

†) ≤ Ω(x)−Ω(x†) + r0‖F (x)− F (x†)‖ for all x ∈M
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is satisfied. If Dβ decays to zero at infinity we can derive convergence rates depending
on the speed of this decay. Thus, in analogy to approximate source conditions we
formulate the following definition.

Definition 12.16. Let M ⊆ D(F ) with x† ∈ M . The exact solution x† satisfies an
approximate variational inequality with respect to the stabilizing functional Ω and to
the operator F if there are a subgradient ξ† ∈ Ω(x†) and a constant β ∈ (0, 1] such that
the associated distance function Dβ defined by (12.5) decays to zero at infinity.

Exploiting convexity one easily shows that Dβ is strictly monotonically decreasing
on its essential domain if it decays to zero at infinity but never attains zero.

In preparation of the convergence rates result connected with approximate variational
inequalities we formulate a lemma.

Lemma 12.17. Assume p > 1 in (12.2) and let x† satisfy an approximate variational
inequality with ξ† ∈ ∂Ω(x†), β ∈ (0, 1], and M sufficiently large. Here the set M is
sufficiently large if there is some δ̄ > 0 such that

⋃

δ∈(0,δ̄]

⋃

{yδ:‖yδ−y0‖≤δ}
argmin
x∈D(F )

T y
δ

α(δ)(x) ⊆M.

Then

βBΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
+
p− 1

p
α

1
p−1 r

p
p−1 +Dβ(r)

for all r ≥ 0, all α > 0, and all δ ∈ (0, δ̄].

Proof. By the definition of Dβ(r) we have

βBΩ
ξ†
(

xy
δ

α , x
†) ≤ Ω(xy

δ

α )− Ω(x†) + r‖F (xyδα )− F (x†)‖+Dβ(r) for all x ∈M.

Using the minimizing property of xy
δ

α we obtain

Ω(xy
δ

α )−Ω(x†) =
1

α

(

T y
δ

α (xy
δ

α )− 1

p
‖F (xyδα )− F (x†)‖p

)

− Ω(x†)

≤ δp

pα
− 1

pα
‖F (xyδα )− F (x†)‖p

and the combination of both estimates yields

βBΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
+ r‖F (xyδα )− F (x†)‖ − 1

pα
‖F (xyδα )− F (x†)‖p +Dβ(r).

Applying Young’s inequality

ab ≤ 1
pa

p + p−1
p b

p
p−1 , a, b ≥ 0,

with a := α− 1
p ‖F (xyδα )− F (x†)‖ and b := rα

1
p we see

r‖F (xyδα )− F (x†)‖ ≤ 1

pα
‖F (xyδα )− F (x†)‖p + p− 1

p
α

1
p−1 r

p
p−1

and therefore

βBΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
+
p− 1

p
α

1
p−1 r

p
p−1 +Dβ(r).
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12. Smoothness in Banach spaces

We provide two expressions for the convergence rate obtainable from an approximate
variational inequality: the one already given in [Gei09, FH10] and a version which
exploits the technique of conjugate functions. In Proposition 12.22 below we show that
both expressions describe the same rate.

Proposition 12.18. Let the assumptions of Lemma 12.17 be satisfied.

• Assume Dβ(r) > 0 for all r ≥ 0 and define functions Φ and Ψ by Φ(r) :=
Dβ(r)
r

and Ψ(r) := r−pDβ(r)
p−1 for r ∈ (0,∞). Then

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O

(

Dβ

(

Φ−1(δ)
))

if δ → 0

with the a priori parameter choice δ 7→ α(δ) defined by δp = α(δ)Dβ

(

Ψ−1(α)
)

.

• Assume Dβ(0) > 0. Then

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O

(

−D∗
β(−δ)

)

if δ → 0

with the a priori parameter choice α(δ) := δp

r(δ) , where r(δ) ∈ argminr>0(δr +

Dβ(r)).

Proof. We show the first assertion. Because Dβ(r) → 0 if r → ∞, there is some
r0 ≥ 0 such that Dβ < ∞ on (r0,∞). Obviously the functions Φ and Ψ are strictly
monotonically decreasing on (r0,∞) with range (0,Dβ(r0)). Thus, the inverse functions
Φ−1 and Ψ−1 are well-defined on (0,Dβ(r0)) and also strictly monotonically decreasing
with range (r0,∞). As a consequence the parameter choice is uniquely determined by
δp = α(δ)Dβ

(

Ψ−1(α(δ))
)

for small δ > 0. (the right-hand side is strictly monotonically
increasing with respect to α ∈ (0,Dβ(r0)) and has range

(

0,Dβ(r0)
2
)

). For the sake of
brevity we now write α instead of α(δ).

Lemma 12.17 provides

βBΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
+
p− 1

p
α

1
p−1 r

p
p−1 +Dβ(r)

for all δ ∈ (0, δ̄] and all r ≥ 0. We choose r = rα := Ψ−1(α), which is equivalent to

r−pα Dβ(rα)
p−1 = α and thus also to Dβ(rα) = α

1
p−1 r

p
p−1
α . With this specific r the last

estimate becomes

βBΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
+
(p− 1

p
+ 1
)

Dβ(rα)

and taking into account that the parameter choice satisfies δp = αDβ(rα), we obtain

βBΩ
ξ†
(

xy
δ

α , x
†) ≤ 2Dβ(rα).

To complete the proof of the first assertion it remains to show rα = Φ−1(δ) or equiva-
lently Φ(rα) = δ, which is a simple consequence of the parameter choice:

Φ(rα) =
Dβ(rα)

rα
=

(

Dβ(rα)
p−1

rpα
Dβ(rα)

)
1
p

=
(

Ψ(rα)Dβ(rα)
)

1
p =

(

αDβ(rα)
)

1
p = δ.
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12.1. Different smoothness concepts

Now we come to the second assertion. We first show that the parameter choice α(δ) :=
δp

r(δ) with r(δ) ∈ argminr>0 hδ(r) is well-defined, where we set hδ(r) := δr +Dβ(r) for

r ≥ 0. That is, we have to ensure the existence of δ̃ > 0 such that argminr>0 hδ(r) 6= ∅
for all δ ∈ (0, δ̃]. The functions hδ are lower semi-continuous, hδ(r)→∞ if r →∞, and
their essential domain coincides with the essential domain of Dβ. Thus, if Dβ(0) = ∞
then argminr>0 hδ(r) 6= ∅.

For the case Dβ(0) < ∞ we give an indirect proof. So assume that there is no δ̃
with the described property. Then there exists a sequence (δk)k∈N in (0,∞) converging
to zero and satisfying argminr>0 hδk(r) = ∅ for all k ∈ N. Therefore hδk(r) ≥ hδk(0)
for all r ≥ 0 and all k ∈ N. Together with the monotonicity of Dβ we thus obtain
0 ≤ Dβ(0) − Dβ(r) ≤ δkr and k → ∞ yields Dβ(r) = Dβ(0) for all r ≥ 0. But
since Dβ(r) → 0 if r → ∞ this means Dβ(r) = 0 for all r ≥ 0, which contradicts the
assumption Dβ(0) > 0. Therefore the proposed parameter choice is well-defined.

Finally we estimate the Bregman distance. From Lemma 12.17 we know

βBΩ
ξ†
(

xy
δ

α(δ), x
†) ≤ δp

pα(δ)
+
p− 1

p
α(δ)

1
p−1 r(δ)

p
p−1 +Dβ(r(δ))

with r(δ) ∈ argminr>0(δr +Dβ(r)). Observing that α(δ) = δp−1

r(δ) minimizes

α 7→ δp

pα
+
p− 1

p
α

1
p−1 r(δ)

p
p−1

over α ∈ (0,∞) we obtain

βBΩ
ξ†
(

xy
δ

α(δ), x
†) ≤ δr(δ) +Dβ(r(δ)) = inf

r>0

(

δr +Dβ(r)
)

= − sup
r>0

(

−δr −Dβ(r)
)

.

By the lower semi-continuity of Dβ we may extend the supremum to r ≥ 0 without
changing its value. Setting Dβ to +∞ on (−∞, 0), the supremum does not change if
we allow r ∈ R. Therefore

βBΩ
ξ†
(

xy
δ

α(δ), x
†) ≤ − sup

r∈R

(

−δr −Dβ(r)
)

= −D∗
β(−δ).

Remark 12.19. For obtaining the second rate expression in Proposition 12.18 we had
to exclude the case Dβ(0) = 0. But this case is only of minor interest since it allows to
show arbitrarily high convergence rates. Indeed, Lemma 12.17 with r = 0 provides

βBΩ
ξ†
(

xy
δ

α , x
†) ≤ δp

pα
for all α > 0

and thus, by applying a suitable parameter choice, any desirable rate can be proven.
In addition we have

Ω(x†)−Ω(x) ≤ βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x) ≤ Dβ(0) = 0 for all x ∈M,

that is, x† minimizes Ω over M .
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12. Smoothness in Banach spaces

Remark 12.20. The function −D∗
β(−•) in Proposition 12.18 looks somewhat unusual,

but it satisfies the typical properties one expects from a function in a convergence rates
result. It is nonnegative, concave, upper semi-continuous, and monotonically increasing.
Near zero it is even strictly monotonically increasing if we assume Dβ(0) > 0. Further,
−D∗

β(−0) = 0 and −D∗
β(−t)→ 0 if t→ +0. On (−∞, 0) this function attains the value

−∞. All these properties are shown in the proof of Lemma 12.32.

Remark 12.21. As for approximate source conditions Proposition 12.18 remains true
if the distance function Dβ is everywhere replaced by some decreasing majorant of Dβ .

Finally we show that both O-expressions stated in Proposition 12.18 describe the
same convergence rate.

Proposition 12.22. Let x† satisfy an approximate variational inequality with ξ† ∈
∂Ω(x†), β ∈ (0, 1], and M ⊆ D(F ). Assume Dβ(r) > 0 for all r ≥ 0 and define the

function Φ on (0,∞) by Φ(r) :=
Dβ(r)
r . Then

Dβ

(

Φ−1(δ)
)

≤ −D∗
β(−δ) ≤ 2Dβ

(

Φ−1(δ)
)

for all sufficiently small δ > 0.

Proof. The proof is based on ideas presented in [Mat08]. Without loss of generality we
assume Dβ <∞ on [0,∞); see also the first paragraph in the proof of Proposition 12.18.
Then Φ−1 is well-defined on (0,∞).

By the definition of Φ we have Dβ

(

Φ−1(δ)
)

= δΦ−1(δ). Thus r ≥ Φ−1(δ) implies

Dβ

(

Φ−1(δ)
)

= δΦ−1(δ) ≤ δr ≤ δr +Dβ(r).

On the other hand, for r ≤ Φ−1(δ) by the monotonicity of Dβ we obtain

Dβ

(

Φ−1(δ)
)

≤ Dβ(r) ≤ δr +Dβ(r).

Both estimates together yield

Dβ

(

Φ−1(δ)
)

≤ inf
r∈[0,∞)

(

δr +Dβ(r)
)

= −D∗
β(−δ).

The second asserted inequality in the proposition follows from

−D∗
β(−δ) = inf

r∈[0,∞)

(

δr +Dβ(r)
)

≤ δΦ−1(δ) +Dβ

(

Φ−1(δ)
)

= 2Dβ

(

Φ−1(δ)
)

.

Approximate variational inequalities are a highly abstract tool and thus are not well
suited for ‘everyday’ convergence rates analysis. But since they are an intermediate
technique between variational inequalities and approximate source conditions they will
turn out very useful for analyzing the relations between these two more accessible tools.
To enlighten the role of approximate variational inequalities we show in Section 12.4
that each approximate variational inequality can be written as a variational inequality
and vice versa.
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12.1. Different smoothness concepts

12.1.6. Projected source conditions

The last smoothness concept we want to discuss is different from the previous ones
because it is used in conjunction with constrained Tikhonov regularization. But as we
show in Section 12.3 it provides a nice interpretation of variational inequalities. The
results connected with projected source conditions are joint work with Bernd Hofmann
(Chemnitz) and were published in [FH11].

In applications one frequently encounters Tikhonov regularization with convex con-
straints:

T y
δ

α (x) = 1
p‖F (x) − yδ‖p + αΩ(x)→ min

x∈C
, (12.6)

where C ⊆ D(F ) is a convex set. Also for such constrained problems source conditions
yield convergence rates, but weaker assumptions on the smoothness of the exact solution
x† are adequate, too. Here the definition of x† has to be adapted slightly: we assume
x† ∈ C and Ω(x†) = min{Ω(x) : x ∈ C, F (x) = y0} instead of Ω(x†) = min{Ω(x) : x ∈
D(F ), F (x) = y0}. In particular argmin{Ω(x) : x ∈ C, F (x) = y0} 6= ∅ shall hold,
which is true if C is closed and therefore, due to convexity, also weakly closed.

In [Neu88] constrained Tikhonov regularization in Hilbert spaces X and Y with
p = 2, Ω = ‖•‖2, and a bounded linear operator A = F is considered. It was shown
there that the assumption x† = PC(A

∗w) for some w ∈ Y yields the convergence rate

‖xyδα(δ) − x†‖2 = O(δ) with a suitable parameter choice δ 7→ α(δ). Here PC : X → X

denotes the metric projector onto the (closed) convex set C. Note that the condition
x† = PC(A

∗w) can be equivalently written as A∗w−x† ∈ NC(x
†) with NC(x

†) := {x̃ ∈
X : 〈x̃, x− x†〉 ≤ 0 for all x ∈ C} being the normal cone of C at x†.

The extension of such projected source conditions to Tikhonov regularization with
a nonlinear operator F in Hilbert spaces X and Y is described in [CK94]. There the
stabilizing functional Ω = ‖• − x̄‖2 with fixed a priori guess x̄ ∈ X is used. The
corresponding projected source condition reads as F ′[x†]∗w − (x† − x̄) ∈ NC(x

†) or,
equivalently, x† = PC(x̄+F ′[x†]∗w), where in the context of [CK94] F ′[x†] denotes the
Fréchet derivative of F at x†.

In Banach spaces the normal cone of C at x† is defined by

NC(x
†) := {ξ ∈ X∗ : 〈ξ, x− x†〉 ≤ 0 for all x ∈ X}.

Using this definition we are able to extend projected source conditions to Banach spaces.

Definition 12.23. The exact solution x† satisfies a projected source condition with
respect to the operator F ′[x†] (cf. Subsection 12.1.1) if there are ξ† ∈ Ω(x†) and η† ∈ Y ∗

such that

F ′[x†]∗η† − ξ† ∈ NC(x
†). (12.7)

If x† belongs to the interior of C then NC(x
†) = {0} and (12.7) reduces to the usual

source condition ξ† = F ′[x†]∗η†.
Before we derive convergence rates from a projected source condition we want to

motivate the term ‘projected’ also for Banach spaces. To this end we assume that
X is reflexive, strictly convex (see Definition B.6), and smooth (see Definition B.7).
Then for each x ∈ X there is a uniquely determined element J(x) ∈ X∗ such that
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12. Smoothness in Banach spaces

〈J(x), x〉 = ‖x‖2 = ‖J(x)‖2. The corresponding mapping J : X → X∗, x 7→ J(x) has
similar properties as the Riesz isomorphism in Hilbert spaces and is known as duality
mapping on X. For details on duality mappings we refer to [BP86, Chapter 1, § 2.4].
The mapping J is bijective (see [BP86, Proposition 2.16]) and its inverse J−1 is the
duality mapping J∗ : X∗ → X on X∗ (see [Zei85, Proposition 47.19]). If C ⊆ D(F )
is closed and convex then the assumptions on X guarantee that the metric projector
PC : X → X onto C is well-defined. In other words, for each x ∈ X there is exactly one
element xC ∈ C such that ‖xC − x‖ = minx̃∈C ‖x̃− x‖ (see [BP86, Chapter 3, § 3.2]).

Following [Kie02, Proposition 2.2] we have x† = PC(x) with x ∈ X if and only if
J(x− x†) ∈ NC(x

†). Since

F ′[x†]∗η† − ξ† = J
(

x† + J∗
(

F ′[x†]∗η† − ξ†
)

− x†
)

we see that the projected source condition (12.7) is equivalent to

x† = PC
(

x† + J∗(F
′[x†]∗η† − ξ†)

)

.

Thus, the term ‘projected’ is indeed appropriate.
Eventually, we formulate a convergence rates result based on a projected source

condition. We restrict our attention to bounded linear operators A = F . For nonlinear
operators additional assumptions on the structure of nonlinearity are required to obtain
convergence rates, but the major steps of the proof are the same.

Proposition 12.24. Let A := F be bounded and linear. If there are ξ† ∈ ∂Ω(x†) and
η† ∈ Y ∗ such that A∗η† − ξ† ∈ NC(x

†), then

BΩ
ξ†
(

xy
δ

α(δ), x
†) = O(δ) if δ → 0

for an appropriate a priori parameter choice δ 7→ α(δ).

Proof. By the definition of NC(x
†) we have

〈−ξ†, x− x†〉 = 〈−η†, A(x− x†)〉 ≤ ‖η†‖‖A(x − x†)‖ for all x ∈ C.

Thus,
BΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + ‖η†‖‖A(x − x†)‖ for all x ∈ C.
This is a variational inequality as introduced in Definition 12.12 with β = 1, ϕ(t) =

‖η†‖t, and M = C. Since xy
δ

α ∈ C for all α > 0 and all δ > 0 in constrained Tikhonov
regularization, the set M is sufficiently large in the sense of Proposition 12.13. Thus,
Proposition 12.13 applies and yields the desired rate.

12.2. Auxiliary results on variational inequalities

In this section we present two results related to variational inequalities with ϕ(t) = t,
which will be used in subsequent sections but which are also of independent interest.

The first proposition relates variational inequalities with the nonlinear operator F to
variational inequalities formulated with the linearization F ′[x†] (cf. Subsection 12.1.1).
Note that whenever we use the operator F ′[x†] we assume D(F ) to be starlike with
respect to x†, else the operator is not well-defined.
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12.2. Auxiliary results on variational inequalities

Proposition 12.25. Let M ⊆ D(F ) be starlike with respect to x†. If there are ξ† ∈
∂Ω(x†), β ∈ (0, 1], and c ≥ 0 such that

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c‖F (x)− F (x†)‖ for all x ∈M (12.8)

then

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c‖F ′[x†](x− x†)‖ for all x ∈M. (12.9)

Proof. For fixed x ∈ M there is t0 > 0 such that x† + t(x − x†) ∈ M for all t ∈ [0, t0].
Thus for all t ∈ (0,min{1, t0}] the given variational inequality (12.8) and the convexity
of Ω imply

c

t
‖F (x† + t(x− x†))− F (x†)‖

≥ β

t
BΩ
ξ†
(

x† + t(x− x†), x†
)

+
1

t

(

Ω(x†)− Ω
(

x† + t(x− x†)
))

=
1− β
t

(

Ω(x†)− Ω
(

(1− t)x† + tx
))

+ β〈−ξ†, x− x†〉

≥ (1− β)
(

Ω(x†)− Ω(x)
)

+ β〈−ξ†, x− x†〉
= βBΩ

ξ†(x, x
†) + Ω(x†)− Ω(x).

If we let t→ +0 we derive

c‖F ′[x†](x− x†)‖ = lim
t→+0

c

t
‖F (x† + t(x− x†))− F (x†)‖

≥ βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x)

for all x ∈M . Therefore the variational inequality (12.9) is valid.

