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Kurzreferat 

In der vorliegenden Arbeit wird die Entwicklung eines effizienten Verfahrens zur parametri-

schen Finite Elemente Simulation von Mikrosystemen und zum Export dieser Modelle in 

Elektronik- und Systemsimulationswerkzeuge vorgestellt.  

Parametrische FE-Modelle beschreiben den Einfluss von geometrischen Abmessungen, 

Schwankungen von Materialeigenschaften und veränderten Umgebungsbedingungen auf das 

Funktionsverhalten von Sensoren und Aktuatoren. Parametrische FE-Modelle werden für die 

Auswahl geeigneter Formelemente und deren Dimensionierung während des Entwurfsprozes-

ses in der Mikrosystemtechnik benötigt. Weiterhin ermöglichen parametrische Modelle Sensi-

tivitätsanalysen zur Bewertung des Einflusses von Toleranzen und Prozessschwankungen auf 

die Qualität von Fertigungsprozessen. In Gegensatz zu üblichen Sample- und Fitverfahren 

wird in dieser Arbeit eine Methode entwickelt, welche die Taylorkoeffizienten höherer Ord-

nung zur Beschreibung des Einflusses von Designparametern direkt aus der Finite-Elemente-

Formulierung, durch Ableitungen der Systemmatrizen, ermittelt. 

Durch Ordnungsreduktionsverfahren werden die parametrische FE-Modelle in verschiedene 

Beschreibungssprachen für einen nachfolgenden Elektronik- und Schaltungsentwurf über-

führt. Dadurch wird es möglich, neben dem Sensor- und Aktuatorentwurf auch das Zusam-

menwirken von Mikrosystemen mit elektronischen Schaltungen in einer einheitlichen Simula-

tionsumgebung zu analysieren und zu optimieren. 
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Abbreviation and Symbol List 

Latin symbols 

a  lattice constant 

A  area 

B  strain-displacement matrix 

C  binomial coefficient 

C  damping matrix 

di  modal damping constants of mode i 

Dmax  total deflection range of the structure 

D  constitutive matrix, material matrix, elasticity matrix 

E  Young’s modulus  

f  frequency 

F  load vector 

G  goal function 

I  identity matrix 

J  Jacobian matrix, isoparametric transformation matrix 

Kn  Knudsen number 

K  stiffness matrix 

M  mass matrix 

N  shape functions 

p  parameter 

P, Pamb  pressure, ambient pressure 

Q  quality factor 

R  curvature radius 

R  residual force vector 

S  stress stiffness matrix 

t  time 

T, Tref  temperature, reference temperature 

T  transformation matrix 

u  nodal displacement vector 

v  nodal velocity vector 
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m  subscript representing master degree of freedom 

s  subscript representing slave degree of freedom 

x,y,z  Cartesian coordinates 

wi  weighting factor 

W  energy 

 

Mathematical symbols 

   is proportional to 

   for all 

   there exists 

 

{F}   vector 

[M], M   matrix 

Trace(M)  trace of M 

| M |, det(M )  determinant of M 

Mij    the i, j-th entry of M 

MT    transpose of M 

 

n

n

dx

xfd )(
, 

n

n

dx

yd
 Leibniz's notation for the nth derivative of the function y = f(x) at x 

f(n)(x)   Lagrange's notation for the nth derivative of the function f 

yDn
x , fDn

x   Euler's notation for the nth derivative of the function f 

y , y    Newton's notation for differentiation, derivative with respect to time 

f   gradient of f 

 

Greek symbols 

  solution error 

  forward difference 

  strain vector 

i  eigenvector of mode i 

  boundary of the domain 
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  mass density 

η, ηeff  dynamic viscosity, effective viscosity 

i  eigenvalue of mode i 

  Poisson’s ratio 

  squeeze number 

σ  stress vector 

ω  circular frequency 

ωi  circular eigenfrequencies of mode i 

  structural domain 

ξi   modal damping ratios of mode i 

,,  local element coordinates 

 