The reverse direction, from a variational inequality (12.9) with F ′[x†] back to a
variational inequality (12.8) with F , requires additional assumptions on the structure
of nonlinearity of F as discussed in Subsection 12.1.1.

The second result shows that for linear operators A := F and under some regularity
assumption the constant β in a variational inequality with linear ϕ plays only a minor
role. That is, if a variational inequality holds for one β ∈ (0, 1] then it holds for all
β ∈ (0, 1].

As preparation we state the following lemma, which is a separation theorem for
convex sets. The lemma will be used in subsequent sections, too.

Lemma 12.26. Let E1, E2 ⊆ X × R be convex sets. If one of them has nonempty
interior and the interior does not intersect with the other set then there exist ξ ∈ X∗

and τ ∈ R with (ξ, τ) 6= (0, 0) such that

sup
(x,t)∈E1

(

〈ξ, x〉+ τt
)

≤ inf
(x,t)∈E2

(

〈ξ, x〉 + τt
)

.

Proof. The assertion is an immediate consequence of [BGW09, Theorem 2.1.2].
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12. Smoothness in Banach spaces

Note that replacing Lemma 12.26 by a separation theorem which works with less
strong assumptions would allow to weaken the assumptions in some of the subsequent
propositions and theorems. A more general separation theorem involving the notion
of quasi convexity can be found in [CDB05]. See also [BCW08] for details on quasi
convexity.

Proposition 12.27. Let A := F be a bounded linear operator with D(F ) = X, let
M ⊆ X be convex, and let β ∈ (0, 1] and c ≥ 0. Further assume that ND(Ω)(x

†) ∩
(−NM (x†)) = {0} and that at least one of the sets D(Ω) or M has interior points.
Then there exists a subgradient ξ† ∈ ∂Ω(x†) with

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c‖A(x − x†)‖ for all x ∈M (12.10)

if and only if
0 ≤ Ω(x)− Ω(x†) + c‖A(x − x†)‖ for all x ∈M. (12.11)

Proof. If there is some ξ† ∈ ∂Ω(x†) such that (12.10) is true, then (12.11) is obviously
also satisfied.

Assume (12.11). We apply Lemma 12.26 to the sets

E1 := {(x, t) ∈ X × R : t ≤ Ω(x†)− Ω(x)},
E2 := {(x, t) ∈ X × R : x ∈M, t ≥ c‖A(x− x†)‖}.

To see that the assumptions of that lemma are satisfied first note that intE1 6= ∅ if
intD(Ω) 6= ∅ and intE2 6= ∅ if intM 6= ∅. Without loss of generality we assume intE2 6=
∅ (the case intE1 6= ∅ can be treated analogously). We have to show E1 ∩ (intE2) = ∅,
which is true if E1 ∩ E2 is a subset of the boundary of E2. So let (x, t) ∈ E1 ∩ E2 and
set (xk, tk) := (x, t − 1

k ) for k ∈ N. Then (xk, tk) → (x, t) (with respect to the norm
topology) and using the definition of E1 and the inequality (12.11) we obtain

tk = t− 1

k
< t ≤ Ω(x†)−Ω(x) ≤ c‖A(x− x†)‖ = c‖A(xk − x†)‖,

that is, (xk, tk) /∈ E2. In other words, (x, t) is indeed a boundary point of E2.
Taking into account (x†, 0) ∈ E1 ∩E2 Lemma 12.26 provides ξ ∈ X∗ and τ ∈ R with

〈ξ, x− x†〉+ τt ≤ 0 for all (x, t) ∈ E1, (12.12)

〈ξ, x− x†〉+ τt ≥ 0 for all (x, t) ∈ E2. (12.13)

In case τ < 0 inequality (12.13) yields 〈− 1
τ ξ, x−x†〉 ≥ t for all t ≥ c‖A(x−x†)‖ and all

x ∈ M . This is obviously not possible (since 〈− 1
τ ξ, x − x†〉 < ∞) and therefore τ ≥ 0

has to be true. If τ = 0 then (12.12) implies 〈ξ, x−x†〉 ≤ 0 for all x ∈ D(Ω) and (12.13)
implies 〈ξ, x− x†〉 ≥ 0 for all x ∈M . Thus ξ ∈ ND(Ω)(x

†) ∩ (−NM (x†)), which implies
ξ = 0. This contradicts (ξ, τ) 6= (0, 0).

It remains the case τ > 0. Inequality (12.12) yields 〈 1τ ξ, x− x†〉 ≤ −t for all (x, t) ∈
E1. With t := Ω(x†) − Ω(x) this gives ξ† := 1

τ ξ ∈ ∂Ω(x†). From (12.13) with t :=
c‖A(x− x†)‖ we obtain 〈−ξ†, x− x†〉 ≤ c‖A(x− x†)‖ for all x ∈M . Thus,

βBΩ
ξ†(x, x

†) ≤ BΩ
ξ†(x, x

†) = Ω(x)− Ω(x†) + 〈−ξ†, x− x†〉
≤ Ω(x)− Ω(x†) + c‖A(x − x†)‖

for all x ∈M and arbitrary β ∈ (0, 1].
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Note that Proposition 12.27 is in general not true for nonlinear operators F . In Sec-
tion 12.5 we will see the influence of β on the convergence rate for variational inequalities
with a function ϕ which is not linear.

12.3. Variational inequalities and (projected) source conditions

The aim of this section is to clarify the relation between variational inequalities and
projected source conditions. Since usual source conditions are a special case of projected
ones, the results also apply to usual source conditions. The results of this section are
joint work with Bernd Hofmann (Chemnitz) and were published in [FH11].

In [SGG+09, Proposition 3.35] it is shown that a source condition implies a variational
inequality (see also [HY10, Section 4]) if one imposes some assumption on the structure
of nonlinearity of F . The function ϕ in the variational inequality depends on the chosen
nonlinearity condition. For the sake of completeness we repeat the result here together
with its proof, but we use only a very simple nonlinearity condition.

Proposition 12.28. Let M ⊆ D(F ) and assume

‖F ′[x†](x− x†)‖ ≤ c‖F (x)− F (x†)‖ for all x ∈M

with a constant c ≥ 0 and F ′[x†] as defined in Subsection 12.1.1. If there are ξ† ∈ ∂Ω(x†)
and η† ∈ Y ∗ such that ξ† = F ′[x†]∗η† then

BΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c‖η†‖‖F (x) − F (x†)‖ for all x ∈M.

Proof. Let x ∈M . The assertion follows from

BΩ
ξ†(x, x

†) = Ω(x)− Ω(x†)− 〈ξ†, x− x†〉 ≤ Ω(x)− Ω(x†) + ‖η†‖‖F ′[x†](x− x†)‖
≤ Ω(x)− Ω(x†) + c‖η†‖‖F (x) − F (x†)‖.

For projected source conditions we can prove a similar result.

Proposition 12.29. Let C ⊆ D(F ) be convex and assume

‖F ′[x†](x− x†)‖ ≤ c‖F (x) − F (x†)‖ for all x ∈ C

with a constant c ≥ 0 and F ′[x†] as defined in Subsection 12.1.1. If there are ξ† ∈ ∂Ω(x†)
and η† ∈ Y ∗ such that F ′[x†]∗η† − ξ† ∈ NC(x

†) then

BΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c‖η†‖‖F (x)− F (x†)‖ for all x ∈ C.

Proof. Let x ∈ C. By the definition of NC(x
†) the projected source condition implies

〈−ξ†, x− x†〉 ≤ 〈−η†, F ′[x†](x− x†)〉 and therefore

BΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + ‖η†‖‖F ′[x†](x− x†)‖
≤ Ω(x)− Ω(x†) + c‖η†‖‖F (x) − F (x†)‖.

Thus, the assertion is true.
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The reverse direction, from a variational inequality with linear function ϕ back to a
source condition, has been show in [SGG+09, Proposition 3.38] under the additional
assumption that F and Ω are Gâteaux differentiable at x† (see also [HY10, Proposi-
tion 4.4]).

We generalize this finding in two points: on the one hand we do not require Gâteaux
differentiability of F or Ω and on the other hand we derive a (projected) source condition
also in the case NC(x

†) 6= {0}. In [SGG+09, Proposition 3.38] only NC(x
†) = {0} is

considered as a consequence of Gâteaux differentiability. In this connection reference
should be made to the fact that the projected source condition F ′[x†]∗η†− ξ† ∈ NC(x

†)
reduces to the usual source condition ξ† = F ′[x†]∗η† if NC(x

†) = {0}. Solely the
assumption that M = C is convex in our context is less general than the cited result,
where M is starlike but not convex (except if F is linear).

To show that a variational inequality implies a projected source condition we start
with linear operators A = F .

Lemma 12.30. Let A := F be bounded and linear with D(F ) = X and let C ⊆ X be
convex. Further assume ND(Ω)(x

†)∩ (−NC(x
†)) = {0} and that at least one of the sets

D(Ω) or C has interior points. If

0 ≤ Ω(x)− Ω(x†) + c‖A(x − x†)‖ for all x ∈ C

with c ≥ 0, then there are ξ† ∈ ∂Ω(x†) and η† ∈ Y ∗ with ‖η†‖ ≤ c such that A∗η†− ξ† ∈
NC(x

†).

Proof. We apply Lemma 12.26 to the sets

E1 := {(x, t) ∈ X × R : x ∈ C, t ≤ Ω(x†)− Ω(x)},
E2 := {(x, t) ∈ X × R : t ≥ c‖A(x− x†)‖}

(the assumptions of that lemma can be verified analogously to the proof of Proposi-
tion 12.27). Together with (x†, 0) ∈ E1 ∩ E2 Lemma 12.26 provides ξ ∈ X∗ and τ ∈ R

such that

〈ξ, x− x†〉+ τt ≤ 0 for all (x, t) ∈ E1, (12.14)

〈ξ, x− x†〉+ τt ≥ 0 for all (x, t) ∈ E2. (12.15)

If τ < 0 then (12.15) implies 〈− 1
τ ξ, x− x†〉 ≥ t for all t ≥ c‖A(x − x†)‖ and all x ∈ X,

which is obviously not possible (since 〈− 1
τ ξ, x − x†〉 < ∞). In case τ = 0 inequality

(12.15) gives 〈ξ, x − x†〉 ≥ 0 for all x ∈ X. But this contradicts (ξ, τ) 6= (0, 0). Thus,
τ > 0 has to be true.

From (12.15) with t := c‖A(x − x†)‖ we obtain for all x ∈ X

〈− 1
τ ξ, x− x†〉 ≤ c‖A(x− x†)‖.

Hence there is some η† ∈ Y ∗ such that 1
τ ξ = A∗η† and ‖η†‖ ≤ c (see [SGG+09,

Lemma 8.21]). Inequality (12.14) with t := Ω(x†) − Ω(x) now yields Ω(x†) − Ω(x) ≤
〈−A∗η†, x− x†〉 for all x ∈ C.

130



12.4. Variational inequalities and their approximate variant

To obtain a subgradient of Ω at x† we apply Lemma 12.26 to the sets

Ẽ1 := {(x, t) ∈ X × R : t ≤ Ω(x†)− Ω(x)},
Ẽ2 := {(x, t) ∈ X × R : x ∈ C, t ≥ 〈−A∗η†, x− x†〉}

(again, one easily verifies the assumptions of that lemma). With (x†, 0) ∈ Ẽ1 ∩ Ẽ2 this
yields ξ̃ ∈ X∗ and τ̃ ∈ R such that

〈ξ̃, x− x†〉+ τ̃ t ≤ 0 for all (x, t) ∈ Ẽ1, (12.16)

〈ξ̃, x− x†〉+ τ̃ t ≥ 0 for all (x, t) ∈ Ẽ2. (12.17)

If τ̃ < 0 then (12.17) implies 〈− 1
τ̃ ξ̃, x−x†〉 ≥ t for all t ≥ 〈−A∗η†, x−x†〉 and all x ∈ C,

which is obviously not possible (since 〈− 1
τ̃ ξ̃, x − x†〉 < ∞). In case τ̃ = 0 inequality

(12.16) gives 〈ξ̃, x − x†〉 ≤ 0 for all x ∈ D(Ω) and (12.17) gives 〈ξ̃, x − x†〉 ≥ 0 for
all x ∈ C. Thus ξ ∈ ND(Ω)(x

†) ∩ (−NC(x
†)), which implies ξ = 0. This contradicts

(ξ, τ) 6= (0, 0). Therefore τ̃ > 0 is true.
With t := Ω(x†) − Ω(x) from (12.16) we obtain 〈 1τ̃ ξ̃, x − x†〉 ≤ Ω(x) − Ω(x†) for all

x ∈ X, that is, ξ† := 1
τ̃ ξ̃ ∈ ∂Ω(x†). Eventually, (12.17) with t := 〈−A∗η†, x− x†〉 yields

〈−ξ†, x − x†〉 ≤ 〈−A∗η†, x − x†〉 for all x ∈ C. Thus, we have found ξ† ∈ ∂Ω(x†) and
η† ∈ Y ∗ such that A∗η† − ξ† ∈ NC(x

†).

Theorem 12.31. Let C ⊆ D(F ) be convex and let F ′[x†] be as in Subsection 12.1.1.
Further assume ND(Ω)(x

†) ∩ (−NC(x
†)) = {0} and that at least one of the sets D(Ω)

or C has interior points. If there are ξ† ∈ ∂Ω(x†), β ∈ (0, 1], and c ≥ 0 such that

βBΩ
ξ†(x, x

†) ≤ Ω(x)−Ω(x†) + c‖F (x) − F (x†)‖ for all x ∈ C,

then there are ξ̃† ∈ ∂Ω(x†) and η̃† ∈ Y ∗ with ‖η̃†‖ ≤ c such that F ′[x†]∗η̃†−ξ̃† ∈ NC(x
†).

Proof. From Proposition 12.25 we obtain the variational inequality

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + c‖F ′[x†](x− x†)‖ for all x ∈ C.

Thus, the assertion follows from Lemma 12.30 with A = F ′[x†].

12.4. Variational inequalities and their approximate variant

In this section we establish a strong connection between variational inequalities and ap-
proximate variational inequalities. In fact we show that the two concepts are equivalent
in a certain sense.

Given β ∈ (0, 1], c ≥ 0, M ⊆ D(F ), and ξ† ∈ ∂Ω(x†) we already mentioned in
Subsection 12.1.5 that the corresponding variational inequality with ϕ(t) = ct is satisfied
if and only if the distance function Dβ associated with β, M , and ξ† becomes zero
at some point r0 ≥ 0. By Proposition 12.11 variational inequalities with ϕ being
almost linear near zero can be reduced to variational inequalities with linear ϕ. Thus,
it only remains to clarify the connection between variational inequalities for which
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limt→+0
ϕ(t)
t = ∞ and approximate variational inequalities with a distance function

Dβ satisfying Dβ > 0 on [0,∞). Nonetheless the results below also cover the trivial
situation already discussed in Subsection 12.1.5.

The relation between variational inequalities and their approximate variant will be
formulated using conjugate functions (see Definition B.4). Thus it is sensible to work
with functions defined on the whole real line. To this end we extend the concave
functions ϕ to R by setting ϕ(t) := −∞ for t < 0 and the convex functions Dβ are
extended by Dβ(r) := +∞ for r < 0. The conjugate functions of −ϕ and Dβ will be
denoted by (−ϕ)∗ and D∗

β.

At first we show how to obtain a variational inequality from an approximate vari-
ational inequality. In a second lemma an upper bound for Dβ given a variational
inequality is derived. And finally we combine and interpret the two results in form of
a theorem.

Lemma 12.32. Let x† satisfy an approximate variational inequality with β ∈ (0, 1],
M ⊆ D(F ), and ξ† ∈ ∂Ω(x†). Assume Dβ(0) > 0 for the corresponding distance
function Dβ. Then −D∗

β(−•) satisfies the assumptions imposed on ϕ in Definition 12.12

and x† satisfies a variational inequality (12.4) with β, M , ξ†, and ϕ = −D∗
β(−•).

Proof. Fix x ∈M and observe

βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x)

= βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x)− r‖F (x)− F (x†)‖+ r‖F (x)− F (x†)‖
≤ Dβ(r) + r‖F (x)− F (x†)‖

for all r ≥ 0. Since Dβ(r) = +∞ for r < 0 the inequality holds for all r ∈ R. Passing
to the infimum over r ∈ R we obtain

βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x)

≤ inf
r∈R

(

Dβ(r) + r‖F (x)− F (x†)‖
)

= − sup
r∈R

(

−‖F (x)− F (x†)‖r −Dβ(r)
)

= −D∗
β(−‖F (x) − F (x†)‖)

and therefore

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + (−D∗
β)(−‖F (x) − F (x†)‖) for all x ∈M.

It remains to show that −D∗
β(−•) satisfies the assumptions imposed on ϕ in Defini-

tion 12.12. Conjugate functions are convex and lower semi-continuous. Thus, −D∗
β(−•)

is concave and upper semi-continuous. From

−D∗
β(−t) = inf

r≥0

(

Dβ(r) + rt
)

for all t ≥ 0

we see −D∗
β(−t) ∈ [0,∞) for t ≥ 0 and −D∗

β(−0) = 0 (by assumption Dβ(r) → 0 if
r →∞). The upper semi-continuity thus implies limt→+0−D∗

β(−t) = 0. We also imme-
diately see −D∗

β(−•) = −∞ on (−∞, 0) and that −D∗
β(−•) is monotonically increasing.
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Now assume that there is no ε > 0 such that −D∗
β(−•) is strictly monotonically in-

creasing on [0, ε]. Concavity, monotonicity, and upper semi-continuity of −D∗
β(−•)

then imply −D∗
β(−•) = 0 on [0,∞) and the Fenchel–Moreau–Rockafellar theorem (see

[ABM06, Theorem 9.3.2]) implies

Dβ(0) = D∗∗
β (0) = sup

t∈R

(

0 · (−t)−D∗
β(−t)

)

= sup
t≥0

(

−D∗
β(−t)

)

= 0.

This contradicts Dβ(0) > 0 and thus −D∗
β(−•) is strictly monotonically increasing near

zero.

From a variational inequality with ϕ = −D∗
β(−•) we obtain the convergence rate

O
(

−D∗
β(−δ)

)

via Proposition 12.13. This is the same rate as obtained directly from
the distance function Dβ via Proposition 12.18.

The assumption Dβ(0) > 0 in Lemma 12.32 was already discussed in Remark 12.19.

Lemma 12.33. Let x† satisfy a variational inequality with β ∈ (0, 1], M ⊆ D(F ),
ξ† ∈ ∂Ω(x†), and some function ϕ as described in Definition 12.12. Further assume
x† ∈ M . Then x† satisfies an approximate variational inequality with β, M , and ξ†,
where Dβ ≤ (−ϕ)∗(−•) on [0,∞) is true for the corresponding distance function.

Proof. For each r ≥ 0 we have

Dβ(r) = sup
x∈M

(

βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x)− r‖F (x)− F (x†)‖
)

≤ sup
x∈M

(

ϕ(‖F (x) − F (x†)‖)− r‖F (x)− F (x†)‖
)

≤ sup
t≥0

(

ϕ(t)− rt
)

= sup
t∈R

(

−rt− (−ϕ)(t)
)

= (−ϕ)∗(−r),

where we used ϕ(t) = −∞ for t < 0.

We now show (−ϕ)∗(−r) → 0 if r → ∞. At first we consider the case c :=

limt→+0
ϕ(t)
t < ∞. Then by concavity ϕ(t) ≤ ct for all t ≥ 0. For r ≥ c we thus

obtain

(−ϕ)∗(−r) = sup
t≥0

(

ϕ(t) − rt
)

≤ sup
t≥0

(

ϕ(t)− ct
)

= 0.

If on the other hand limt→+0
ϕ(t)
t = ∞ then for each sufficiently large r > 0 there is a

uniquely determined tr > 0 such that ϕ(tr)tr
= r. In addition, tr → 0 if r →∞. Therefore

ϕ(t)− rt ≤ ϕ(tr)− rt ≤ ϕ(tr) for t ∈ [0, tr] and ϕ(t)− rt = t
(ϕ(t)

t − r
)

≤ t
(ϕ(tr)

tr
− r
)

= 0
for t ≥ tr, yielding

(−ϕ)∗(−r) = sup
t≥0

(

ϕ(t)− rt
)

≤ sup
t∈[0,tr ]

(

ϕ(t)− rt
)

+ sup
t≥tr

(

ϕ(t)− rt
)

≤ ϕ(tr).

Since tr → 0 if r →∞ we obtain (−ϕ)∗(−r)→ 0 if r →∞ and thus also Dβ(r)→ 0 if
r →∞.

As for the previous lemma we check that the assertion of the lemma is consistent
with the convergence rates results based on variational inequalities and approximate
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variational inequalities. More precisely we have to show that with the estimate Dβ ≤
(−ϕ)∗(−•) Proposition 12.18 yields the convergence rate O(ϕ(δ)), which one directly
obtains from the variational inequality with ϕ using Proposition 12.13. Obviously it
suffices to show −D∗

β(−•) ≤ ϕ. From the definition of conjugate functions we know

−D∗
β(−δ) = inf

r≥0

(

δr +Dβ(r)
)

and (−ϕ)∗(−r) = sup
t≥0

(

ϕ(t)− rt
)

.

Thus,

−D∗
β(−δ) = inf

r≥0

(

δr +Dβ(r)
)

≤ inf
r≥0

(

δr + sup
t≥0

(

ϕ(t)− rt
)

)

= inf
r≥0

sup
t≥0

(

(δ − t)r + ϕ(t)
)

.

By [ABM06, Theorem 9.7.1] we may interchange inf and sup, which yields the desired
inequality:

−D∗
β(−δ) ≤ sup

t≥0

(

ϕ(t) + inf
r≥0

(

(δ − t)r
)

)

= sup
t∈[0,δ]

ϕ(t) = ϕ(δ).

Theorem 12.34. The exact solution x† satisfies a variational inequality with β ∈ (0, 1],
x† ∈M ⊆ D(F ), ξ† ∈ ∂Ω(x†), and some function ϕ as described in Definition 12.12 if
and only if it satisfies an approximate variational inequality with the same components
β, M , ξ† and with Dβ(0) > 0 for the associated distance function.

In this case
Dβ = min

ϕ∈Φ
(−ϕ)∗(−•) (pointwise minimum), (12.18)

where Φ 6= ∅ denotes the set of all functions ϕ with properties as described in Def-
inition 12.12 for which x† satisfies a variational inequality with β, M , and ξ†. The
minimum is attained for ϕ = −D∗

β(−•) ∈ Φ.

Proof. The assertion summarizes Lemma 12.32 and Lemma 12.33. We briefly discuss
the equality (12.18). From Lemma 12.33 we know

Dβ ≤ inf
ϕ∈Φ

(−ϕ)∗(−•) (pointwise infimum)

and Lemma 12.32 provides ϕ̄ := −D∗
β(−•) ∈ Φ. Because

(−ϕ̄)∗(−r) =
(

D∗
β(−•)

)∗
(−r) = sup

t∈R

(

−rt−D∗
β(−t)

)

= sup
t∈R

(

rt−D∗
β(t)

)

= D∗∗
β (r) = Dβ,

the infimum is attained at ϕ̄ and equals Dβ.

Relation (12.18) describes a one-to-one correspondence between the distance function
Dβ and the set Φ of functions ϕ for which a variational inequality holds. Thus, the
concept of variational inequalities provides exactly the same amount of ‘smoothness
information’ as the concept of approximate variational inequalities. But both concepts
have their right to exist: variational inequalities are not too abstract but hard to analyze
and approximate variational inequalities are more abstract but can be analyzed with
methods from convex analysis. The accessibility of approximate variational inequalities
through methods of convex analysis is a great advantage, as we will see in the next
section.
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12.5. Where to place approximate source conditions?

In the preceding two sections we completely revealed the connections between (pro-
jected) source conditions, variational inequalities, and approximate variational inequal-
ities in Banach spaces. It remains to place the concept of approximate source conditions
somewhere in the picture.

We start with a result from [Gei09, FH10] stating that approximate source conditions
yield approximate variational inequalities in reflexive Banach spaces, but we give a
proof also covering non-reflexive Banach spaces. A similar result (in reflexive Banach
spaces) was shown in [BH10] where instead of an approximate variational inequality a
variational inequality is derived from an approximate source condition. To avoid some
technicalities we formulate the result for linear operators A = F . The case of nonlinear
operators is discussed in [BH10].

Proposition 12.35. Let A := F be bounded and linear and let x† satisfy an approxi-
mate source condition with ξ† ∈ ∂Ω(x†) and distance function d. Further assume that
there are a set M ⊆ X containing x† and constants q > 1 and c ≥ 0 such that

1
q‖x− x†‖q ≤ cBΩ

ξ†(x, x
†) for all x ∈M. (12.19)

Then for each β ∈ (0, 1) the exact solution x† satisfies an approximate variational
inequality with β, M , and ξ†. The distance function Dβ fulfills

Dβ(r) ≤ q−1
q

(

c
1−β
) 1
q−1 d(r)

q
q−1 for all r ≥ 0. (12.20)

Proof. For fixed x ∈M and r ≥ 0 and for all η ∈ Y ∗ with ‖η‖ ≤ r we have

βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x)− r‖A(x− x†)‖
= −(1− β)BΩ

ξ†(x, x
†) + 〈A∗η − ξ†, x− x†〉+ 〈−η,A(x − x†)〉 − r‖A(x− x†)‖

≤ −(1− β)BΩ
ξ†(x, x

†) + ‖A∗η − ξ†‖‖x− x†‖.

Passing to the infimum over all η ∈ Y ∗ with ‖η‖ ≤ r and applying (12.19) yields

βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x)− r‖A(x− x†)‖
≤ d(r)‖x− x†‖ − (1− β)BΩ

ξ†(x, x
†)

≤ d(r)
(

qcBΩ
ξ†(x, x

†)
) 1
q − (1− β)BΩ

ξ†(x, x
†).

Now we apply Young’s inequality

ab ≤ q−1
q a

q
q−1 + 1

q b
q, a, b ≥ 0,

with a :=
(

c
1−β
)

1
q d(r) and b :=

(

q(1− β)BΩ
ξ†(x, x

†)
)

1
q and obtain

βBΩ
ξ†(x, x

†) + Ω(x†)− Ω(x)− r‖A(x− x†)‖ ≤ q−1
q

(

c
1−β
)

1
q−1 d(r)

q
q−1

for all x ∈ M and all r ≥ 0. The assertion thus follows by taking the supremum over
x ∈M on the left-hand side.
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ABregman distanceBΩ
ξ†(•, x†) which satisfies (12.19) withM = X is called q-coercive.

The proposition provides an estimate for the distance function Dβ . From this estimate
we obtain a convergence rate with the help of Proposition 12.18 and this rate is the
same as the one obtained in [HH09, Theorem 4.6] directly from the distance function d

and assuming q-coercivity of the Bregman distance. Precisely, setting Φ(r) := 1
rd(r)

q
q−1

for r ≥ 0, [HH09, Theorem 4.6] and Proposition 12.18 provide the rates

O
(

d
(

Φ−1(δ)
)

q
q−1

)

and O
(

d
(

Φ−1( 1aδ)
)

q
q−1

)

,

respectively, where a := q−1
q

(

c
1−β
)

1
q−1 is the constant from Proposition 12.35. These

two O-expressions describe the same rate since

min{1, a}d
(

Φ−1( 1aδ)
)

q
q−1 ≤ d

(

Φ−1(δ)
)

q
q−1 ≤ max{1, a}d

(

Φ−1( 1aδ)
)

q
q−1 ,

as we show now: By the definition of Φ we have d
(

Φ−1(δ)
)

q
q−1 = δΦ−1(δ). In case a ≥ 1

the monotonicity of d
(

Φ−1(•)
)

q
q−1 and of Φ−1 implies

d
(

Φ−1( 1aδ)
)

q
q−1 ≤ d

(

Φ−1(δ)
)

q
q−1 = δΦ−1(δ) ≤ δΦ−1( 1aδ) = ad

(

Φ−1( 1aδ)
)

q
q−1 .

For a ≥ 0 a similar reasoning applies.
Thus, when working with approximate variational inequalities instead of approximate

source conditions we do not lose anything.
Note that Proposition 12.35 requires β < 1. If β → 1 then the constant in (12.20)

goes to infinity. This observation suggests that the proposition does not hold for β = 1.
After formulating a technical lemma we give a connection between Dβ and d in case
β = 1.

Lemma 12.36. Let A := F be bounded and linear and let β ∈ (0, 1], M ⊆ X, and
ξ† ∈ ∂Ω(x†). Further assume that M is convex and that x† ∈M and let Dβ be defined
by (12.5). Then

Dβ(r) = inf
{

h(η) : η ∈ Y ∗, ‖η‖ ≤ r
}

for all r ≥ 0

with

h(η) = (1− β)Ω(x†)− 〈A∗η − βξ†, x†〉+ sup
x∈M

(

〈A∗η − βξ†, x〉 − (1− β)Ω(x)
)

.

Proof. Defining two functions f : X → (−∞,∞] and gr : Y → [0,∞] by

f(x) := Ω(x)− Ω(x†)− βBΩ
ξ†(x, x

†) + δM (x) and gr(y) := r‖y −Ax†‖,

where δM denotes the indicator function of the set M (see Definition B.5), we may
write

Dβ(r) = sup
x∈X

(

−f(x)− gr(Ax)
)

= − inf
x∈X

(

f(x) + gr(Ax)
)

for all r ≥ 0. From [BGW09, Theorem 3.2.4] we thus obtain

Dβ(r) = − sup
η∈Y ∗

(

−f∗(−A∗η)− g∗r (η)
)

= inf
η∈Y ∗

(

f∗(−A∗η) + g∗r (η)
)
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for all r ≥ 0 (the applicability of the cited theorem can be easily verified).
The conjugate function g∗r of gr is

g∗r (η) = sup
y∈Y

(

〈η, y〉 − r‖y −Ax†‖
)

= 〈η,Ax†〉+ sup
y∈Y

(

〈η, y −Ax†〉 − r‖y −Ax†‖
)

= 〈η,Ax†〉+ sup
y∈Y

(

〈η, y〉 − r‖y‖
)

= 〈η,Ax†〉+ δBr(0)(η)

with δBr(0) being the indicator function of the closed r-ball in Y ∗ (for the last equality

see [ABM06, Example 9.3.1]). Therefore

Dβ(r) = inf
{

f∗(−A∗η) + 〈η,Ax†〉 : η ∈ Y ∗, ‖η‖ ≤ r
}

= inf
{

f∗(A∗η)− 〈A∗η, x†〉 : η ∈ Y ∗, ‖η‖ ≤ r
}

.

It remains to calculate the conjugate function f∗ of f :

f∗(ξ) = sup
x∈X

(

〈ξ, x〉+ (1− β)(Ω(x†)− Ω(x))− β〈ξ†, x− x†〉 − δM (x)
)

= (1− β)Ω(x†) + β〈ξ†, x†〉+ sup
x∈M

(

〈ξ − βξ†, x〉 − (1− β)Ω(x)
)

.

Theorem 12.37. Let A := F be bounded and linear, set β := 1, assume that M ⊆ X
is convex and that x† ∈M , and let ξ† ∈ ∂Ω(x†). Further, let d and Dβ = D1 be defined
by (12.3) and (12.5), respectively. If M is bounded then

D1(r) ≤ cd(r) for all r ≥ 0

with some c > 0. If x† is an interior point of M then

D1(r) ≥ cd(r) for all r ≥ 0

with some c > 0.

Proof. From Lemma 12.36 we know

D1(r) = inf

{

sup
x∈M
〈A∗η − ξ†, x− x†〉 : η ∈ Y ∗, ‖η‖ ≤ r

}

. (12.21)

If M is bounded, that is ‖x− x†‖ ≤ c for all x ∈M , then

sup
x∈M
〈A∗η − ξ†, x− x†〉 ≤ c‖A∗η − ξ†‖

and therefore D1 ≤ cd. If x† ∈ intM then there is some c > 0 such that Bc(x
†) ⊆ M .

Hence

sup
x∈M
〈A∗η − ξ†, x− x†〉 ≥ sup

x∈Bc(x†)
〈A∗η − ξ†, x− x†〉 = c sup

x∈B1(0)

〈A∗η − ξ†, x〉

= c‖A∗η − ξ†‖,

which shows D1 ≥ cd.
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12. Smoothness in Banach spaces

Combining the results from the theorem and from Proposition 12.35 we see that the
influence of β and M on the distance function Dβ is crucial. In case β = 1 the distance
function Dβ does not depend directly on Ω, but only on the subgradient ξ† ∈ ∂Ω(x†).
Thus, it is unlikely that this distance function contains any information about the q-
coercivity of BΩ

ξ†(•, x†). This lack of information is reflected in the slow decay of D1 in

comparison with the decay of Dβ for β < 1 (see Proposition 12.35).

Remark 12.38. Equation (12.21) suggests to regard D1 as a distance function for an
approximate projected source condition, which expresses how far away the subgradient
ξ† is from satisfying the projected source condition A∗η† − ξ† ∈ NM (x†), which is
equivalent to 〈A∗η − ξ†, x − x†〉 ≤ 0 for all x ∈ M . We do not follow this idea any
further.

Finally we derive an alternative definition of Dβ in case β < 1 which shows some
similarity with the definition of the distance function d in an approximate source con-
dition. Thus, one could think about redefining the term ‘approximate source condition’
by using a certain Bregman distance instead of the norm on X∗ for measuring the dis-
tance between A∗Br(0) and ξ

†. As we will see in Section 13.2 the alternative definition
of Dβ and the definition of d coincide at least in Hilbert spaces up to the constant 1−β
if Ω = 1

2‖•‖2 and M = X.

Theorem 12.39. Let A := F be bounded and linear and let β ∈ (0, 1), M ⊆ X, and
ξ† ∈ ∂Ω(x†). Further assume that M is convex and that x† ∈M and let Dβ be defined
by (12.5). Then x† ∈ ∂(Ω + δM )∗(ξ†) and

Dβ(r) = (1− β) inf
{

B
(Ω+δM )∗

x†

(

ξ† + 1
1−β (A

∗η − ξ†), ξ†
)

: η ∈ Y ∗, ‖η‖ ≤ r
}

for all r ≥ 0, where δM is the indicator function of the set M (see Definition B.5) and
(Ω + δM )∗ : X∗ → (−∞,∞] denotes the conjugate function of Ω+ δM .

Proof. Since ξ† ∈ ∂Ω(x†) we have

Ω(x) ≥ Ω(x†) + 〈ξ†, x− x†〉 for all x ∈ X

and therefore (taking into account x† ∈M) also

Ω(x) + δM (x) ≥ Ω(x†) + δM (x†) + 〈ξ†, x− x†〉 for all x ∈ X.

That is, ξ† ∈ ∂(Ω + δM )(x†). The assertion x† ∈ ∂(Ω + δM )∗(ξ†) now follows from

[ABM06, Theorem 9.5.1] and thus the Bregman distance B
(Ω+δM )∗

x†
(•, ξ†) is well-defined.

By Lemma 12.36 we have

Dβ(r) = inf
{

h(η) : η ∈ Y ∗, ‖η‖ ≤ r
}

for all r ≥ 0

with

h(η) = (1− β)Ω(x†)− 〈A∗η − βξ†, x†〉+ sup
x∈M

(

〈A∗η − βξ†, x〉 − (1− β)Ω(x)
)

.
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Thus, it suffices to show

h(η) = (1− β)B(Ω+δM )∗

x†

(

ξ† + 1
1−β (A

∗η − ξ†), ξ†
)

.

First, we observe

h(η) = (1− β)Ω(x†)− 〈A∗η − βξ†, x†〉
+ sup
x∈X

(

〈A∗η − βξ†, x〉 − (1− β)(Ω(x) + δM (x))
)

= (1− β)
(

Ω(x†)− 〈ξ† + 1
1−β (A

∗η − ξ†), x†〉

+ sup
x∈X

(

〈ξ† + 1
1−β (A

∗η − ξ†), x〉 − (Ω + δM )(x)
)

)

= (1− β)
(

(Ω + δM )(x†)− 〈ξ† + 1
1−β (A

∗η − ξ†), x†〉

+ (Ω + δM )∗
(

ξ† + 1
1−β (A

∗η − ξ†)
)

)

.

By [ABM06, Proposition 9.5.1] we have

(Ω + δM )(x†) = 〈ξ†, x†〉 − (Ω + δM )∗(ξ†)

and therefore

h(η) = (1− β)
(

(Ω + δM )∗
(

ξ† + 1
1−β (A

∗η − ξ†)
)

− (Ω + δM )∗(ξ†)− 〈 1
1−β (A

∗η − ξ†), x†〉
)

= (1− β)B(Ω+δM )∗

x†

(

ξ† + 1
1−β (A

∗η − ξ†), ξ†
)

.

12.6. Summary and conclusions

In the previous sections we presented in detail the cross-connections between different
concepts for expressing several kinds of smoothness required for proving convergence
rates in Tikhonov regularization. It turned out that each concept can be expressed by a
variational inequality, that is, variational inequalities are the most general smoothness
concept among the ones considered here. In particular we have seen the following
relations:

• Each approximate variational inequality can be written as a variational inequality
and vice versa. That is, both concepts are equivalent.

• For linear operators A = F each (projected) source condition can be written as a
variational inequality with a linear function ϕ and vice versa.

• For linear operators A = F each approximate source condition can be written as
a variational inequality. The reverse direction is also true for a certain class of
variational inequalities.
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12. Smoothness in Banach spaces

Note that passing from some smoothness assumption to a variational inequality does
not change the provided convergence rate.

Since (projected) source conditions and approximate source conditions contain no
information about the nonlinearity structure of F but variational inequalities do so,
establishing connections between usual/projected/approximate source conditions and
variational inequalities requires additional assumptions on this nonlinearity structure.
In fact, the major advantage of variational inequalities is their ability to express all
necessary kinds of smoothness (solution, operator, spaces) for proving convergence rates
in one manageable condition.

The results of the previous sections suggest to distinguish two types of variational
inequalities; the ones with linear ϕ and the ones with a function ϕ which is not lin-
ear. The former are closely related to (projected) source conditions whereas the latter
correspond to approximate source conditions. This distinction will be confirmed in
the subsequent chapter on smoothness assumptions in Hilbert spaces, because there
we show that approximate source conditions contain more precise information about
solution smoothness than usual source conditions (see Section 13.4).