Abbreviations 

AD  Automatic Differentiation 

a.u.  arbitrary unit  

AWE  Asymptotic Waveform Evaluation 

BDRIE Bonding and Deep Reactive Ion Etching 

BEM  Boundary Element Method 

CAD  Computer-Aided Design 

CAE  Computer-Aided Engineering 

CFD  Computational Fluid Dynamics 

CMS  Component Mode Synthesis 

DAE  Differential Algebraic Equation 

DOF  Degree of Freedom 

EDA  Electronic Design Automation 

FDM  Finite Difference Method 

FE-  Finite Element 

FEA  Finite Element Analysis 

FEM  Finite Element Method 

FSI  Fluid-Structural Interaction 

FVM  Finite Volume Method 

gp  Gauss point 

GNA  Gauss-Newton Algorithms 



12 Abbreviation and Symbol List
 

HOD  High Order Derivatives 

HODM High Order Derivatives Method 

IC  Integrated Circuit 

LHC  Latin Hypercube 

LMA  Levenberg-Marquardt Algorithms 

MCS  Monté-Carlo Simulation 

MEMS  Micro-Electro-Mechanical System 

MFM  Mesh Free Method 

MOR  Model Order Reduction 

MSM  Modal Superposition Method 

ODE  Ordinary Differential Equation 

PA  Padé approximant 

PCB  Printed circuit board 

PDE  Partial Differential Equation 

pMOR  Parametric Model Order Reduction 

pROM  Parametric Reduced Order Modelling 

RF  radio frequency 

ROM  Reduced Order Modelling 

RSM  Response Surface Method 

SWA  Spellucci-Wittmeyer Algorithm 

TS  Taylor series 

2D  two dimensional 

3D  three dimensional 

 

et al.  and others (et alii) 

etc.  and so on (etceteras) 

e.g.  for example (exempli gratia) 

i.e.  that is (id est) 

vs.  versus 
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1. Introduction 

The MEMS designing is a very challenging and interdisciplinary task. Smart design metho-

dologies and software algorithms are required to design powerful, reliable and cost efficient 

microsystems within shortest time. Activities of the MEMS-Design group at the Chemnitz 

University of Technology are focused on software development for device and system simula-

tions, on modeling and simulation of user-specific applications and practical MEMS design 

for prototypes manufactured. Beyond the commercial software the thesis deals with advanced 

computational approaches required to extend the considered effects within the ordinary FE-

analyses. 

1.1 Previous Related Studies 

Commonly used numerical simulation methods (FDM, FEM and BEM) provide only results 

for a given set of geometrical and physical parameters. Any change of design parameters, 

loads or boundary conditions requires further simulation runs. Many different topics in the 

field of structural analysis, design sensitivity analysis and optimization are covered in Ph.D. 

work [1]. Usually, the methods of design sensitivity analysis used the approach, where deriva-

tives of finite element matrices and vectors are approximated by first order finite differences 

is adopted. Because, it is very difficult to establish analytical relations between the derivatives 

of finite element matrices and the available types of generalized shape design variables on the 

general mesh generation and parameterization features. For static problems the semi-

analytical method of design sensitivity analysis is prone to large errors for certain types of 

problems involving shape design variables. The inaccuracy problems may occur for design 

sensitivities with respect to structural shape design variables in cases where the displacement 

is characterized by rigid body rotations which are large relative to actual deformations of the 

finite elements (e.g. beam-like, plate and shell structures). This error problem is entirely due 

to the finite difference approximation involved in determining various element matrix deriva-

tives [1]. HOD method, based on automatic differentiation, is a way to overcome these draw-

backs [2]. E.g., the modified approach to semi-analytical design sensitivity analysis based on 

exact differentiation of element matrices has been shown to yield accurate sensitivities [1]. 

A number of numerical techniques to handle MEMS macromodel have appeared over the last 

decade. The two major ones are: mode superposition technique [3, 4] and Krylov subspace 

based methods [5, 6]. But the traditional reduced order methods are incapable of dealing with 

the parametric models. Complete system level simulation requires accounting for the process 

variations and for the influence of packaging effects [7]. Recently, some parametric methods 

have been proposed to preserve the parameter during the reduced process [7, 8, 9]. Feng use 

the pMOR method to preserve the film coefficient as a parameter in the compact thermal 

model [8]. The work [7] presented a method to generate a parameterized reduced order model 
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based on MSM by means of fit and interpolation algorithms. The possibilities of design opti-

mization enabled with the method parameterized modal superposition are demonstrated with 

an angular rate sensor. The result is strongly dependent on excellent fit procedures. Therefore, 

an optimized approach to generate parameterized MSM ROMs is a challenge task yet [7]. 

Following previous works, novel HOD method is applied to FEA in order to reduce the com-

putational effort of techniques for parametric macromodel extraction.  

1.2 Present Contributions 

The general objective of this thesis is to investigate in detail capabilities and limitations of the 

HODM as a novel approaches for the parametric MEMS simulation. 

The major contributions of the present work will be focused on the following topics: 

 development of a parametric FE-solver based on the derivation of the discretized FE 

equations and the computation of a Taylor polynomial of the solution from the high 

order derivatives 

 development of a library of parameterized finite elements 

 implementation of a parametric mesh-morphing algorithm 

 using of an automatic differentiations technique for extraction high order derivatives 

of the FE matrixes 

 testing of developed parametric FE-solvers, preparation some simple benchmarks, 

comparing parametric models with the result obtained by the ordinary FE-method. 

For the extension of possibilities for reduced order methods based on mode superposition 

technique the following investigations will be performed: 

 time effective ROM model generation using HODM 

 derivative based parameterization of macromodels. 

Prior to discussing the research topics, a literature review on state-of-the-art numerical me-

thods for the MEMS modeling will be conducted. 

1.3 Outline of the Thesis 

The thesis is subdivided into seven chapters. Chapter 2 presents a short survey of MEMS de-

sign and methods developed over the past decade. Following this, the FEM is described brief-

ly with particular attention to MEMS application. As part of the outline, the ROM design 
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framework which implements system simulation of MEMS is summarized. Computational 

approaches and challenges in reduced order modeling based on mode superposition method of 

the coupled electrostatic-structural domains, including nonlinear effects, fluid-structure inte-

ractions and packaging effects are presented. 

In Chapter 3 the mathematical basis of HODM for parameterization of the overall analysis 

procedures is described. To demonstrate the theory of the proposed method and its possibili-

ties, two simple, easy to check examples are presented. The first example is the model of a 

Duffing oscillator as the non-linear system. The second example is a 2-DOF mass-spring sys-

tem with modal and harmonic responses. 

Chapter 4 presents the implementation process of the HODM in FEA. First, a brief introduc-

tion to automatic differentiation is given. Next the differentiation of the FE-matrices is ex-

plained, with special emphases on geometrical parameters. Finally, mesh-morphing and sub-

structuring technique are described. 

In Chapter 5 the developed method is assessed on a number of examples in the static, modal, 

frequency response domains on the basis of the structural, electrostatic and coupled field ana-

lyses. To validate the approach, parameterized solutions, using the polynomials and rational 

fractions are compared to converged FE results, achieved by restarting for each set of parame-

ters. Numerical details, accuracy and observed problems will be discussed on several exam-

ples, which come from the MEMS problems. 

Chapter 6 demonstrates the viability of HOD methods for automated MEMS macromodel 

generation using a single FE run for ROM data extraction, which allows accelerating the gen-

eration of macromodel. In the second part, HOD technique is applied for extraction geometri-

cally parameterized reduced order models model of the MEMS components. The parameteri-

zation of the mode superposition based reduced order model in the coupled-physics domains, 

numerical details, accuracy and observed problems will be demonstrated by the macromodel 

generation procedure of an electrostatically actuated fixed-fixed beam. 

The thesis closes with conclusions drawn from the performed studies and suggestions for fu-

ture work in Chapter 7. 

 





 

2. Modeling and Simulation in MEMS Design 

In this chapter a short survey of MEMS design and methods developed over the past decade is 

given. Following this, the FEM is described briefly with particular attention to MEMS appli-

cation. As part of the outline, the ROM design framework which implements system simula-

tion of MEMS is summarized. Computational approaches and challenges in reduced order 

modeling based on mode superposition method of the coupled electrostatic-structural do-

mains, including nonlinear effects, fluid-structure interactions and packaging effects are pre-

sented. 

2.1 Evolution of Design and Methods 

Microelectromechanical systems, actuated by electrostatic force are widely used in various 

applications such as pressure sensors, microphones, switches, resonators, accelerometers, fil-

ters, tunable capacitors and material properties measurements. Nowadays, even the typical 

economy car contains some fifty MEMS sensors, and high-end models may have more than 

one hundred [10]. In the near future, major MEMS application segments are consumer elec-

tronics and medical applications. 