Finally we should mention that the connection between approximate variational in-
equalities and approximate source condition is based on Fenchel duality (see the proof
of Lemma 12.36). Thus we may regard variational inequalities as a dual formulation of
source conditions.
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13. Smoothness in Hilbert spaces

Basing on the previous chapter we now give some refinements of the smoothness con-
cepts considered in Banach spaces and of their cross connections. If the underlying
spaces X and Y are Hilbert spaces and if we consider linear operators A := F then the
technique of source conditions can be extended to so called general source conditions.
This generalization on the other hand allows to extend approximate source conditions
and (approximate) variational inequalities in some way. In addition we accentuate the
difference between general source conditions and other smoothness concepts. This is
done by proving that approximate source conditions provide optimal convergence rates
under certain assumptions, whereas general source conditions (almost) never provide
optimal rates.

We restrict the setting for Tikhonov regularization of Chapter 12 as follows. Let X
and Y be Hilbert spaces, assume that A := F is bounded and linear with D(F ) = X,
choose p := 2, and set Ω := 1

2‖•‖2. This results in minimizing the Tikhonov functional

T y
δ

α (x) = 1
2‖Ax− yδ‖2 + α

2 ‖x‖2

over x ∈ X. The unique Ω-minimizing solution to Ax = y0 is denoted by x† and

the unique Tikhonov regularized solutions are xy
δ

α . There is plenty of literature on
this original form of Tikhonov regularization; we only mention the standard reference
[EHN96].

Note that ∂Ω(x†) = {x†} and that the Bregman distance BΩ
x†(•, x†) reduces to

1
2‖• − x†‖2. In addition we have the well-known estimate

‖xyδα − x†‖ ≤ ‖xy
δ

α − xα‖+ ‖xα − x†‖ ≤
δ

2
√
α
+ ‖xα − x†‖,

where xα := xy
0

α (cf. [EHN96, equation (4.16)]). Thus, upper bounds for ‖xα − x†‖
yield upper bounds for ‖xyδα − x†‖: If ‖xα − x†‖ ≤ f(α) with a continuous and strictly
monotonically increasing function f : [0,∞)→ [0,∞) which satisfies f(0) = 0, then the
a priori parameter choice α(δ) = g−1(δ) with g(t) :=

√
tf(t) yields

‖xyδα − x†‖ ≤
3

2
f
(

g−1(δ)
)

. (13.1)

This observation justifies that we only consider convergence rates for ‖xα−x†‖ as α→ 0
in this chapter.

From time to time we use the relation

xα = (A∗A+ αI)−1A∗Ax†, (13.2)

which is an immediate consequence of the first order optimality condition for T y
0

α .
Some of the ideas presented in this chapter were already published in [Fle11].
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13. Smoothness in Hilbert spaces

13.1. Smoothness concepts revisited

In this section we specialize the smoothness concepts introduced in Section 12.1 to the
Hilbert space setting under consideration. In addition we implement the idea of general
source conditions.

Since the operator A = F is linear, operator smoothness is no longer an issue. We
also do not dwell on projected source conditions although some ideas also apply to
them.

We frequently need the following definition.

Definition 13.1. A function f : [0,∞)→ [0,∞) is called index function if it is contin-
uous and strictly monotonically increasing and if it satisfies f(0) = 0.

13.1.1. General source conditions

In Banach spaces we considered only the source condition x† ∈ R(A∗), which is equiv-

alent to x† ∈ R
(

(A∗A)
1
2

)

. By means of spectral theory we may generalize the concept
to monomials, that is x† ∈ R

(

(A∗A)µ
)

with µ > 0, and even to index functions, that is

x† ∈ R
(

ϑ(A∗A)
)

(13.3)

with an index function ϑ. Condition (13.3) is known as general source condition (see,
e.g., [MH08] and references therein).

Proposition 13.2. Let x† satisfy (13.3) with a concave index function ϑ. Then

‖xα − x†‖ = O(ϑ(α)) if α→ 0.

Proof. A proof is given in [MP03b, proof of Theorem 2]. For completeness we repeat
it here.

Using the relation (13.2) and the representation x† = ϑ(A∗A)w with w ∈ X we have

‖xα − x†‖ =
∥

∥

(

(A∗A+ αI)−1A∗A− I
)

ϑ(A∗A)w
∥

∥ ≤ ‖w‖ sup
t∈(0,‖A∗A‖]

∣

∣

∣

∣

t

t+ α
− 1

∣

∣

∣

∣

ϑ(t)

= ‖w‖ sup
t∈(0,‖A∗A‖]

(

α

t+ α
ϑ(t) +

t

t+ α
ϑ(0)

)

.

Concavity and monotonicity of ϑ further imply

‖xα − x†‖ ≤ ‖w‖ sup
t∈(0,‖A∗A‖]

ϑ

(

αt

t+ α

)

≤ ‖w‖ sup
t∈(0,‖A∗A‖]

ϑ(α) = ‖w‖ϑ(α).

13.1.2. Approximate source conditions

We extend the concept of approximate source conditions introduced in the previous
chapter on smoothness in Banach spaces to general benchmark source conditions. That
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is, for a given benchmark index function ψ we define the distance function dψ : [0,∞)→
[0,∞) by

dψ(r) := min{‖x† − ψ(A∗A)w‖ : w ∈ X, ‖w‖ ≤ r}. (13.4)

The properties of dψ are the same as for the distance function d in Subsection 12.1.3.
We say that x† satisfies an approximate source condition if the distance function

dψ decays to zero at infinity. The convergence rates result for approximate source
conditions in Hilbert spaces reads as follows.

Proposition 13.3. Let x† satisfy an approximate source condition with a concave
benchmark index function ψ.

• Assume dψ > 0 on [0,∞) and define the function Φ on [0,∞) by Φ(r) :=
dψ(r)
r .

Then
‖xα − x†‖ = O

(

dψ
(

Φ−1(ψ(α))
))

if α→ 0.

• Without further assumptions

‖xα − x†‖ = O
(

−d∗ψ(−ψ(α))
)

if α→ 0.

Proof. The first rate expression can be derived from [HM07, Theorem 5.5]. But for the
sake of completeness we repeat the proof here.

For each r ≥ 0 and each w ∈ X with ‖w‖ ≤ r we observe

‖xα − x†‖ =
∥

∥

(

(A∗A+ αI)−1A∗A− I
)

x†
∥

∥

≤
∥

∥

(

(A∗A+ αI)−1A∗A− I
)

(x† − ψ(A∗A)w)
∥

∥

+
∥

∥

(

(A∗A+ αI)−1A∗A− I
)

ψ(A∗A)w
∥

∥.

The second summand can be estimated by

∥

∥

(

(A∗A+ αI)−1A∗A− I
)

ψ(A∗A)w
∥

∥ ≤ ‖w‖ψ(α) ≤ rψ(α)

(cf. proof of Proposition 13.2) and the first summand by

∥

∥

(

(A∗A+ αI)−1A∗A− I
)

(x† − ψ(A∗A)w)
∥

∥

≤ ‖x† − ψ(A∗A)w‖ sup
t∈(0,‖A∗A‖]

∣

∣

∣

∣

t

t+ α
− 1

∣

∣

∣

∣

= ‖x† − ψ(A∗A)w‖ sup
t∈(0,‖A∗A‖]

α

t+ α
= ‖x† − ψ(A∗A)w‖.

Thus, ‖xα − x†‖ ≤ ‖x† − ψ(A∗A)w‖ + rψ(α) and taking the infimum over all w ∈ X
with ‖w‖ ≤ r we obtain

‖xα − x†‖ ≤ dψ(r) + rψ(α) for all r ≥ 0. (13.5)

The inverse function Φ−1 is well-defined on (0,∞) because dψ is strictly decreasing
by the assumption dψ > 0. Therefore we may choose r = Φ−1(ψ(α)) in (13.5), yielding

‖xα − x†‖ ≤ dψ
(

Φ−1(ψ(α))
)

+ ψ(α)Φ−1(ψ(α)) = 2dψ
(

Φ−1(ψ(α))
)

.
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The second rate expression in the proposition can be obtained from (13.5) by taking
the infimum over r ≥ 0. That is,

‖xα − x†‖ ≤ inf
r≥0

(

dψ(r) + rψ(α)
)

= −d∗ψ(−ψ(α)).

Note that both O-expressions in the proposition describe the same convergence rate.
This can be proven analogously to Proposition 12.22.

As for approximate source conditions in Banach spaces, majorants of dψ also yield
convergence rates if dψ is replaced by a majorant in the proposition.

13.1.3. Variational inequalities

Specializing the variational inequality (12.4) to the present setting we obtain

β
2 ‖x− x†‖2 ≤ 1

2‖x‖2 − 1
2‖x†‖2 + ϕ(‖A(x − x†)‖) for all x ∈M.

A set M ( X is useful for nonlinear operators F , since the nonlinearity only has
to be controlled on M . Another application for M ( X is constrained Tikhonov
regularization as shown in Section 12.3. Here we consider only linear operators and
unconstrained Tikhonov regularization. Thus, for simplicity we set M := X.

Noting that ‖A(x − x†)‖ = ‖(A∗A)
1
2 (x − x†)‖ for all x ∈ X we may generalize

variational inequalities to the form

β
2 ‖x− x†‖2 ≤ 1

2‖x‖2 − 1
2‖x†‖2 + ϕ

(

‖ψ(A∗A)(x− x†)‖
)

for all x ∈ X (13.6)

with index functions ϕ and ψ. To avoid confusion we refer to ϕ as modifier function
and to ψ as benchmark function. As in Banach spaces we assume that the modifier
function ϕ has the properties described in Definition 12.12 and that β ∈ (0, 1].

In Proposition 12.27 we have already seen that for linear modifier functions ϕ the
constant β has no influence on the question whether a variational inequality with ϕ is
satisfied or not (the result is also true if A is replaced by ψ(A∗A) in the proposition).
In addition we show in Section 13.2 that in the present Hilbert space setting β ∈ (0, 1)
has only negligible influence on variational inequalities with general concave ϕ.

The following convergence rates result covers only the benchmark function ψ(t) = t
1
2 .

But the considerations in Section 13.2 will show that also variational inequalities with
other (concave) benchmark functions yield convergence rates.

Proposition 13.4. Let x† satisfy a variational inequality (13.6) with modifier function

ϕ and benchmark function ψ(t) = t
1
2 . Then

‖xα − x†‖ = O
(

√

(

−ϕ(
√
2•)
)∗(− 1

α

)

)

if α→ 0.
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Proof. Using the variational inequality (13.6) with x = xα and exploiting that xα is a
minimizer of the Tikhonov functional with exact data y0 we obtain

β
2 ‖xα − x†‖2 ≤ 1

2‖xα‖2 − 1
2‖x†‖2 + ϕ(‖A(xα − x†)‖)

= 1
α

(

1
2‖A(xα − x†)‖2 + α

2 ‖xα‖2 − α
2 ‖x†‖2

)

+ ϕ(‖A(xα − x†)‖)− 1
2α‖A(xα − x†)‖2

≤ ϕ(‖A(xα − x†)‖)− 1
2α‖A(xα − x†)‖2

≤ sup
t≥0

(

ϕ(t)− 1
2α t

2
)

= sup
t≥0

(

ϕ(
√
2t)− 1

αt
)

=
(

−ϕ(
√
2•)
)∗(− 1

α

)

.

Note that with Proposition 12.13 we obtain

‖xyδα − x†‖ = O
(
√

ϕ(δ)
)

if δ → 0. (13.7)

13.1.4. Approximate variational inequalities

Finally we specialize the concept of approximate variational inequalities to the present
Hilbert space setting and extend it in the same way as done for variational inequalities.

The distance function Dψ,β : [0,∞)→ [0,∞) defined by

Dψ,β(r) := sup
x∈X

(β
2 ‖x− x†‖2 − 1

2‖x‖2 + 1
2‖x†‖2 − r‖ψ(A∗A)(x− x†)‖

)

for β ∈ (0, 1) has the same properties as Dβ in Subsection 12.1.5 except that it does
not attain the value +∞. We say that the exact solution x† satisfies an approximate
variational inequality if Dψ,β decays to zero at infinity. Note that we exclude β = 1
since in this case the distance function Dψ,1 decays to zero at infinity if and only if
it attains the value zero at some point, which is equivalent to the source condition
x† ∈ R(ψ(A∗A)). The next proposition makes this observation precise.

Proposition 13.5. The distance function Dψ,1 satisfies Dψ,1(r) ∈ {0,∞} for all r ≥ 0.

Proof. First observe

Dψ,1(r) = sup
x∈X

(

〈−x†, x− x†〉 − r‖ψ(A∗A)(x− x†)‖
)

for all r ≥ 0.

Assume that Dψ,1(r) > 0 for some r ≥ 0. Then there is x ∈ X with

〈−x†, x− x†〉 − r‖ψ(A∗A)(x− x†)‖ > 0.

For each t ≥ 0 we thus obtain

Dψ,1(r) ≥ 〈−x†, x† + t(x− x†)− x†〉 − r‖ψ(A∗A)(x† + t(x− x†)− x†)‖
= t
(

〈−x†, x− x†〉 − r‖ψ(A∗A)(x− x†)‖
)

and t→∞ yields Dψ,1(r) =∞.
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Also in Banach spaces distance functions for approximate variational inequalities with
β = 1 showed different behavior in comparison to β < 1. For details see Theorem 12.37
and the discussion thereafter.

As for variational inequalities we state a convergence rates result only for the bench-
mark function ψ(t) = t

1
2 . But in Section 13.2 we show that also approximate variational

inequalities with other (concave) benchmark functions yield convergence rates.

For approximate variational inequalities in Banach spaces we provided two different
formulations of convergence rates. We do the same for the present Hilbert space setting.

Proposition 13.6. Let x† satisfy an approximate variational inequality with β ∈ (0, 1)

and benchmark function ψ(t) = t
1
2 .

• If Dψ,β > 0 on [0,∞) then

‖xα − x†‖ = O
(
√

Dψ,β

(

Φ−1(
√
α)
)

)

if α→ 0,

where Φ(r) :=

√
Dψ,β(r)

r .

• Without further assumptions

‖xα − x†‖ = O
(

√

−
(

Dψ,β(
√
2•)
)∗
(−α)

)

if α→ 0.

Proof. Analogously to the proof of Lemma 12.17 with δ = 0 and p = 2 we obtain

β
2 ‖xα − x†‖2 ≤ 1

2αr
2 +Dψ,β(r) for all r ≥ 0. (13.8)

Setting rα := Φ−1(
√
α) we have αr2α = Dψ,β(rα) and thus

β
2 ‖xα − x†‖2 ≤ 1

2αr
2
α +Dψ,β(rα) =

3
2Dψ,β(rα) =

3
2Dψ,β

(

Φ−1(
√
α)
)

.

The second rate expression can be derived from (13.8) by taking the infimum over
r ≥ 0. Then

β
2 ‖xα − x†‖2 ≤ inf

r≥0

(

1
2αr

2 +Dψ,β(r)
)

= − sup
s≥0

(

−αs−Dψ,β(
√
2s)
)

= − sup
s∈R

(

−αs−Dψ,β(
√
2s)
)

= −
(

Dψ,β(
√
2•)
)∗
(−α),

where we set Dψ,β to +∞ on (−∞, 0).

Properties of the function −Dψ,β(−•) were discussed in Remark 12.20 and analo-
gously to the proof of Proposition 12.22 one shows that the two rate expressions in
Proposition 13.6 describe the same convergence rate.
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13.2. Equivalent smoothness concepts

In the previous chapter on smoothness concepts in Banach spaces we have seen that
the concepts of variational inequalities and approximate variational inequalities are
equivalent, see Theorem 12.34. We restate this result for the present Hilbert space
setting.

Corollary 13.7. The exact solution x† satisfies a variational inequality with β ∈ (0, 1),
some modifier function ϕ, and some benchmark function ψ if and only if it satisfies an
approximate variational inequality with the same constant β, with the same benchmark
ψ, and with Dβ,ψ(0) > 0 for the associated distance function.

In this case
Dβ,ψ = min

ϕ∈Φ
(−ϕ)∗(−•) (pointwise minimum),

where Φ 6= ∅ denotes the set of all modifier functions ϕ for which x† satisfies a varia-
tional inequality with β, ϕ, and ψ. The minimum is attained for ϕ = −D∗

ψ,β(−•).

Proof. The proof is the same as for Theorem 12.34 except that Y has to be replaced
by X and A has to be replaced by ψ(A∗A).

The cross connections between (approximate) variational inequalities and approx-
imate source conditions in Banach spaces were less straight, see Section 12.5. But
in Hilbert spaces we obtain a satisfactory result from Theorem 12.39, which shows
all-encompassing equivalence between (approximate) variational inequalities and ap-
proximate source conditions.

Corollary 13.8. Let β ∈ (0, 1) and let ψ be an index function. Then the distance
function Dψ,β (approximate variational inequality) and the distance function dψ (ap-
proximate source condition) satisfy

Dψ,β(r) =
1

2(1−β)d
2
ψ(r) for all r ≥ 0. (13.9)

Proof. Replacing Y by X and A by ψ(A∗A) in the proof of Theorem 12.39 we obtain

Dψ,β(r) = (1− β) inf
{

BΩ∗

x†
(

x† + 1
1−β (ψ(A

∗A)w − x†), x†
)

: w ∈ X, ‖w‖ ≤ r
}

for all r ≥ 0. Since Ω∗ =
(

1
2‖•‖2

)∗
= 1

2‖•‖2 the Bregman distance BΩ∗

x† (•, x†) reduces

to 1
2‖• − x†‖2. Therefore

Dψ,β(r) = (1− β) inf
{

1
2(1−β)2 ‖ψ(A

∗A)w − x†‖2 : w ∈ X, ‖w‖ ≤ r
}

,

which is equivalent to Dψ,β(r) =
1

2(1−β)d
2
ψ(r).

The corollary especially shows that two distance functions Dψ,β1 and Dψ,β2 differ
only by a constant factor:

Dψ,β2 =
1− β1
1− β2

Dψ,β1 . (13.10)

Another consequence is that all convergence rates results based on approximate source
conditions also apply to (approximate) variational inequalities. That is, (approximate)
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13. Smoothness in Hilbert spaces

variational inequalities yield convergences rates for general benchmark functions ψ and
also for general linear regularization methods (cf. [HM07] for corresponding convergence
rates results based on approximate source conditions).

Of course the convergence rates obtained from the three equivalent smoothness con-
cepts should coincide if ψ(t) = t

1
2 . Before we verify this assertion we show that the

rate obtained from an approximate variational inequality via Proposition 13.6 does not
depend on β. So let ψ(t) = t

1
2 and β1, β2 ∈ (0, 1). Then, taking into account (13.10),

Proposition 13.6 provides the convergence rates

O
(
√

Dψ,β1

(

Φ−1(
√
α
)

)

and O
(

√

Dψ,β1

(

Φ−1
(
√

1−β2
1−β1
√
α
))

)

,

where Φ−1(r) := 1
r

√

Dψ,β1(r). Analogously to the discussion subsequent to Proposi-
tion 12.35 one can show that both expressions describe the same convergence rate.

Now assume that a variational inequality with ϕ is satisfied. Then by Corollary 13.7
we have the estimate Dψ,β ≤ (−ϕ)∗(−•) and Proposition 13.6 provides the convergence
rate

O
(

√

−
(

Dψ,β(
√
2•)
)∗
(−α)

)

,

which can be bounded by

√

−
(

Dβ(
√
2•)
)∗
(−α) =

√

inf
r≥0

(

1
2αr

2 +Dψ,β(r)
)

≤
√

inf
r≥0

(

1
2αr

2 + sup
t≥0

(

ϕ(t) − rt
)

)

=

√

sup
t≥0

(

ϕ(t) + inf
r≥0

(

1
2αr

2 − tr
)

)

=
√

sup
t≥0

(

ϕ(t) − 1
2αt

2
)

=

√

(

−ϕ(
√
2•)
)∗
(− 1

α).