The MEMS design process is a strongly iterative multilevel process, Figure 2.1. The levels in 

design include lumped elements synthesis, process sequence development and mask layout 

drawing, component and system simulations [11, 12]. Several different software tools are 

used for this purpose. Numerical simulations are used both as a design tool and for under-

standing complex device behavior. Design and analysis of MEMS devices is heavily coupled 

to the fabricated processes. 
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Recently, many of the MEMS devices were designed, without essentially numerical simula-

tion, by intuition and analytical calculations [13]. Finally, the validation or rejection of ideas 

typically must be done by fabrication. One iteration of a design loop can take months. Simula-

tions are important, since fabrication and physical evaluation of devices are expensive and 

time-consuming steps. Modeling and simulation of MEMS is of vital importance to develop 

innovative products and to reduce time-to-market at lower total costs. Advanced design me-

thodologies and a variety of software tools are utilized in order to analyze complex geome-

trical structures, to account for interactions among different physical domains. Computer si-

mulations provide a deep understanding of the device behavior and lead to systems with op-

timized performance parameters. Time-to-market with R&D takes often few years despite 

growing experience and existing numerical algorithms and commercial tools. 

Limitation of computational resources must be considered as a fundamental principle that for 

algorithm implementation is important as physical laws. In general, it is necessary to use a 

simplified mathematical model of reality to render a simulation feasible. The algorithms, 

which do not require an excessively large time and system memory, those are realizable by 

real computers at least in principle are called effective algorithms. In the formal algorithm 

theory, an algorithm is called effective if it requires the time limited by some polynomial p(n) 

to process an input data of the length n. Then, the algorithms requiring an exponential time 

are not effective [14]. 

The most accurate numerical analysis of complex MEMS devices can be obtained by solving 

partial differential equations describing 3D physical fields. There are several widely accepted 

numerical techniques for solving electrical, mechanical, fluid and thermal fields, such as Fi-

nite Difference Method, Finite Element Method and Boundary Element Method. For each of 

these numerical techniques it is essential to produce a geometry model that accurately approx-

imates the real device. The design of MEMS is based on multiphysics simulation [15, 16, 17]. 

Usually, the mechanical domain is modeled by the FEM. For the electrical and fluid domain, 

both the FEM and BEM can be used, existing advantages and disadvantages for each one. In 

the coupled electrostatic-structural simulation the electrical domain is constantly changed and 

it is necessary to modify the mesh for each solution step. The drawback of FEM is the mesh-

modification makes the simulation computationally expensive. The FEM generates sparsely 

populated matrices that are easy to be solved.  The BEM avoids modification a mesh for the 

electrostatic domain and reduces the computational effort. The disadvantage of BEM is the 

dense matrices. Much of the activity in fluid mechanics has however pursued Finite Differ-

ence Method and Finite Volume Method. The meshless methods, which are a novel class of 

numerical methods, are still under development [18, 19]. 

CAD systems for MEMS began in the early 1990s, with the primary focus being on 3D model 

generation, algorithms for fast electrostatic analysis of complicated structures and methods for 

solving coupled partial differential equations [20, 21, 22]. Like mechanical CAD systems, 

MEMS CAD systems were integrated with FEM and BEM tools within the design environ-
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ment, generating mesh from 3D models or 2D layout. Senturia et al. was among the first 

people who suggested the architecture of their CAD system for MEMS [20]. Most commer-

cial CAD tools for MEMS have been developed in USA. For example, IntelliSuite [23], from 

IntelliSense Software Corp. (Woburn, Mass.), CoventorWare [24], from Coventor Inc. (Cary, 

N.C.) and MEMS Pro [25], from SoftMEMS LLC (Los Gatos, Calif.) are the CAD systems 

with special focus of MEMS. The two first companies are based on the pioneering MEMCAD 

system created at the Massachusetts Institute of Technology under the supervision of Profes-

sor S. Senturia. 

As the importance of MEMS increases, also commercial software vendors for general-

purpose simulation have provided integrated tools for MEMS applications [26, 27, 28]. For 

example, Ansys Inc. (Canonsburg, Pa.) has started to include special element types and algo-

rithms which are useful for electrostatically actuated devices [26]. 

Specialized tools for widely used micromachined polysilicon foundry process were developed 

in mid-1990s, and these tools using the specifics of the process to extract the model and simu-

lation [29]. For several years, high aspect ratio technologies based on BDRIE have been used 

and commercialized for fabrication of MEMS structures [30]. 

Modern MEMS CAD systems tend to integrate with existing EDA tools generating macro-

model from physics based models remains tedious and lacks automatic adaptation tools. This 

situation is one of the major challenges for integrating analysis into the design environment. 

The goal of MEMS macromodeling is to create a black-box model with interface input/output 

ports and internal state variables what can be analyzed within reasonable time and almost the 

same accuracy as obtained from full models. The developers of general MEMS CAD systems 

attempted to achieve this goal by focusing on using model-order reduction to extract system 

level models, which is define by the ODE from the coupled PDE descriptions of MEMS at the 

physical level, using two strategies: the superposition of basic function based on Rayleigh-

Ritz method [3, 4, 31, 32, 33] and the matrix subspace projection based on FE matrices [5, 6]. 

The advantages and disadvantages of each implementation were analyzed and then some se-

lection principle was proposed in [34, 35]. Reduced order modeling of MEMS allows a tre-

mendous reduction of model size which becomes important for time-domain simulations with 

several hundreds of steps needed for circuit and control system virtual prototyping [36]. Since 

reduced order models are based on analytical terms, they can easily transfer from one simula-

tor to others and can be adjusted to experimental data. 

Parametric modeling has become the basis for most mechanical CAD systems. In mechanical 

design, 80% of design tasks are variational [37]. Therefore, parameterized CAD models can 

be reused in design step. Parametric design is a revolutionary paradigm of CAE systems, 

which allows designers to take into account the parameters variation of a model in single step 

without redesign [38]. The parameters can be automatically recognized from the CAD model. 

Parametric design can help the designer to find the best parameters for a system, or a com-



22 2. Modeling and Simulation in MEMS Design
 

pletely new design which is uncertain in classical design processes. Parameterization has both 

advantage and disadvantage. Parameterization increases complexity of the problem as design-

er must model not only the initial concept, but a structure that guides variation. Changes can 

cause invalid model. Positively, parameterization can reduce the time and effort required for 

change and reuse, and can yield better understandings of the conceptual structure. 

The number of parameters is a criterion: A model with a few parameters can be deduced from 

curve fitting or numerical and experimental observations. When the number of parameters 

grows, it becomes more difficult to span the complete parameter space, since each parameter 

lets the number of possible variations grow in an exponential way. 

Different types of design parameters can be handled in modeling of MEMS component. The 

most obvious ones are continuous parameters such as geometrical dimensions, material prop-

erties, etc. The designer can also deal with discrete parameters such as boundary conditions or 

loads. Process issues involving dimensional variations can highly change the transfer function 

of the MEMS components as well as have an influence on the effect of temperature and pack-

aging. 

The design variables can be categorized as follows [39]: 

 Geometrical design variables: 

Sizing design variables: describe cross-sectional properties of structural components 

like dimensions, cross-sectional areas or moments of inertia of beams; or thicknesses 

of membranes, plates and shells 

Configurational design variables: describe the coordinates of the joints of discrete 

structures like trusses and frames; or the form of the center-line or mid-surface of con-

tinuous structures like curved beams and shells 

Shape design variables: govern the shape of external boundaries and surfaces, or of in-

terior interfaces of a structure. Examples are the cross-sectional shape of a beam; the 

boundary shape of a plate or shell; the surface shape of a 3D component; or the shape 

of interfaces within a structural component made of different materials (multi-

material) 

Topological design variables: describe the type of structure, number of interior holes, 

etc., for a continuous structure. For a discrete structure like a truss or frame, these va-

riables describe the number, spatial sequence, and mutual connectivity of members 

and joints. 

 Material design variables: represent constitutive parameters of materials. 
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 Support design variables: describe the support or boundary conditions, i.e., the num-

ber, positions, and types of support for the structure. 

 Loading design variables: describe the positioning and distribution of external load-

ing which in some cases may be at the choice of the designer. 