Interchanging inf and sup is allowed by [ABM06, Theorem 9.7.1]. Consequently, via
Proposition 13.6 we obtain the same rate as directly from the variational inequality via
Proposition 13.4.

If x† satisfies an approximate variational inequality with distance function Dψ,β, then
it also satisfies a variational inequality with ϕ = −D∗

ψ,β(−•) by Corollary 13.7. Similar
arguments as in the previous paragraph show that the rate obtained directly from the
approximate variational inequality via Proposition 13.6 can also be obtained from the
variational inequality via Proposition 13.4.

Eventually, Corollary 13.8 provides the identity Dψ,β = 1
2(1−β)d

2
ψ. Thus, setting

Φ(r) := 1
rd(r) for r > 0, from Proposition 13.3 and Proposition 13.6 we obtain the

convergence rates

O
(

d
(

Φ−1(
√
α)
))

and O
(

d
(

Φ−1
(

1√
2(1−β)

√
α
))

)

,

respectively. Analogously to the discussion subsequent to Proposition 12.35 one can
show that both expressions describe the same convergence rate.

As a consequence of the results obtained in this section we only consider general
source conditions and approximate source conditions in the remaining sections.
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13.2. Equivalent smoothness concepts

We close with an alternative proof of Corollary 13.8. The two assertions of the
following lemma also imply the relation Dψ,β(r) = 1

2(1−β)d
2
ψ(r), but they give some

more information on this connection. The proof of the lemma is elementary and works
without duality theory.

Lemma 13.9. Assume that A is injective and that x† /∈ R(ψ(A∗A)). Further let
β ∈ (0, 1), ψ be an index function, and r ≥ 0.

• If xr ∈ X is a maximizer in the definition of Dψ,β(r), then

Dψ,β(r) =
1−β
2 ‖xr − x†‖2.

• If wr is a minimizer in the definition of dψ, then

xr := x† + 1
1−β
(

ψ(A∗A)wr − x†
)

is a maximizer in the definition of Dψ,β .

Proof. We start with the first assertion. If xr = x† then Dψ,β(r) = 0 by the definition
of Dψ,β(r). So assume that xr 6= x†. Then the gradient of

x 7→ β
2 ‖x− x†‖2 − 1

2‖x‖2 + 1
2‖x†‖2 − r‖ψ(A∗A)(x− x†)‖

at xr has to be zero, that is,

β(xr − x†)− xr − r
ψ2(A∗A)(xr − x†)
‖ψ(A∗A)(xr − x†)‖

= 0. (13.11)

Applying 〈•, xr − x†〉 at both sides we get

−r‖ψ(A∗A)(xr − x†)‖ = −β‖xr − x†‖2 + 〈xr, xr − x†〉

and therefore

Dψ,β(r) =
β
2 ‖xr − x†‖2 − 1

2‖xr‖2 + 1
2‖x†‖2 − β‖xr − x†‖2 + 〈xr, xr − x†〉

= 1−β
2 ‖xr − x†‖2.

We come to the second assertion. By the definition of wr there exists some Lagrange
multiplier λ ≥ 0 with

ψ(A∗A)
(

ψ(A∗A)wr − x†
)

= −λwr. (13.12)

For λ = 0 we would get x† = ψ(A∗A)wr, which contradicts x† /∈ R(ψ(A∗A)). Thus
λ > 0 and therefore ‖wr‖ = r. Defining xr as in the lemma and using (13.12) one
easily verifies (13.11), which is equivalent to the assertion that xr is a maximizer in the
definition of Dψ,β(r).
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13. Smoothness in Hilbert spaces

13.3. From general source conditions to distance functions

Obviously a source condition x† ∈ R(ψ(A∗A)) implies dψ(r) = 0 for all sufficiently large
r, where dψ denotes the distance function associated with the concept of approximate
source conditions.

We now briefly discuss the behavior of dψ if x† /∈ R(ψ(A∗A)) but x† ∈ R(ϑ(A∗A)).
Note that from [MH08, HMvW09] we know that for x† ∈ (kerA)⊥ there is always an
index function ϑ with x† ∈ R(ϑ(A∗A)). The first assertion of the following theorem
was shown in [HM07, Theorem 5.9].

Theorem 13.10. Let A be a compact and injective operator and assume that x† =
ϑ(A∗A)w with ‖w‖ = 1 and x† /∈ R(ψ(A∗A)).

• If ψ
ϑ (with ψ

ϑ (0) := 0) is an index function, then

dψ(r) ≤ rψ
(

(

ψ

ϑ

)−1(1

r

)

)

for all sufficiently large r.

• If ϑ2 ◦
(

ψ2
)−1

is concave, then

dψ(r) ≤
(

−ϑ ◦ ψ−1
)∗
(−r)

for all r ≥ 0.

Proof. The first assertion was shown in [HM07, proof of Theorem 5.9].
Since the second assertion requires some longish but elementary calculations we only

give a rough sketch. At first we use (13.9) with β := 1
2 and the representation x† =

ϑ(A∗A)w to obtain

dψ(r)
2 = Dψ,β(r) = sup

x∈X

(

1
4‖x− x†‖2 − 1

2‖x‖2 + 1
2‖x†‖2 − r‖ψ(A∗A)(x − x†)‖

)

= sup
x∈X

(

〈−x†, x− x†〉 − 1
4‖x− x†‖2 − r‖ψ(A∗A)(x− x†)‖

)

≤ sup
x∈X

(

‖ϑ(A∗A)(x− x†)‖ − r‖ψ(A∗A)(x− x†)‖ − 1
4‖x− x†‖2

)

.

Applying an interpolation inequality (see, e.g., [MP03a, Theorem 4]), which requires

concavity of ϑ2 ◦
(

ψ2
)−1

, we further estimate

dψ(r)
2 ≤ sup

x∈X\{x†}

(

‖ϑ(A∗A)(x− x†)‖

−r‖x− x†‖
(

ψ ◦ ϑ−1
)

(‖ϑ(A∗A)(x− x†)‖
‖x− x†‖

)

− 1
4‖x− x†‖2

)

.

Thus,

dψ(r)
2 ≤ sup

s>0,t>0

(

t− rs
(

ψ ◦ ϑ−1
)

(

t

s

)

− 1

4
s2
)

.
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13.4. Lower bounds for the regularization error

If we use the fact ψ(t)
ϑ(t) → 0 if t→ 0 (see [HM07, Lemma 5.8]) and if we carry out several

elementary calculations, then we see

sup
s>0,t>0

(

t− rs
(

ψ ◦ ϑ−1
)

(

t

s

)

− 1

4
s2
)

=
(

−ϑ ◦ ψ−1
)∗
(−r),

which completes the proof.

Using the estimates for dψ given in the theorem one easily shows that the two con-
vergence rate expressions in Proposition 13.3 yield the convergence rate O(ϑ(α)). This
is exactly the rate we also obtain directly from the source condition x† ∈ R(ϑ(A∗A))
via Proposition 13.2. In other words, passing from source conditions to approximate
source conditions with high benchmark (higher than the satisfied source condition) we
do not lose convergence rates.

13.4. Lower bounds for the regularization error

In [MH08, HMvW09] it was shown that if A is injective then for each element w ∈ X
there is an index function ϑ̃ and some v ∈ X such that w = ϑ̃(A∗A)v. Consequently, if
x† = ϑ(A∗A)w with an index function ϑ and w ∈ X, then there are ϑ̃ and v ∈ X such
that x† = (ϑϑ̃)(A∗A)v. Since (ϑϑ̃)(t) = ϑ(t)ϑ̃(t) goes faster to zero than ϑ(t) if t→ 0,
the convergence rate ‖xα − x†‖ = O(ϑ(α)) obtained from x† ∈ R(ϑ(A∗A)) cannot be
optimal, at least as long as ϑϑ̃ is concave. In other words, convergence rates based on
general source conditions can always be improved somewhat.

In the present section we show that under suitable assumptions approximate source
conditions yield optimal rates. Here ‘optimal’ means, that also lower bounds for the
regularization error ‖xα−x†‖ in terms of distance functions can be shown and that these
lower bounds coincide up to a constant with the upper bound from Proposition 13.3
(the first of the two rate expressions there).

The results of this section are joint work with Bernd Hofmann (Chemnitz) and Peter
Mathé (Berlin) and have been published in [FHM11]. Here we only consider Tikhonov
regularization, but in [FHM11] it is shown that lower bounds for the regularization error
in terms of distance functions are also available for more general linear regularization
methods.

Theorem 13.11. Let x† satisfy an approximate source condition with benchmark func-

tion ψ such that dψ > 0 on [0,∞), and define Φ by Φ(r) :=
dψ(r)
r on (0,∞).

• If t 7→ ψ(t)√
t
is monotonically increasing on (0,∞), then

1
2dψ

(

3
2Φ

−1(ψ(α))
)

≤ ‖xα − x†‖ ≤ 2dψ
(

Φ−1(ψ(α))
)

for all α > 0.

• If t 7→ ψ(t)√
t
is monotonically decreasing on (0,∞), then

dψ
(

2Φ−1(ψ(α))
)

≤ ‖xα − x†‖ ≤ 2dψ
(

Φ−1(ψ(α))
)

for all α > 0.
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13. Smoothness in Hilbert spaces

Proof. We start with the case that t 7→ ψ(t)√
t
is monotonically increasing. Consider the

element vα :=
(

ψ2(A∗A)+ψ2(α)I
)−1

ψ(A∗A)x† for α > 0. By the definitions of dψ and
vα and by (13.2) we have

dψ(‖vα‖) ≤ ‖x† − ψ(A∗A)vα‖
=
∥

∥

(

I −
(

ψ2(A∗A) + ψ2(α)I
)−1

ψ2(A∗A)
)

x†
∥

∥

= ψ2(α)
∥

∥

(

ψ2(A∗A) + ψ2(α)I
)−1

x†
∥

∥

=
ψ2(α)

α

∥

∥

(

ψ2(A∗A) + ψ2(α)I
)−1

(A∗A+ αI)
(

I − (A∗A+ αI)−1A∗A
)

x†
∥

∥

≤ ψ2(α)

α

(

sup
t∈(0,‖A∗A‖]

t+ α

ψ2(t) + ψ2(α)

)

‖xα − x†‖

=



 sup
t∈(0,‖A∗A‖]

t
α + 1

ψ2(t)
ψ2(α) + 1



 ‖xα − x†‖.

For t ≤ α we immediately see

t
α + 1

ψ2(t)
ψ2(α)

+ 1
≤ 1 + 1

0 + 1
= 2.

If t ≥ α, then ψ2(t)
t ≥ ψ2(α)

α or equivalently ψ2(t)
ψ2(α) ≥ t

α . The last inequality yields

t
α + 1

ψ2(t)
ψ2(α)

+ 1
≤

t
α + 1
t
α + 1

= 1 ≤ 2.

Thus, dψ(‖vα‖) ≤ 2‖xα − x†‖ for all α > 0.
We now derive an upper bound for ‖vα‖, which by the monotonicity of dψ yields a

lower bound for dψ(‖vα‖). For each r ≥ 0 and each w ∈ X with ‖w‖ ≤ r we have

‖vα‖ =
∥

∥

(

ψ2(A∗A) + ψ2(α)I
)−1

ψ(A∗A)x†
∥

∥

≤
∥

∥

(

ψ2(A∗A) + ψ2(α)I
)−1

ψ(A∗A)(x† − ψ(A∗A)w)
∥

∥

+
∥

∥

(

ψ2(A∗A) + ψ2(α)I
)−1

ψ2(A∗A)w
∥

∥

≤
(

sup
t∈(0,‖A∗A‖]

ψ(t)

ψ2(t) + ψ2(α)

)

‖x† − ψ(A∗A)w‖

+

(

sup
t∈(0,‖A∗A‖]

ψ2(t)

ψ2(t) + ψ2(α)

)

‖w‖

≤
(

sup
t∈(0,‖A∗A‖]

ψ(t)

ψ2(t) + ψ2(α)

)

‖x† − ψ(A∗A)w‖ + r

and thus

‖vα‖ ≤
(

sup
t∈(0,‖A∗A‖]

ψ(t)

ψ2(t) + ψ2(α)

)

dψ(r) + r.
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Further
ψ(t)

ψ2(t) + ψ2(α)
=

√

ψ2(t)
√

ψ2(α)

ψ2(t) + ψ2(α)

1

ψ(α)
≤ 1

2

1

ψ(α)

and therefore

‖vα‖ ≤
dψ(r)

2ψ(α)
+ r for all r ≥ 0, α > 0.

Choosing r = Φ−1(ψ(α)) we obtain ‖vα‖ ≤ 3
2Φ

−1(ψ(α)), yielding

dψ
(

3
2Φ

−1(ψ(α))
)

≤ dψ(‖vα‖) ≤ 2‖xα − x†‖

for all α > 0.
The estimate ‖xα − x†‖ ≤ 2dψ

(

Φ−1(ψ(α))
)

was derived in the proof of Proposi-
tion 13.3.

Now we come to the case that t 7→ ψ(t)√
t

is monotonically decreasing. Consider the

element wα := ψ(A∗A)−1A∗A
(

A∗A+ αI
)−1

x† for α > 0, which is well-defined because

sup
t∈(0,‖A∗A‖]

t

(t+ α)ψ(t)
≤ 1

ψ(α)
<∞

as we show now. Indeed, for t ≤ α we have

t

(t+ α)ψ(t)
=

√
t

ψ(t)

√
t
√
α

t+ α

1√
α
≤
√
α

ψ(α)

1

2

1√
α
≤ 1

ψ(α)

by the monotonicity of t 7→ ψ(t)√
t
and for t ≥ α we have

t

(t+ α)ψ(t)
=

t

t+ α

1

ψ(t)
≤ 1 · 1

ψ(α)

by the monotonicity of ψ. Using the definitions of dψ and wα and taking into account
(13.2) we obtain

dψ(‖wα‖) ≤ ‖x† − ψ(A∗A)wα‖ =
∥

∥x† −A∗A(A∗A− αI)−1x†
∥

∥ = ‖xα − x†‖.

For each r ≥ 0 and each w ∈ X with ‖w‖ ≤ r an upper bound for ‖wα‖ is given by

‖wα‖ =
∥

∥ψ(A∗A)−1A∗A
(

A∗A+ αI
)−1

x†
∥

∥

≤
∥

∥ψ(A∗A)−1A∗A
(

A∗A+ αI
)−1

(x† − ψ(A∗A)w)
∥

∥ +
∥

∥A∗A
(

A∗A+ αI
)−1

w
∥

∥

≤
(

sup
t∈(0,‖A∗A‖]

t

(t+ α)ψ(t)

)

‖x† − ψ(A∗A)w‖+
(

sup
t∈(0,‖A∗A‖]

t

t+ α

)

‖w‖

≤ 1

ψ(α)
‖x† − ψ(A∗A)w‖ + r.

Thus, ‖wα‖ ≤ dψ(r)
ψ(α) + r for all r ≥ 0 and all α > 0. If we choose r = Φ−1(ψ(α)), then

‖wα‖ ≤ 2Φ−1(ψ(α)) and therefore

dψ
(

2Φ−1(ψ(α))
)

≤ dψ(‖wα‖) ≤ ‖xα − x†‖.
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If the distance function dψ decays not too fast, that is, if there is a constant c̃ > 0
such that

dψ(cr)

dψ(r)
≥ c̃ for all r ≥ r0 (13.13)

with r0 > 0 and c ∈ {32 , 2}, then the theorem yields

c̄dψ
(

Φ−1(ψ(α))
)

≤ ‖xα − x†‖ ≤ 2dψ
(

Φ−1(ψ(α))
)

for sufficiently small α > 0. The constant c̄ either equals c̃ or 1
2 c̃ depending on the

monotonicity of t 7→ ψ(t)√
t
. In other words, the behavior of the distance function dψ

at infinity completely determines the behavior of the regularization error ‖xα − x†‖
for small α. Thus the concept of approximate source conditions is superior to general
source conditions, since the latter in general do not provide optimal convergence rates
as discussed in the first paragraph of the present section.

A distance function dψ satisfies condition (13.13) for instance if

c1r
−a ≤ dψ(r) ≤ c2r−a for all r ≥ r0 > 0

with c1, c2, a > 0 or if

c1(ln r)
−a ≤ dψ(r) ≤ c2(ln r)−a for all r ≥ r0 > 1

with c1, c2, a > 0. Condition (13.13) is not satisfied if

c1 exp(−r) ≤ dψ(r) ≤ c2 exp(−r) for all r ≥ r0 ≥ 0

with c1, c2 > 0, which represents a very fast decay of dψ at infinity.

The more general version of Theorem 13.11 which is proven in [FHM11] allows to draw
further conclusions concerning general linear regularization methods. The technique
especially allows to generalize a well-known converse result presented in [Neu97]. For
details we refer to [FHM11].

13.5. Examples of alternative expressions for source conditions

The aim of this section is to provide concrete examples of approximate source con-
ditions, variational inequalities, and approximate variational inequalities. We derive
distance functions (for both approximate concepts) and modifier functions (for varia-
tional inequalities) starting from a source condition. This way we see how the concept
of source conditions, with which most readers are well acquainted, carries over to the
other smoothness concepts.

13.5.1. Power-type source conditions

Assume that x† satisfies a general source condition with index function ϑ(t) = tµ, where
µ ∈ (0, 12). That is,

x† ∈ R
(

(A∗A)µ
)

.
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We first consider the concept of approximate source conditions with benchmark func-
tion ψ(t) = t

1
2 and distance function dψ. To apply Theorem 13.10 we write x† as

x† = c(A∗A)µw with ‖w‖ = 1. Since ψ(t)
cϑ(t) = 1

c t
1
2
−µ is an index function the theorem

yields

dψ(r) ≤ c
1

1−2µ r
−2µ
1−2µ for all r ≥ 0.

By Corollary 13.8 we immediately obtain

Dψ,β(r) ≤ 1
2(1−β)c

2
1−2µ r

−4µ
1−2µ for all r ≥ 0,

if β ∈ (0, 1).
From Corollary 13.7 we see that a variational inequality with modifier function

ϕ = −D∗
ψ,β(−•) is satisfied. With c̃ := 1

2(1−β)c
2

1−2µ we have

−D∗
ψ,β(−t) = inf

r≥0

(

tr +Dψ,β(r)
)

≤ inf
r≥0

(

tr + c̃r
−4µ
1−2µ

)

and the infimum is attained at r =
( 4µc̃
1−2µ

)
1−2µ
1+2µ t

1−2µ
−1−2µ . That is,

−D∗
ψ,β(−t) ≤

(1−2µ
4µ

)
4µ

1+2µ c̃
1−2µ
1+2µ t

4µ
1+2µ .

Thus, we obtain a variational inequality with modifier function

ϕ(t) =
(1−2µ

4µ

)
4µ

1+2µ c̃
1−2µ
1+2µ t

4µ
1+2µ .