 Manufacturing design variables: parameters pertaining to the manufacturing 

process, which influence the properties and cost of the structure. 

There are still many design automation challenges in MEMS design. Other problems are re-

lated to the manufacturing of MEMS, more complicated process techniques are used for 

MEMS, feature sizes decrease. Now also the packaging of MEMS must be included in the 

MEMS design process. The next frontier is the integration of the CAD tool and topology op-

timization technique. This combination will make CAD a true design tool. Optimization-

driven design can help to develop MEMS by applying the most advanced optimization me-

thods to solve the design problem. Optimization-driven design methodology generates optim-

al design from supplied input parameters, loads, constraints and required product performance 

and manufacture conditions in innovative concepts and less time [40]. 

2.2 FE-Simulations 

FEM is the dominating numerical method used for simulating the behavior of MEMS compo-

nents. FEM has various aspects. On an application point of view, the basic steps of FEM are 

discussed below in generality. Ordinary FE programs are organized in the following [41, 42]: 

 Meshing of the simulation domain into elements: numbering the elements and nodes. 

(preprocessing) 

 Assembling global stiffness matrix K and load vector F, element wise: calculate the 

element stiffness matrix, kel, for each element and assemble it into the K 

 Calculate the element load vector, f el, for each element and assemble it into the F 

 Modifying global stiffness matrix and global load vector to enforce boundary condi-

tions 

 Solving the system of equations for the unknown value at each nodal point 

 Obtain secondary results 

 Visualization the results (postprocessing). 

The global stiffness matrix K for the entire structure can be assembled if the “force-

displacement” relationship for each of these discrete elements is known. The terms displace-
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ment, force and stiffness will be used in this work, it is implied that the concepts apply to all 

valid effects also. Thermal, fluid and electrostatic analyses are done on an analogous basis by 

replacing the appropriate terms. The physical significance of the vectors u and F varies ac-

cording to the application being modeled, as illustrated in Table 2.1. 

Table 2.1 Data for different disciplines nomenclature 

Discipline 

Structure 

properties  

K 

Action 

 

F 

Primary Data Derived Data 

Behavior u Gradient Flux 
Potential 

energy 

elastic stiffness force displacement stress strain elastic 

thermal 
thermal 

conductivity 

heat 

source 
temperature 

temperature 

gradient 
heat flux thermal 

fluidic 
dynamic 

viscosity* 
flow rate pressure 

pressure  

gradient 
 

viscous 

losses 

electrocon-

ductivity 

electro 

conductivity 
current potential electric field 

flux    

density 

dissipation 

losses 

electrostatic permittivity charge potential electric field 
flux    

density 
electrostatic 

The main four types of structural analyses are explained below. 

 Static analysis is used to determine displacements, stresses, etc. under static loading 

conditions. Both linear and nonlinear static analyses are allowed. There are two kinds 

of non-linearity: 

geometrical non-linearity (stress stiffening, large deflection and contact) 

material non-linearity (large strain  and variation of stress with respect to strain). 

 Modal analysis is used to calculate the natural frequencies and mode shapes of a 

structure. 

 Harmonic analysis is used to determine the response of a structure to harmonically 

time-varying loads. 

 Transient analysis is used to determine the response of a structure to arbitrarily time-

varying loads. Two solutions methods are available to do a transient dynamic analysis:  

full (most general methods allows all types of nonlinearities mentioned under static 

analysis above to be included) 

mode superposition (used sum of factored mode shapes from a modal analysis to cal-

culate the response). 
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Although attention is focused on structural problems, most of the steps translate to other ap-

plications problems as noted above in Table 2.1. There are two ways in obtaining the solution 

of the matrix equations, namely, direct methods and iterative methods. These specific me-

thods are called solvers. It should be emphasized that the solution of the matrix equation is 

usually computed without taking the inverse of the matrix which will require relatively large 

computational processes [43]. 

The multiphysics solution methodology implemented involves a sequential strategy where the 

each domain are modeled separately and the interaction between them is done by inserting the 

results of one domain analysis into the other until convergence is reached, Figure 2.2a. 

  

a) Full-mesh simulation b) Mode superposition method 

Figure 2.2 Parametric transient multiphysics simulation 

The coupled electrostatic-structural analysis is difficult because the electrostatic pressures are 

non-uniform and change as the structure deforms. But transient fully-meshed simulations for 

coupled-domain systems can be quite time consuming using the traditional FE approach. For 

example, full-mesh transient self-consistent coupled electro-structural simulation of MEMS 

devices still take a few hours using commercial finite element solvers [43]. One should have 

in mind that typical electronic simulation runs need several ten thousands of time steps what 

cannot be processed by FEM in reasonable time [36]. 

Drawback of existing FE techniques is that those algorithms can only analyze a single model 

configuration with specified dimensions and physical parameters. A change of a design para-

meter could be caused by either a parameter variation loop, Figure 2.2. The levels of difficulty 

of the physical simulations can be classified using three main axes: the parameters, the physi-

cal domains and the response, as illustrated in Figure 2.3. 

Bottleneck of the transient multiphysics simulation are for-loops that do not run fast. Here are 

two specific ideas to increase efficiency. First one is to use decomposition based on the MSM, 

which is an automated approach, Figure 2.2b. MSM method decomposes the problem into 

single domains and solves the problem on each domain separately. Because of the de-

coupling, this method is well-suited for parallel computing. The connection between the sub-

domains is provided by model amplitudes [4]. 

Second one is to apply higher order derivatives method to FEA. The complexity ratio of fac-

torization to solution of the matrix increases with the dimension of the system. For large ma-
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trix, this time ratio may be rather large. The applications of higher order derivatives method to 

FE problem as a way to increase the efficiency, accuracy and robustness was started in the 

1990s [44, 2, 45, 46]. Paper [47] reviews different techniques for structural design sensitivity 

analysis, including global finite differences, continuum derivatives, discrete derivatives and 

automatic differentiation. Parametric technologies have been applied to optimization in me-

chanical engineering [2, 44, 46], for CFD problem [45, 48] and in electromagnetism 

[49, 50, 51, 52]. Later this approach was used for microwave device design [53] and parame-

tric model extraction for MEMS [54, 55]. First commercially available software was devel-

oped by the French company CADOE S.A. [56]. 

 

Figure 2.3 The levels of difficulty of the physical simulations 

The key idea of the HOD approach is to compute not only the governing system matrices of 

the corresponding FE problem but also high order partial derivatives with regard to design 

parameters by means of the AD as shown in Figure 2.4. As result, Taylor vectors of the sys-

tem’s response can be expanded in the vicinity of the initial position capturing dimensions 

and physical parameter. By using the HOD method, the simulation results become directly 

polynomial functions in terms of design parameters. Reusing of extracted matrices for differ-

ent type of analyses (Figure 2.3) can increase the efficiency of HOD method. 
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2.3 Recent Developments and Challenges        

in Reduced Order Modeling of MEMS 

The growth in the MEMS industry in the past ten years has led to the necessity of standardiza-

tion of the MEMS models and design tools. In the year 2002, Ansys, Inc. shipped the ANSYS 

Multiphysics software product (Release 7.0) with first version of the reduced order modeling 

tool for the coupled electrostatic-structural domains. The ANSYS ROM tool has been devel-

oped as an extension of mode superposition method to the coupled electrostatic-structural 

domains [57, 58]. It describes the dynamic behavior of electromechanical flexible compo-

nents as a system of second order ordinary differential equations. The number of degrees of 

freedom of this system is equal to the number of chosen modes. Difficulties of consistent 

modeling arise from the fact that the model types are heterogeneous. Package and transducer 

models are usually generated by FE tools, controller units are based on signal flows as known 

from MATLAB/Simulink and electronic circuits are represented by Kirchhoffian networks 

with languages as Verilog-A or VHDL-AMS. A schematic view on the ROM layout and in-

terfaces is shown in Figure 2.4. 