13.5.2. Logarithmic source conditions

Next to power-type source conditions also logarithmic source conditions were consid-
ered in the literature before general source conditions appeared. In [Hoh97, Hoh00] it
is shown that power-type source conditions are too strong in some applications, but
logarithmic ones are likely to be satisfied. Logarithmic source conditions are general
source conditions with index function ϑ(t) = (− ln t)−µ for small t > 0, where µ > 0
controls the strength of the source condition. The function t 7→ (− ln t)−µ has a pole
at t = 1. To obtain an index function (which is defined on [0,∞)) we define ϑ by

ϑ(t) :=











0, t = 0,

(− ln t)−µ, t ∈ (0, e−2µ−1),

(2µ + 1)−µ−
1
2

√

2µe2µ+1t+ 1, t ≥ e−2µ−1.

This function is twice continuously differentiable and concave.
In [Hoh97] and [Hoh00] convergence rates (for an iteratively regularized Gauss–

Newton method and general linear regularization methods, respectively) of the type

‖xα − x†‖ = O
(

(− lnα)−µ
)

if α→ 0

and
∥

∥xy
δ

α(δ) − x†
∥

∥ = O
(

(− ln δ)−µ
)

if δ → 0
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with a priori parameter choice α(δ) ∼ δ were obtained from a logarithmic source con-
dition. Here, ‘∼’ means that there are c1, c2, δ̄ > 0 such that c1δ ≤ α(δ) ≤ c2δ for all
δ ∈ (0, δ̄].

In case of Tikhonov regularization the estimate for ‖xα−x†‖ is also a consequence of

Proposition 13.2 since ϑ is concave. The estimate for
∥

∥xy
δ

α(δ) − x†
∥

∥ at first glance does

not coincide with the one proposed by (13.1). Inequality (13.1) with f = ϑ yields

∥

∥xy
δ

α(δ) − x
†∥
∥ ≤ 3

2ϑ
(

g−1(δ)
)

,

where g(t) :=
√
tϑ(t) and α(δ) = g−1(δ). For δ ∈

(

0, e−µ−
1
2 (2µ + 1)−µ

)

the value
s := g−1(δ) ∈ (0, e−2µ−1) can be computed as follows:

s = g−1(δ) ⇔ √
s(− ln s)−µ = δ ⇔ − 1

2µ(ln s)e
− 1

2µ
ln s = 1

2µδ
− 1
µ

⇔ − 1
2µ ln s =W

(

1
2µδ

− 1
µ

)

⇔ s = e
−2µW

(

1
2µδ

− 1
µ

)

.

The function W is called Lambert W function and described in Chapter D. Having the
inverse function g−1 at hand we further obtain

ϑ
(

g−1(δ)
)

=

(

− ln e
−2µW

(

1
2µδ

− 1
µ

)

)−µ

=
(

2µW
(

1
2µδ

− 1
µ

))−µ

and the asymptotic behavior of W (cf. (D.2)) yields

ϑ
(

g−1(δ)
)

∼
(

2µ ln
(

1
2µδ

− 1
µ

))−µ
=

(

−2 ln
(

(

1
2µ

)−µ
δ

))−µ
∼ (− ln δ)−µ.

Thus, also from (13.1) we obtain the convergence rate

∥

∥xy
δ

α(δ) − x†
∥

∥ = O
(

(− ln δ)−µ
)

if δ → 0.

Now we come to the main purpose of this subsection, the reformulation of a logarith-
mic source condition as approximate source condition and (approximate) variational
inequality. We start with approximate source conditions.

Let ψ(t) = t
1
2 be the benchmark index function and choose c > 0 such that x† =

cϑ(A∗A∗)w for some w ∈ X with ‖w‖ = 1 (which is always possible if x† ∈ R(ϑ(A∗A))).
One easily verifies that the function ψ

cϑ is an index function (with ψ
cϑ(0) := 0). Thus by

Theorem 13.10 we have

dψ(r) ≤ rψ
(

(

ψ

cϑ

)−1(1

r

)

)

for all r ≥ 0.

For r > ceµ+
1
2 (2µ + 1)−µ the value s :=

( ψ
cϑ

)−1(1
r

)

∈ (0, e−2µ−1) can be calculated as
follows:

s =

(

ψ

cϑ

)−1(1

r

)

⇔ 1

c

√
s(− ln s)µ =

1

r
⇔ 1

2µ
(ln s)e

1
2µ

ln s
= − 1

2µ

(c

r

) 1
µ

⇔ 1

2µ
ln s =W−1

(

− 1

2µ

(c

r

)
1
µ

)

⇔ s = e
2µW−1

(

− 1
2µ (

c
r )

1
µ

)

;
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here W−1 denotes a branch a the Lambert W function (see Chapter D). Thus,

dψ(r) ≤ re
µW−1

(

− 1
2µ (

c
r )

1
µ

)

for all r > ceµ+
1
2 (2µ + 1)−µ.

By the definition of W−1 the equality eW−1(t) = t
W−1(t)

is true and therefore

dψ(r) ≤ r







− 1
2µ

(

c
r

) 1
µ

W−1

(

− 1
2µ

(

c
r

) 1
µ

)







µ

= (2µ)−µc

(

−W−1

(

− 1

2µ

( c

r

)
1
µ

))µ

.

The asymptotic behavior of W−1 near zero (cf. (D.3)) implies

(2µ)−µc

(

−W−1

(

− 1

2µ

(c

r

)
1
µ

))µ

∼ (2µ)−µc

(

− ln

(

1

2µ

(c

r

)
1
µ

))µ

∼ (ln r)−µ.

In other words, there are c̃, r0 > 0 such that

dψ(r) ≤ c̃(ln r)−µ for all r ≥ r0.

For approximate variational inequalities we have the estimate

Dψ,β(r) ≤ c̃2

2(1−β) (ln r)
−2µ for all r ≥ r0

by Corollary 13.8.

It remains to derive a variational inequality. Corollary 13.7 yields a variational
inequality with ϕ = −D∗

ψ,β(−•), which is our starting point. For t ≥ 0 and with

c̄ := c̃2

2(1−β) we first observe

−D∗
ψ,β(−t) = inf

r≥0

(

tr +Dψ,β(r)
)

≤ inf
r≥r0

(

tr +Dψ,β(r)
)

≤ inf
r≥r0

(

tr + c̄(ln r)−2µ
)

.

For small t > 0 we may choose r = rt in the infimum with rt defined by

trt = c̄(ln rt)
−2µ.

This definition can be reformulated as follows:

trt = c̄(ln rt)
−2µ ⇔ 1

2µ
(ln rt)e

1
2µ

ln rt =
1

2µ
c̄

1
2µ t

− 1
2µ

⇔ 1

2µ
ln rt =W

(

1

2µ
c̄

1
2µ t−

1
2µ

)

⇔ rt = e
2µW

(

1
2µ
c̄

1
2µ t

− 1
2µ

)

.

Therefore

−D∗
ψ,β(−t) ≤ trt + c̄(ln rt)

−2µ = 2trt = 2te
2µW

(

1
2µ
c̄

1
2µ t

− 1
2µ

)
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for small t > 0. Using again the relation eW (t) = t
W (t) and taking into account the

asymptotic behavior of W at infinity (cf. (D.2)) we see

2te
2µW

(

1
2µ
c̄

1
2µ t

− 1
2µ

)

= 2t

(

e
W

(

1
2µ
c̄

1
2µ t

− 1
2µ

)

)2µ

= 2t





1
2µ c̄

1
2µ t−

1
2µ

W
(

1
2µ c̄

1
2µ t

− 1
2µ

)





2µ

= 2(2µ)−2µc̄W

(

1

2µ
c̄

1
2µ t−

1
2µ

)−2µ

∼ 2(2µ)−2µc̄

(

ln

(

1

2µ
c̄

1
2µ t−

1
2µ

))−2µ

∼ (− ln t)−2µ.

Thus, there are t̄, ĉ > 0 such that

−D∗
ψ,β(−t) ≤ ĉ(− ln t)−2µ for all t ∈ [0, t̄].

Consequently we find a concave function ϕ with

ϕ(t) = ĉ(− ln t)−2µ

for small t > 0 and −D∗
ψ,β(−t) ≤ ϕ(t) for all t ≥ 0. For such a function ϕ a variational

inequality is fulfilled (since this is the case if ϕ = −Dψ,β(−•)). The corresponding
convergence rate in case of noisy data is

∥

∥xy
δ

α(δ) − x
†∥
∥ = O

(

(− ln δ)−µ
)

if δ → 0

with a suitable a priori parameter choice δ 7→ α(δ) (cf. (13.7)). In other words, the
obtained variational inequality provides the same convergence rate as the logarithmic
source condition.

13.6. Concrete examples of distance functions

In this last section on solution smoothness in Hilbert spaces we calculate and plot
distance functions for two concrete operators A and one fixed exact solution x†. At
first we present the general approach and then we come to the examples.

13.6.1. A general approach for calculating and plotting distance functions

For calculating distance functions we use the following simple observation, which also
appears in [FHM11, Lemma 4] and for a special case also in [HSvW07].

Proposition 13.12. Let x† satisfy an approximate source condition with benchmark ψ
and let dψ be the corresponding distance function. Then for all λ > 0 the equality

dψ
(

‖(ψ2(A∗A) + λI)−1ψ(A∗A)x†‖
)

= λ‖(ψ2(A∗A) + λI)−1x†‖ (13.14)

holds true.
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Proof. Setting wλ := (ψ2(A∗A) + λI)−1ψ(A∗A)x† we see ψ(A∗A)(ψ(A∗A)wλ − x†) =
−λwλ, that is, wλ is a minimizer of ‖ψ(A∗A)w − x†‖2 with constraint ‖w‖2 − r2 ≤ 0
and λ is the corresponding Lagrange multiplier. Because λ > 0, we have ‖wλ‖ = r and
therefore

dψ(‖wλ‖) = ‖x† − ψ(A∗A)wλ‖ = λ‖(ψ2(A∗A) + λI)−1x†‖.

We define functions g : (0,∞)→ [0,∞) and h : (0,∞)→ [0,∞) by

g(λ) := ‖(ψ2(A∗A) + λI)−1ψ(A∗A)x†‖ (13.15)

and

h(λ) := λ‖(ψ2(A∗A) + λI)−1x†‖ (13.16)

for λ > 0. With these functions equation (13.14) reads as

dψ(g(λ)) = h(λ) for all λ > 0.

The two functions have the following useful properties.

Proposition 13.13. Let the functions g and h be defined by (13.15) and (13.16),
respectively, and assume x† 6= 0. Then

• g is strictly monotonically decreasing and h is strictly monotonically increasing;

• g and h are continuous;

• lim
λ→+0

g(λ) =

{

‖w‖ if x† = ψ(A∗A)w,

∞, if x† /∈ R(ψ(A∗A))
and lim

λ→∞
g(λ) = 0;

• lim
λ→+0

h(λ) = 0 and lim
λ→∞

h(λ) = ‖x†‖.

Proof. All assertions can be easily verified by writing the functions g and h as an integral
over the spectrum of A∗A (see [Yos95] for details on spectral calculus) and applying
Lebesgue’s dominant convergence theorem.

By the proposition the function g is invertible (if x† 6= 0) and thus equation (13.14)
is equivalent to

dψ(r) = h
(

g−1(r)
)

for all r ∈ R(g),
where

R(g) =
{

(0, ‖w‖) if x† = ψ(A∗A)w,

(0,∞), if x† /∈ R(ψ(A∗A)).

In case x† = ψ(A∗A)w we obviously have dψ(r) = 0 for r ≥ ‖w‖.
These observations allow to calculate distance functions dψ for concrete operators A

and concrete exact solutions x† if g and h can be calculated. If the derivation of an
explicit expression for g−1 is too complicated then for plotting dψ it suffices to invert g
numerically.
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13.6.2. Example 1: integration operator

Set X := Y := L2(0, 1) and let A : L2(0, 1) → L2(0, 1) be the integration operator
defined by

(Ax)(t) :=

∫ t

0
x(s) ds, t ∈ [0, 1].

Integration by parts yields the adjoint

(A∗y)(t) =
∫ 1

t
y(s) ds, t ∈ [0, 1],

and therefore

(A∗Ax)(t) =
∫ 1

t

∫ s

0
x(σ) dσ ds, t ∈ [0, 1].

We choose the benchmark function

ψ(t) := t
1
2 , t ∈ [0,∞),

and the exact solution
x†(t) := 1, t ∈ [0, 1].

Since

R(ψ(A∗A)) = R
(

(A∗A)
1
2
)

= R(A∗) = {x ∈ L2(0, 1) : x ∈ H1(0, 1), x(1) = 0},

we see that x† /∈ R(ψ(A∗A)).
The present example is also considered in [HSvW07], where the authors bound the

distance function dψ by √
3

4
r−1 ≤ dψ(r) ≤

1√
2
r−1 (13.17)

for sufficiently large r. Our aim is to derive better constants and to plot the graph of
dψ.

For calculating the functions g and h defined by (13.15) and (13.16), respectively, we
first evaluate the expression (ψ2(A∗A) + λI)−1x† with λ > 0, that is, we solve

(ψ2(A∗A) + λI)x = x†

for x. This last equality is equivalent to

∫ 1

t

∫ s

0
x(σ) dσ ds+ λx(t) = 1, t ∈ [0, 1],

and simple calculations yield the equivalent formulation

x = λx′′, x(1) =
1

λ
, x′(0) = 0.

The solution of the differential equation is

(

(ψ2(A∗A) + λI)−1x†
)

(t) = x(t) =
1

λ cosh
(

1√
λ

) cosh

(

1√
λ
t

)

, t ∈ [0, 1].
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As the next step for obtaining the function g we observe

‖(ψ2(A∗A) + λI)−1ψ(A∗A)x†‖ =
∥

∥(A∗A)
1
2 (A∗A+ λI)−1x†

∥

∥

= ‖A(A∗A+ λI)−1x†‖.

Thus, with

(

A(A∗A+ λI)−1x†
)

(t) =

∫ t

0

1

λ cosh
(

1√
λ

) cosh

(

1√
λ
t

)

dt

=
1

√
λ cosh

(

1√
λ

) sinh

(

1√
λ
t

)

for t ∈ [0, 1] we see

g(λ) =

√

∫ 1

0

((

A(A∗A+ λI)−1x†
)

(t)
)2

dt =
1

2
√
λ cosh

(

1√
λ

)

√

√
λ sinh

(

2√
λ

)

− 2

for λ > 0. The function h is given by

h(λ) = λ‖(ψ2(A∗A) + λI)−1x†‖ = λ

√

√

√

√

√

∫ 1

0





1

λ cosh
(

1√
λ

) cosh

(

1√
λ
t

)





2

dt

=
1

2 cosh
(

1√
λ

)

√

√
λ sinh

(

2√
λ

)

+ 2

for λ > 0. Equation (13.14) thus reads as

dψ





1

2
√
λ cosh

(

1√
λ

)

√

√
λ sinh

(

2√
λ

)

− 2



 =
1

2 cosh
(

1√
λ

)

√

√
λ sinh

(

2√
λ

)

+ 2

for all λ > 0.
To obtain better constants for bounding dψ than in (13.17) we calculate the limit of

dψ(r)

r−1 for r →∞. We have

lim
r→∞

dψ(r)

r−1
= lim

r→∞
rdψ(r) = lim

λ→0
g(λ)dψ(g(λ)) = lim

λ→0
g(λ)h(λ)

= lim
λ→0

√

λ sinh2
(

2√
λ

)

− 4

4
√
λ cosh2

(

1√
λ

) = lim
t→∞

√

sinh2(2t)− 4t2

4 cosh2 t

and using the relation 2 cosh2 t = cosh(2t) + 1 we further obtain

lim
r→∞

dψ(r)

r−1
=

1

2
lim
t→∞

√

sinh2(2t)− 4t2

cosh(2t) + 1
=

1

2
lim
s→∞

√

sinh2 s− s2
cosh s+ 1

.
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Replacing sinh and cosh by corresponding sums of exponential functions we see that

the last limit is one. Therfore, limr→∞
dψ(r)
r−1 = 1

2 and thus for each ε > 0 we find rε > 0
such that

(

1

2
− ε
)

r−1 ≤ dψ(r) ≤
(

1

2
+ ε

)

r−1 for all r ≥ rε.

We have no explicit formula for g−1 but for plotting dψ we can invert g numerically
using, e.g., the bisection method. The plot obtained this way is shown in Figure 13.1.
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Figure 13.1.: Distance function dψ (black dots), function r 7→ 1

2
r−1 (solid gray line), and lower

and upper bound from [HSvW07] (solid black lines).

13.6.3. Example 2: multiplication operator

Set X := Y := L2(0, 1) and let A : L2(0, 1) → L2(0, 1) be the multiplication operator
defined by

(Ax)(t) := m(t)x(t), t ∈ [0, 1],

with m ∈ L∞(0, 1). Obviously the adjoint is given by

(A∗y)(t) = m(t)y(t), t ∈ [0, 1],

and therefore

(A∗Ax)(t) = m2(t)x(t), t ∈ [0, 1].

We choose the benchmark function

ψ(t) := t
1
2 , t ∈ [0,∞),
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and the exact solution
x†(t) := 1, t ∈ [0, 1].

Then x† ∈ R(ψ(A∗A)) = R(A∗) if and only if 1
m ∈ L2(0, 1).

The results on distance functions in case of the multiplication operators under con-
sideration were already published in [FHM11]. In this thesis we give some more details.

For calculating the functions g and h defined by (13.15) and (13.16), respectively, we
observe

(

(A∗A+ λI)−1x†
)

(t) =
1

m2(t) + λ
, t ∈ [0, 1].

From this relation we easily obtain

g(λ) = ‖A(A∗A+ λI)−1x†‖ =
√

∫ 1

0

m2(t)

(m2(t) + λ)2
dt

and

h(λ) = λ‖(A∗A+ λI)−1x†‖ =
√

∫ 1

0

λ2

(m2(t) + λ)2
dt

for all λ > 0.
From now on we only consider the multiplier function

m(t) :=
√
t, t ∈ [0, 1].

Since 1
m /∈ L2(0, 1) we conclude x† /∈ R(ψ(A∗A)). With this specific m we have

g(λ) =

√

ln
λ+ 1

λ
− 1

λ+ 1

and

h(λ) =

√

λ

λ+ 1

for all λ > 0. Thus,

dψ

(

√

ln
λ+ 1

λ
− 1

λ+ 1

)

=

√

λ

λ+ 1

for all λ > 0.
In the remaining part of this section we first derive lower and upper bounds for dψ

which hold for all r > 0. Then we improve the constants in the bounds and finally we
plot the distance function.

To obtain lower and upper bounds for dψ we transform equation (13.14), which is
equivalent to dψ(g(λ)) = h(λ) for all λ > 0, as follows:

dψ(r) = h(g−1(r)) ⇔ r = g
(

h−1(dψ(r))
)

⇔ r = g

(

d2ψ(r)

1− d2ψ(r)

)

⇔ r2 = ln
1

d2ψ(r)
− 1 + d2ψ(r) ⇔ er

2
=

1

d2ψ(r)
e−1ed

2
ψ(r)

⇔ dψ(r) = e−
1
2
(r2+1)e

1
2
d2ψ(r).

163



13. Smoothness in Hilbert spaces

Since
1 ≤ e

1
2
d2
ψ
(r) ≤ e

1
2
d2
ψ
(0) = e

1
2
‖x†‖ = e

1
2 for all r > 0

we obtain
e−

1
2 e−

1
2
r2 ≤ dψ(r) ≤ e−

1
2
r2 for all r > 0. (13.18)

To improve the constants in the bounds we calculate

lim
r→∞

dψ(r)

e−
1
2
r2

= lim
r→∞

dψ(r)e
1
2
r2 = lim

λ→0
dψ(g(λ))e

1
2
g(λ)2 = lim

λ→0
h(λ)e

1
2
g(λ)2

= lim
λ→0

√

λ
λ+1e

1
2(ln

λ+1
λ

− 1
λ+1) = lim

λ→0
e
− 1

2(λ+1) = e−
1
2 .

Thus, for each ε > 0 there is rε > 0 such that
(

e−
1
2 − ε

)

e−
1
2
r2 ≤ dψ(r) ≤

(

e−
1
2 + ε

)

e−
1
2
r2 for all r ≥ rε.

If we invert the function g numerically we can plot the distance function dψ. The
result is depicted in Figure 13.2.
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Figure 13.2.: Distance function dψ (black dots), function r 7→ e−
1

2 e−
1

2
r2 (solid gray line), and

upper bound from (13.18) (solid black line). Note that the lower bound in (13.18)
coincides with the gray line.

Note that in the specific example under consideration also analytic inversion of g is
possible. Using the formula dψ(r) = h(g−1(r)) then we obtain

dψ(r) =
√

−W
(

−e−(r2+1)
)

for all r ≥ 0,

where W denotes the Lambert W function (see Chapter D).
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A. General topology

In this chapter we collect some basic definitions and theorems from general topology.
Only the things necessary for reading the first part of this thesis are given here. Since
most of the material can be found in every book on topology, we omit the proofs.

A.1. Basic notions

By P(X) we denote the power set of a set X.

Definition A.1. A topological space is a pair (X, τ) consisting of a nonempty set X
and a nonempty family τ ⊆ P(X) of subsets of X, where τ has to satisfy the following
properties:

• ∅ ∈ τ and X ∈ τ ,

• Gi ∈ τ for i ∈ I (arbitrary index set) implies
⋃

i∈I Gi ∈ τ ,

• G1, G2 ∈ τ implies G1 ∩G2 ∈ τ .

The family τ is called topology on X.

Definition A.2. Let (X, τ) be a topological space. A set A ⊆ X is called open if
A ∈ τ . It is called closed if X \ A ∈ τ . The union of all open sets contained in a set
A ⊆ X is called the interior of A and is denoted by intA. The intersection of all closed
sets covering A is the closure of A and it is denoted by A.

Definition A.3. Let X be a nonempty set and let τ1, τ2 ⊆ P(X) be two topologies on
X. The topology τ1 is weaker (or coarser) than τ2 if τ1 ⊆ τ2. In this case τ2 is stronger
(or finer) than τ1.

Definition A.4. Let (X, τ) be a topological space and let x ∈ X. A set N ⊆ X is
called neighborhood of x if there is an open set G ∈ τ with w ∈ G ⊆ N . The family of
all neighborhoods of x is denoted by N (x).

Definition A.5. Let (X, τ) be a topological space and let X̃ ⊆ X. The set τ̃ :=
{G ∩ X̃ : G ∈ τ} ⊆ P(X̃) is the topology induced by τ and the topological space (X̃, τ̃)
is called topological subspace of (X, τ).

Given two topological spaces (X, τX) and (Y, τY ) there is a natural topology onX×Y ,
the product topology τX ⊗ τY . We do not want to go into the details of its definition
here, since this requires some effort and the interested reader finds the topic in each
book on general topology.
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A.2. Convergence

The natural notion of convergence in general topological spaces is the convergence of
nets.

Definition A.6. A nonempty index set I is directed if there is a relation � on I such
that

• i � i for all i ∈ I,

• i1 � i2, i2 � i3 implies i1 � i3 for all i1, i2, i3 ∈ I,

• for all i1, i2 ∈ I there is some i3 ∈ I with i1 � i3 and i2 � i3.

Definition A.7. Let X be a nonempty set and let I be a directed index set. A net (or
a Moore–Smith sequence) in X is a mapping φ : I → X. Instead of φ we usually write
(xi)i∈I with xi := φ(i).

Definition A.8. Let (X, τ) be a topological space. A net (xi)i∈I converges to x ∈ X
if for each neighborhood N ∈ N (x) there is an index i0 ∈ I such that xi ∈ N for all
i � i0. In this case we write xi → x.

Note that a net may converge to more than one element. Only additional assumptions
guarantee the uniqueness of limiting elements.

Definition A.9. A topological space (X, τ) is a Hausdorff space if for arbitrary x1, x2 ∈
X with x1 6= x2 there are open sets G1, G2 ∈ τ with x1 ∈ G1, x2 ∈ G2, and G1∩G2 = ∅.

Proposition A.10. A topological space is a Hausdorff space if and only if each con-
vergent net converges to exactly one element.

An example for nets are sequences: each sequence (xk)k∈N is a net with index set
I = N and with the usual ordering ≤ on N.

In metric spaces topological properties like continuity, closedness, and compactness
can be characterized by convergence of sequences. The same is possible in general
topological spaces if sequences are replaced by nets. Under additional assumptions it
suffices to consider sequences as we will see in the subsequent sections.

Definition A.11. A topological space is an A1-space if for each x ∈ X there is a
countable family B(x) ⊆ N (x) of neighborhoods such that for each N ∈ N (x) one finds
B ∈ B(x) with B ⊆ N .

We close this section with a remark on convergence with respect to a product topology.
Let (X, τX) and (Y, τY ) be two topological spaces and let (X × Y, τX ⊗ τY ) be the
corresponding product space. Then a net

(

(xi, yi)
)

i∈I in X × Y converges to (x, y) ∈
X × Y if and only if xi → x and yi → y.
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A.3. Continuity

Let (X, τX) and (Y, τY ) be topological spaces.

Definition A.12. A mapping f : X → Y is continuous at the point x ∈ X if for each
neighborhood M ∈ N (f(x)) there is a neighborhood N ∈ N (x) with f(N) ⊆ M . The
mapping f is continuous if it is continuous at each point x ∈ X.

Proposition A.13. A mapping f : X → Y is continuous at x ∈ X if and only if for
each net (xi)i∈I with xi → x we also have f(xi)→ f(x).

Definition A.14. A mapping f : X → Y is sequentially continuous at the point x ∈ X
if each sequence (xk)k∈N with xk → x also satisfies f(xk) → f(x). The mapping f is
sequentially continuous if it is sequentially continuous at every point x ∈ X.

Proposition A.15. Let X be an A1-space. Then a mapping f : X → Y is continuous
if and only if it is sequentially continuous.

Definition A.16. A mapping f : X → (−∞,∞] is sequentially lower semi-continuous
if for each sequence (xk)k∈N in X converging to some x ∈ X we have

f(x) ≤ lim inf
k→∞

f(xk).

A mapping f̃ : X → [−∞,∞) is sequentially upper semi-continuous if −f̃ is sequentially
lower semi-continuous.

A.4. Closedness and compactness

We first characterize closed sets in terms of nets and sequences.

Proposition A.17. A set A ⊆ X in a topological space (X, τ) is closed if and only if
all limits of each convergent net contained in A belong to A.

Definition A.18. A set A ⊆ X in a topological space (X, τ) is sequentially closed
if the limits of each convergent sequence contained in A belong to A. The sequential
closure of a set A ⊆ X is the intersection of all sequentially closed sets covering A.

Since the intersection of sequentially closed sets is sequentially closed, the sequential
closure of a set is well-defined.

Proposition A.19. Let (X, τ) be an A1-space. A set in (X, τ) is closed if and only if
it is sequentially closed.

The notion of sequential lower semi-continuity can be characterized by the sequential
closedness of certain sets.

Proposition A.20. Let (X, τ) be a topological space. A mapping f : X → (−∞,∞] is
sequentially lower semi-continuous if and only if the sublevel sets Mf (c) := {x ∈ X :
f(x) ≤ c} are sequentially closed for all c ∈ R.
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In general topological spaces there are several notions of compactness. We restrict
our attention to the ones of interest in this thesis.

Definition A.21. Let (X, τ) be a topological space.

• The space (X, τ) is compact if every open covering of X contains a finite open
covering of X.

• The space (X, τ) is sequentially compact if every sequence in X contains a con-
vergent subsequence.

• A set A ⊆ X is (sequentially) compact if it is (sequentially) compact as a subspace
of (X, τ).

Proposition A.22. Let (X, τ) be an A1-space. Then every compact set A ⊆ X is
sequentially compact.

To characterize compactness of a set by convergence of nets one has to introduce the
notion of subnets. But this is beyond the scope of this chapter.

Proposition A.23. Let (X, τ) be sequentially compact. Then each sequentially closed
set in X is sequentially compact.

Next, we introduce a slightly weaker notion of sequential compactness. The def-
inition can also be formulated for non-sequential compactness, but we do not need
the non-sequential version in the thesis. The assumption that the underlying space
is a Hausdorff space is necessary to establish a strong connection between the weak-
end notion of sequential compactness and the original sequential compactness (see the
corollary below).

Definition A.24. A set in a Hausdorff space is called relatively sequentially compact
if its sequential closure is sequentially compact.

Proposition A.25. Each sequentially compact set in a Hausdorff space is sequentially
closed.

Corollary A.26. A set in a Hausdorff space is sequentially compact if and only if it
is sequentially closed and relatively sequentially compact

Finally we prove a simple result on sequences in compact sets, which we used in
Part I.

Proposition A.27. Let (X, τ) be a topological space and let (xk)k∈N be a sequence
contained in a sequentially compact set A ⊆ X. If all convergent subsequences have the
same unique limit x ∈ X, then also the whole sequence (xk) converges to x and x is the
only limit of (xk).

Proof. Assume xk 9 x. Then there would be a neighborhood N ∈ N (x) and a subse-
quence (xkl)l∈N such that xkl /∈ N for all l ∈ N. By the compactness of A this sequence
would have a convergent subsequence and by assumption its limit would be x. But this
is a contradiction.
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We briefly summarize some definitions from convex analysis which we use throughout
the thesis.

Let X be a real topological vector space, that is, a real vector space endowed with a
topology such that addition and multiplication by scalars are continuous with respect
to this topology. By X∗ we denote the set of all continuous linear functionals ξ : X → R

on X. If X is a normed space then X∗ is typically equipped with the usual operator
norm ‖ξ‖ := sup{ξ(x) : x ∈ X, ‖x‖ = 1}. Instead of ξ(x) we often write 〈ξ, x〉.

In convex analysis it is useful to consider functionals on X which may attain the value
+∞ or −∞; but not both. Addition and multiplication by scalars is extended to such
functionals whenever this extension is intuitive, e.g. 1 +∞ = +∞ or 1 · (+∞) = +∞.

Definition B.1. A functional Γ : X → (−∞,∞] is convex if Γ(λx1 + (1 − λ)x2) ≤
λΓ(x1)+(1−λ)Γ(x2) for all x1, x2 ∈ X and all λ ∈ [0, 1]. A functional Γ̃ : X → [−∞,∞)
is concave if −Γ̃ is convex.

For convex functionals the notion of derivative can be generalized to non-smooth
convex functionals.

Definition B.2. Let Γ : X → (−∞,∞] be convex and let x0 ∈ X. An element ξ ∈ X∗

is called a subgradient of Γ at x0 if

Γ(x) ≥ Γ(x0) + 〈ξ, x− x0〉 for all x ∈ X.

The set of all subgradients at x0 is called subdifferential of Γ at x0 and is denoted by
∂Γ(x0).

Note that if Γ(x0) =∞ and if there is some x ∈ X with Γ(x) <∞, then ∂Γ(x0) = ∅.
But also in case Γ(x0) <∞ it may happen that ∂Γ(x0) = ∅.

Based on a convex functional Γ one can define another convex functional which
expresses the distance between Γ and one of its linearizations at a fixed point x0.

Definition B.3. Let Γ : X → (−∞,∞] be convex and let x0 ∈ X and ξ0 ∈ ∂Γ(x0).
The functional BΓ

ξ0
(•, x0) : X → [0,∞] defined by

BΓ
ξ0(x, x0) := Γ(x)− Γ(x0)− 〈ξ0, x− x0〉 for x ∈ X

is called Bregman distance with respect to Γ, x0, and ξ0.

The Bregman distance can only be defined for x0 ∈ X with ∂Γ(x0) 6= ∅. Since Γ
is assumed to be convex, the Bregman distance is also convex. The nonnegativity of
BΓ
ξ0
(•, x0) follows from ξ0 ∈ ∂Γ(x0).
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If X is a Hilbert space and Γ = 1
2‖•‖2, then ∂Γ(x0) = {x0} and the corresponding

Bregman distance is given by BΓ
x0(•, x0) =

1
2‖x − x0‖2. Thus, Bregman distances can

be regarded as a generalization of Hilbert space norms.
Next to subdifferentiability we also use another concept from convex analysis, conju-

gate functions. Both concepts are closely related and we refer to [ABM06] for details
and proofs.

Definition B.4. Let f : X → (−∞,∞] be a functional on X which is finite at least at
one point. The functional f∗ : X∗ → (−∞,∞] defined by

f∗(ξ) := sup
x∈X

(

〈ξ, x〉 − f(x)
)

for ξ ∈ X∗

is the conjugate function of f .

Conjugate functions are always convex and lower semi-continuous since they are the
supremum over x ∈ X of the affine functions 〈•, x〉 − f(x).

We frequently consider conjugate functions of convex functions defined only on [0,∞)
instead of X = R. In such cases we set the function to +∞ on (−∞, 0). This extension
preserves convexity and supx∈R can be replaced by supx≥0 in the definition of the
conjugate function.

When working with infima and suprema of functions it is sometimes sensible to use
so called indicator functions:

Definition B.5. Let A ⊆ X. The function δA : X → [0,∞] defined by

δA(x) :=

{

0, if x ∈ A,
∞, if x /∈ A

is called indicator function of the set A.

In Subsection 12.1.6 we used two further definitions.

Definition B.6. A Banach space X is strictly convex if for all x1, x2 ∈ X with x1 6= x2
and ‖x1‖ = ‖x2‖ = 1 and for all λ ∈ (0, 1) the strict inequality ‖λx1 + (1 − λ)x2‖ < 1
is satisfied.

Definition B.7. A Banach space X is smooth if for each x ∈ X with ‖x‖ = 1 there is
exactly one linear functional ξ ∈ X∗ such that 〈ξ, x〉 = ‖ξ‖.
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Since conditional probability densities and Bayes’ formula are the main ingredient of
the MAP approach described in Chapter 7, it is of high importance to understand the
concept behind them. If we do not know how to interpret conditional densities we
cannot be sure that the mathematical formulation of the MAP approach coincides with
our intuitive notion of ‘maximizing conditional probabilities’.

The core, that is, all definitions, propositions, and theorems, of this chapter is taken
from the highly recommendable textbook [FG97]. Since all the proofs are given there we
do not repeat them here. The core material is enriched by comprehensive interpretive
remarks, because we do not aim solely at presenting the technical handling of conditional
densities but we intend to bring light into the relations between ‘intuitive conditional
probabilities’ and the mathematical concept of conditional densities.

C.1. Statement of the problem

Let (Θ,A, P ) be a probability space, that is, P (A) is the probability that the outcome
θ ∈ Θ of a realization of the underlying experiment lies in A ∈ A. This interpretation
is only true if no information about θ is available. But if we would have additional
knowledge then the probability for θ ∈ A, in general, would be different from P (A).
So, two questions have to be answered: How to formulate ‘additional information’ in
mathematical terms, and how to express the probability of θ ∈ A with respect to
additional knowledge?

The well-known ‘simple’ conditional probability is usually formulated as follows:
Given the information θ ∈ B ∈ A and assuming P (B) > 0 the probability of θ ∈ A is
P (A∩B)
P (B) . This definition is very intuitive, but it does not include the case P (B) = 0.

Thus, a more general, though less intuitive, definition is necessary.

First, we introduce a generalized concept of ‘additional information’: The idea is
to look at all events whose occurrence is completely determined by the information
available about θ. More precisely, let B ⊆ A be the family of all events B ∈ A for
which we can decide whether θ ∈ B or θ /∈ B. In the above case of knowing that θ ∈ B
we would get B = {∅,Θ, B,Θ \ B}, which is a σ-algebra, as the family of decidable
events. Intuition suggests that the informally defined family B is always a σ-algebra (if
we know whether θ ∈ B or not then we also know whether θ ∈ Θ \B and so on). Thus,
sub-σ-algebras B ⊆ A of decidable events turn out to be a suitable tool for expressing
additional knowledge about an outcome θ.

A more serious question is the second one: How to express the probability of θ ∈ A
with respect to additional knowledge, that is, with respect to a sub-σ-algebra B ⊆ A?
If P (B) > 0 would be true for all B ∈ B the appropriate answer would be the mapping

P (A|•) : B → [0, 1] defined by P (A|B) := P (A∩B)
P (B) . For P (B) = 0 this definition does not
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work (division by zero), but we have an intuitive notion of ‘conditional probability’ even
with respect to events of probability zero. This deficiency is not due to an inappropriate
mathematical definition of this intuitive notion, but it is an intrinsic property of events
of probability zero. A bit sloppy one could say that events of probability zero are events
the probability measure does not care about, that is, it provides no means of working
with them. Thus, the only chance to get (maybe very weak) information about the
relation between A∩B and B is by approximating B. In other words, we try to extend
the mapping P (A|•) to events of probability zero.

Defining P (A|B) for P (B) = 0 to be the limit of P (A|Bi) if i→∞ for some sequence
(Bi)i∈N satisfying P (Bi) > 0 and B1 ⊇ B2 ⊇ · · · ⊇ B seems to be a good idea, at least
at the first look. But simple examples show that, assuming it exists, the limit depends
on the sequence (Bi)i∈N and the sequence can be chosen in such a way that the limit
coincides with any given real number. Thus, to grasp the approximation idea in a
precise mathematical way we need another concept. As we will see below, considering
densities of measures instead of measures themselves solves the problem.

C.2. Interpretation of densities

Let (Θ,A) be a measurable space and let µ and ν be two measures on (Θ,A). A
measurable function f : Θ→ [0,∞) is called density of ν with respect to µ if

ν(A) =

∫

A
f dµ for all A ∈ A.

Obviously, if ν has a density with respect to µ then ν is absolutely continuous with
respect to µ, that is µ(A) = 0 for some A ∈ A implies ν(A) = 0. The following theorem
tells us that for σ-finite measures also the converse direction is true.

Theorem C.1 (Radon–Nikodym). Let µ and ν be σ-finite measures on a common
measurable space. If ν is absolutely continuous with respect to µ then ν has a density
with respect to µ. If f1 and f2 are two such densities then f1 = f2 almost everywhere
with respect to µ.

Why do we need densities? At first glance, they reveal exactly the same information
as the measure ν itself. But since, in general, densities are not uniquely determined
we could choose a ‘nice’ one to work with. In our sense, a nice density should realize
the approximation idea from the end of the previous section. More precisely, on sets of
ν-measure zero it should exhibit the same behavior as on a ‘neighborhood’ of this set.

Such a connection between a density’s behavior on a set and its behavior on a neigh-
borhood of this set can be described by continuity with respect to a topology on Θ and
a topology on [0,∞]. The former topology should be as weak as possible and the latter
one should be as strong as possible to make the connection a strong one. In brief, we
can state the following:

• Without additional knowledge about a density the density’s values on sets of
µ-measure zero do not contain any information.
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• Knowing that a density is continuous with respect to a (hopefully weak) topology
on Θ and a (hopefully strong) topology on [0,∞], its behavior on sets of µ-measure
zero provides information about the measure of sets in a neighborhood of sets of
µ-measure zero.

Care has to be taken of what measure is used when talking about sets of measure
zero. Actually we are interested in ν-null sets, but the above considerations concentrate
on sets with µ-measure zero. On sets for which the above-mentioned does not apply,
that is, on sets A ∈ A with ν(A) = 0 but µ(A) > 0 each density is zero µ-almost
everywhere. Thus, in the sense of densities such sets are ‘strong’ null sets (with respect
to µ).

C.3. Definition of conditional probabilities

The previous section suggests that densities of measures are a suitable tool to work with
sets of measure zero. To motivate the use of densities for representing conditional prob-
abilities also with respect to sets of probability zero we first look at ‘simple’ conditional
probabilities in conjunction with the law of total probability.

Let (Θ,A, P ) be a probability space, let A ∈ A, and let B ⊆ A be the σ-algebra of
decidable events. For fixed B ∈ B assume that {B1, . . . , Bn} ⊆ B is a partition of B,
that is, the sets Bi are mutually disjoint and B =

⋃n
i=1Bi. If P (Bi) > 0 for i = 1, . . . , n

the law of total probability states that

P (A ∩B) =
n
∑

i=1

P (Bi)P (A|Bi).

Writing the right-hand side as an integral gives the equivalent expression

P (A ∩B) =

∫

B

n
∑

i=1

P (A|Bi)χBi dP, (C.1)

where χBi is one on Bi and zero on Θ \ Bi. The integrand is a B-measurable step
function on Θ. Noticing that relation (C.1) holds for arbitrarily fine partitions of B
into sets of positive measure and for all B ∈ B with P (B) > 0, one could ask whether
there is a limiting function ωA : Θ → [0, 1] satisfying the same two properties as each
of the step functions:

• ωA is B measurable,

• P (A ∩B) =
∫

B ωA dP for all B ∈ B.

Applying Theorem C.1 to the restriction µ := P |B of P to B and to ν := P (A∩ •), which
is a finite measure on B, we obtain a nonnegative B-measurable function f : Θ→ [0,∞]
satisfying P (A ∩ B) =

∫

B f dP for all B ∈ B, and one easily shows that f ≤ 1 almost
everywhere with respect to P |B. Thus, the following definition is correct.
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Definition C.2. Let (Θ,A, P ) be a probability space, let A ∈ A, and let B ⊆ A be a
sub-σ-algebra of A. A random variable ωA|B : Θ → R is called conditional probability
of A given B if ωA|B is B-measurable and

P (A ∩B) =

∫

B
ωA|B dP for all B ∈ B.

Before we go on introducing conditional densities we want to clarify the connection
between ‘simple’ conditional probabilities and the new concept. Obviously, for B ∈ B
with P (B) > 0 we have

P (A|B) =
1

P (B)

∫

B
ωA|B dP.

Now let B ∈ B be an atomic set of B, that is, for each other set C ∈ B either B ⊆ C or
B ⊆ Θ \ C is true. Then the measurability of ωA|B implies that ωA|B is constant on B;
denote the value of ωA|B on B by ωA|B(B). If P (B) > 0 then

P (A|B) =
1

P (B)

∫

B
ωA|B dP = ωA|B(B).

To give a more tangible interpretation of ωA|B assume that B is generated by a countable
partition {B1, B2, . . .} ⊆ A of Θ. Then the above statements on atomic sets imply

ωA|B =
∑

i∈N:P (Bi)>0

P (A|Bi)χBi a.e. on Θ,

which is quite similar to the integrand in (C.1).
As described in the previous section, by choosing a ‘nice’, that is, an in some sense

continuous conditional probability for A given B we can also give meaning to conditional
probabilities with respect to sets of probability zero.

C.4. Conditional distributions and conditional densities

Now, that we know how to express the conditional probability of some event A ∈ A
with respect to a σ-algebra B ⊆ A, we want to extend the concept to families of events.
In more detail, we want to pool conditional probabilities of all events in a σ-algebra
C ⊆ A by introducing a mapping on Θ taking values in the set of probability measures
on (Θ, C).

Definition C.3. Let (Θ,A, P ) be a probability space and, let B, C ⊆ A be sub-σ-
algebras of A. A mapping WC|B : Θ × C → [0, 1] is called conditional distribution of C
given B if for each θ ∈ Θ the mapping WC|B(θ, •) is a probability measure on C and for
each C ∈ C the mapping WC|B(•, C) is a conditional probability of C given B.

We do not need this definition in full generality. Thus, we give a slightly modified
formulation adapted to σ-algebras C generated by some random variable.

Definition C.4. Let (Θ,A, P ) be a probability space and let B ⊆ A be a sub-σ-
algebra of A. Further let (X,AX) be a measurable space and let ξ : Θ → X be a
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random variable. A mapping Wξ|B : Θ ×AX → [0, 1] is called conditional distribution
of ξ given B if for each θ ∈ Θ the mapping Wξ|B(θ, •) is a probability measure on AX
and for each C ∈ AX the mapping Wξ|B(•, C) is a conditional probability of ξ−1(C)
given B.

The requirement thatWξ|B(•, C) is a conditional probability of ξ−1(C) for all C ∈ AX
can be easily fulfilled because conditional probabilities always exist. The main point
lies in demanding that Wξ|B(θ, •) is a probability measure for each θ ∈ Θ. To state a
theorem on existence of conditional distributions we need some preparation.

Definition C.5. Two measurable spaces are called isomorphic if there exists a bijective
mapping ϕ between them such that both ϕ and ϕ−1 are measurable.

Definition C.6. A measurable space is called Borel space if it is isomorphic to some
measurable space (A,B(A)), where A is a Borel set in [0, 1] and B(A) is the σ-algebra
of Borel subsets of A.

Proposition C.7. Every Polish space, that is, every separable complete metric space,
is a Borel space. A product of a countable number of Borel spaces is a Borel space.
Every measurable subset A of a Borel space (B,B) equipped with the σ-algebra of all
subsets of A lying in B is a Borel space.

The following theorem gives a sufficient condition for the existence of conditional
distributions.

Theorem C.8. Let (Θ,A, P ) be a probability space and let B ⊆ A be a sub-σ-algebra of
A. Further let (X,AX ) be a Borel space and let ξ : Θ→ X be a random variable. Then
ξ has a conditional distribution given B. If W1 and W2 are two conditional distributions
of ξ given B then W1(θ, •) =W2(θ, •) for almost all θ ∈ Θ.

As described in Section C.2 looking at probability measures via densities allows more
comfortable handling of events of probability zero. Thus, we introduce conditional
densities.

Definition C.9. Let (Θ,A, P ) be a probability space and let B ⊆ A be a sub-σ-
algebra of A. Further, let (X,AX , µX) be a σ-finite measure space and let ξ : Θ → X
be a random variable. A measurable function pξ|B : Θ × X → [0,∞) on the product
space (Θ ×X,A ⊗AX) is called conditional density of ξ with respect to µX given B if
Wξ|B : Θ×AX → [0, 1] defined by

Wξ|B(θ,C) :=

∫

C
pξ|B(θ, •) dµX for θ ∈ Θ and C ∈ AX

is a conditional distribution of ξ given B.

Considering two random variables over a common probability space we can give an
explicit formula for a conditional density of one random variable given the σ-algebra
generated by the other one.
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Proposition C.10. Let (Θ,A, P ) be a probability space, assume that (X,AX , µX) and
(Y,AY , µY ) are σ-finite measure spaces, and let ξ : Θ → X and η : Θ → Y be random
variables. Further, assume that the random variable (ξ, η) taking values in the product
space (X×Y,AX⊗AY ) has a density p(ξ,η) : X×Y → [0,∞) with respect to the product
measure µX ⊗ µY on AX ⊗AY . Then, setting

pξ(x) :=

∫

Y
p(ξ,η)(x, •) dµY and pη(y) :=

∫

X
p(ξ,η)(•, y) dµX

for x ∈ X and y ∈ Y , the function pξ|η : Θ×X → [0,∞) defined by

pξ|η(θ, x) :=







p(ξ,η)(x, η(θ))

pη(η(θ))
if pη(η(θ)) > 0,

pξ(x) if pη(η(θ)) = 0

is a conditional density of ξ with respect to µX given σ(η).

Reversing the roles of ξ and η in this proposition we get

pη|ξ(θ, y) :=











p(ξ,η)(ξ(θ), y)

pξ(ξ(θ))
if pξ(ξ(θ)) > 0,

pη(y) if pξ(ξ(θ)) = 0

as a conditional density of η with respect to µY given σ(ξ). Combining the formulas
for pξ|η and pη|ξ we arrive at Bayes’ formula for densities: For all θ ∈ Θ fulfilling
pξ(ξ(θ)) > 0 the equation

pξ|η(θ, ξ(θ)) =







pη|ξ(θ, η(θ))pξ(ξ(θ))

pη(η(θ))
if pη(η(θ)) > 0,

pξ(ξ(θ)) if pη(η(θ)) = 0

is satisfied.
Although θ appears explicitly as an argument of pξ|η the above proposition implies

that pξ|η depends only on η(θ) instead of θ itself. Thus, assuming that η is surjective,
the definition

pξ|η=y(x) := pξ|η
(

η−1(y), x
)

for x ∈ X and y ∈ Y
is viable. The same reasoning justifies the analogue definition

pη|ξ=x(y) := pη|ξ
(

ξ−1(x), y
)

for x ∈ X and y ∈ Y ,
if ξ is surjective. Using this notation Bayes’ formula reads as

pξ|η=y(x) =







pη|ξ=x(y)pξ(x)

pη(y)
if pη(y) > 0,

pξ(x) if pη(y) = 0

(C.2)

for all x ∈ X satisfying pξ(x) > 0 and for all y ∈ Y .
Eventually, we state a last relation, which is of use, too: The definition of pη|ξ implies

p(ξ,η)(x, y) = pξ(x)pη|ξ=x(y) (C.3)

for all x ∈ X satisfying pξ(x) > 0 and for all y ∈ Y .
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D. The Lambert W function

In this chapter we briefly summarize some properties of the so called Lambert W function
which occurs in Subsections 13.5.2 and 13.6.3. The material presented here can be found
in [CGH+96].

The Lambert W function at a point t ≥ −1
e is defined as the solution of

ses = t. (D.1)

We only consider real solutions s. For t ≥ 0 and t = −1
e there is exactly one real

solution. For t ∈ (−1
e , 0) there are two solutions. Thus we define two different W

functions. By W (t) for t ∈ [−1
e ,∞) we denote the solution of (D.1) which satisfies

s ≥ −1 and by W−1(t) for t ∈ [−1
e , 0) we denote the solution of (D.1) which satisfies

s ≤ −1. The functions W and W−1 are depicted in Figure D.1.
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)
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Figure D.1.: Branches of the Lambert W function; function W (left) and function W−1 (right).

Some specific values of W and W−1 are

W (−1
e ) =W−1(−1

e ) = −1 and W (0) = 0.

Both functions are continuous and

lim
t→∞

W (t) = +∞ and lim
t→−0

W−1 = −∞.

The derivatives of W and W−1 are given by

W ′(t) =
W (t)

t(1 +W (t))
and W ′

−1(t) =
W−1(t)

t(1 +W−1(t))

for t /∈ {−1
e , 0} and W ′(0) = 1.
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D. The Lambert W function

The asymptotic behavior of W and W−1 can be expressed in terms of logarithms:
For each ε > 0 there are t̄ > 1 and t̄−1 < 0 such that

(1− ε) ln t ≤W (t) ≤ (1 + ε) ln t for all t ≥ t̄ (D.2)

and
(1 + ε) ln(−t) ≤W−1(t) ≤ (1− ε) ln(−t) for all t ∈ [t̄−1, 0). (D.3)

These estimates are a direct consequence of

lim
t→∞

W (t)

ln t
= 1 and lim

t→−0

W−1(t)

ln(−t) = 1,

which can be seen with the help of l’Hôpital’s rule.
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1. Many problems from natural sciences, engineering, and finance can be formulated
as an equation

F (x) = y, x ∈ X, y ∈ Y,
in topological spaces X and Y . If this equation is ill-posed then one has to apply
regularization methods to obtain a stable approximation to the exact solution.
One variant of regularization are Tikhonov-type methods

T zα(x) := S(F (x), z) + αΩ(x)→ min
x∈X

with fitting functional S : Y × Z → [0,∞], stabilizing functional Ω : X →
(−∞,∞], and regularization parameter α > 0. The element z ∈ Z represents
a measurement of the exact right-hand side y ∈ Y . Typcially Y 6= Z since Y
is infinite dimensional but the data space Z is of finite dimension in practice.
Due to the ill-posedness detailed handling of data errors (noise) by the model
is indispensable. The very general Tikhonov-type approach investigated in the
thesis allows for improved models of practical problems.

2. Typically the analysis of Tikhonov-type methods in Banach spaces with norm
based fitting functionals relies on the triangle inequality. But also for non-
metric fitting functionals, that is, fitting functionals which do not satisfy a tri-
angle inequality, important analytic results can be obtained. In particular, it is
possible to prove convergence rates for the convergence of regularized solutions
xzα ∈ argminx∈X T

z
α(x) to exact solutions x† of F (x) = y if the noise becomes

small and if the regularization parameter α is chosen appropriately. Next to a
priori parameter choices also the discrepancy principle can be applied for choosing
the regularization parameter.

3. The convergence rates result is based on a special variational inequality, which
combines all assumptions on the exact solution x†, on the mapping F , on the
functionals S and Ω, as well as on the spaces X, Y , and Z in one inequality.
In principle the approach is known in the literature, but the new and extremely
general form presented in this thesis covers also non-metric fitting functionals and
arbitrary measures for expressing the rates.

4. One example which benefits from the general form of Tikhonov-type methods
under consideration is regularization with Poisson distributed data. Typical ap-
plications where the measured data follows a Poisson distribution can be found
in the fields of astronomical and medical imaging. Statistical methods motivate
the minimization of a Tikhonov-type functional with non-metric fitting term for
approximately solving such problems. The general theory developed in the thesis
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applies to this specific Tikhonov-type functional and thus convergence rates can
be proven.

5. The minimization of Tikhonov-type functionals involving non-metric fitting terms
is challenging but not impossible. Algorithms for solving the Tikhonov-type min-
imization problem with Poisson distributed data in the case that Ω represents
a sparsity constraint with respect to a Haar base can be formulated and imple-
mented. A comparison of the obtained minimizers with the solutions of a norm
based Tikhonov-type approach shows that the non-metric fitting functional has
advantageous influence on the minimizers.

6. The sufficient condition for obtaining convergence rates in the general setting
reduces to a form already known in the literature as variational inequality if Ba-
nach spaces and norm based fitting functionals are considered. There exist several
other conditions yielding convergence rates. Next to variational inequalities these
are source conditions, projected source conditions, approximate source conditions,
and approximate variational inequalities. Only few relations between these con-
ditions are given in the literature. Most results only state that a source condition
implies one of the other conditions. But extensive investigations reveal much
stronger connections between the different concepts.

7. Variational inequalities and approximate variational inequalities are equivalent
concepts in Banach spaces. Approximate source conditions contain almost the
same information as (approximate) variational inequalities and in Hilbert spaces
approximate source conditions are equivalent to (approximate) variational in-
equalities. Further, source conditions and projected source conditions are an
equivalent formulation of certain variational inequalities in Banach spaces.

8. Approximate source conditions in Hilbert spaces (and thus also the equivalent
concepts) yield not only upper bounds for the regularization error but also lower
bounds. Under suitable assumptions both bounds coincide up to a constant.
Thus, approximate source conditions provide better estimates for the regulariza-
tion error than source conditions. This result is also true for more general linear
regularization methods in Hilbert spaces.
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Symbols and notations

All occurring integrals are Lebesgue integrals. Usually we write

∫

A
f dµ

for the integral of the function f over the set A with respect to the measure µ. If
necessary, we indicate the variable to which the integral sign refers:

∫

A
f(t) dµ(t).

In case that µ is the Lebesgue measure on R we also write

∫

A
f(t) dt.

We frequently work with convergent sequences (xk)k∈N with limit x. If confusion can
be excluded we leave out the ‘for k → ∞’ and write only xk → x. Further, we do not
indicate the topology which stands behind the convergence. Only if it is not clear from
the context we use ‘

τ→’ instead of ‘→’ (with τ denoting the topology).

Throughout the thesis we use the following symbols:

X, Y , Z topological spaces, Banach spaces, Hilbert spaces
x, y, z elements of the spaces X, Y , and Z, respectively
τX , τY , τZ topologies on the spaces X, Y , and Z, respectively
Θ sampling set of a probability space
θ element of Θ
X∗, Y ∗ topological duals of X and Y
ξ, η, ζ elements of X∗, Y ∗, and Z∗, respectively, or random vari-

ables taking values in X, Y , and Z, respectively
A, B, C σ-algebras
P , µ, ν measures
F , A mapping or operator of the equation to be solved
R(f) range of a mapping f
D(f) domain or essential domain of a mapping f

A closure of a set A
f∗ conjugate function of a function f

In the context of Tikhonov regularization the following symbols frequently occur:
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Symbols and notations

S fitting functional
Ω stabilizing functional
α regularization parameter
T zα Tikhonov functional with data element z
xzα regularized solution with data element z
δ noise level
yδ, zδ noisy data

When discussing convergence rates we further use:

MΩ sublevel set of Ω
∂Ω(x) subdifferential of Ω at x ∈ X
BΩ
ξ (x̃, x) Bregman distance of x̃, x ∈ X with respect to ξ ∈ ∂Ω(x)

Dy0 measure for data error
Ex† measure for solution error
d, Dβ, dψ, Dψ,β distance functions
ϕ, ψ, θ (index) functions
M domain of a variational inequality

Occurring standard symbols are:

L1(T, µ) space of µ-integrable functions over the set T
L2(0, 1) space of Lebesgue integrable functions over (0, 1) for which

the squared function has finite integral
L∞(0, 1) space of Lebesgue integrable functions over (0, 1) which are

essentially bounded
H1(0, 1) space of functions from L2(0, 1) which have a generalized

derivative in L2(0, 1)
l2(N) space of sequences for which the series of squares converges
N natural numbers without zero
N0 natural numbers including zero
Z integers
R real numbers
Br(x) open ball with center x and radius r

Br(x) closed ball with center x and radius r

184



Bibliography

[ABM06] H. Attouch, G. Buttazzo, and G. Michaille. Variational Analysis in Sobolev
and BV Spaces: Applications to PDEs and Optimization. MPS–SIAM series
on optimization. Society for Industrial and Applied Mathematics and the
Mathematical Programming Society, Philadelphia, 2006.

[AR11] S. W. Anzengruber and R. Ramlau. Convergence rates for Morozov’s Dis-
crepancy Principle using Variational Inequalities. RICAM report 2011-06,
Johann Radon Institute for Computational and Applied Mathematics, Linz,
Austria, 2011.

[Bar08] J. M. Bardsley. An efficient computational method for total variation-
penalized poisson likelihood estimation. Inverse Problems and Imaging,
2(2):167–185, 2008.

[BB88] J. Barzilai and J. M. Borwein. Two-Point Step Size Gradient Methods.
IMA Journal of Numerical Analysis, 8(1):141–148, 1988.

[BB09] M. Benning and M. Burger. Error estimation for variational models with
non-Gaussian noise. Technical report, WWU Münster, Münster, Germany,
2009. http://wwwmath.uni-muenster.de/num/publications/2009/BB09.
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