The entity transducer element (the ROM144 functional blocks in Figure 2.5) describes the 

interface of the macromodel. Each DOF of the ROM element is mapped to one of the across 

or through quantities of the terminals of the entity. At the modal terminals the modal ampli-

tude qi and external modal force fmi (e.g. acceleration, angular rate) are available for the cho-

sen modes. The master node terminals provide the displacement ui and the inserted forces fni 

at these nodes. At the electrical terminals the voltages Vj and currents Ij are available for the 

electrodes of the system. 
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Figure 2.5 A schematic view on the VHDL-AMS exported ROM model in ANSOFT/Simplorer 



28 2. Modeling and Simulation in MEMS Design
 

The governing equations describing an electrostatically actuated structure in terms of modal 

coordinates in the mechanical domain become 
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Where r is the number of capacitances involved between the multiple electrodes. The capacit-

ance Ckl between the electrodes k and l provides the coupling between the mechanical and 

electrical domains. The current Ij through the electrode j can be calculated from the stored 

charge Qj: 
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Efficiency of reduced order models becomes obvious if one considers the total number of 

differential equations to be solved. There is only one equation for each eigenmodes (basis 

function) and one equation for each conductor. True structural displacements u are calculated 

from modal amplitudes q by 
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where uref are initial displacements, E
i are the eigenvectors involved in the reduced order 

model. 

The equations (2.1), (2.2) and (2.3) are defined the transducer ROM macromodel, which fully 

describe the static, harmonic and dynamic nonlinear behavior of the flexible structure.  

All missing parameters of the ROM can be derived from a detailed FE-model of the MEMS 

component. Geometrical nonlinearities and stress-stiffening are considered by calculating the 

modal stiffness kij from the second derivatives of the strain energy WSENE [32], which is stored 

within the structure due to deflection with respect to the modal amplitudes: 
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The modal masses mi are calculated from the eigenfrequencies i of the modes i and the en-

tries of the modal stiffness matrix kij: 
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The modal damping constants di are calculated from the modal damping ratios i that 

represent the fluidic damping (squeeze and slide film damping) of the structure and can be 

obtained from analytical calculations, CFD simulations or measurements: 

 iiii md 2 . (2.6)

In such a way, the strain energy, the mutual capacitances, the damping coefficients and the 

modal load forces are the parameters characterizing the coupled electromechanical system. 

The ROM macromodels are generated by numerical data sampling and subsequent fit algo-

rithms [4]. Each data point must be obtained by a set of separate FE runs in the structural, 

electrostatic and fluid domains. At each point (q1,q2,…,qm) the microstructure is displaced to a 

linear combination of m selected mode shapes in order to calculate the strain energy 

WSENE(q1,q2,…,qm) in the structural domain. For example, in the case of k modal amplitudes in 

each mode direction, the number of orthogonal sampling points would be km. At each point 

the r = n(n1)/2 linear simulations are performed to compute lumped capacitances 

Cr(q1,q2,…,qm) in the deformed electrostatic domain, where n is the number of conductors. 

The operating range of each mode is proportional to their mode contribution factors taking 

into account the total deflection range: 
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It should be noted, that mesh-morphing based on a Laplacian smoothing does not allow large 

transformations of the mesh. 

The ROM macromodels capture the complex nonlinear dynamics inherent in MEMS due to 

highly nonlinear electrostatic forces, residual stresses, stress stiffening and supports multiple 

electrode systems and mechanical contact phenomena at system level [59]. The resulting 

ROM model has a good scalability. E.g., the ROM model is able to capture nonlinear squeeze 

film phenomena, such as deflection dependent damping and stiffening as reported in [60].  

Nowadays, the ANSYS ROM tool has become the industry standard for macromodels extract-

ing of MEMS components [61-67]. The MEMS suppliers like IC ones can provide model 

libraries for their electromechanical components. The ROM technology based on mode su-

perposition method is very effective technique for fast transient simulation of MEMS compo-

nent and for export macromodels to external system simulators. The most common simulation 

tools at system level are signal flow graphs system Simulink; PSPICE circuit simulators and 

VHDL-AMS, VERILOG-AMS simulators. The extracted macromodel can be automatically 

export to VHDL-AMS language. The description of ROM macromodels in PSPICE is pre-

sented in [4]. 
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2.3.1 Reduced Order Modeling of Fluid-Structural Interactions 

The goal of the FSI modal projection procedure is to find an equivalent damping and stiffness 

matrix representation which captures the true dependency between structural velocities v and 

fluid pressure P(v) but is written in modal coordinates. 

The coefficients cji and kji state the dependency between structural wall velocities caused by 

mode i and the reacting fluid forces which act on mode j. The coefficients cji and kji of such a 

matrix representation can be obtained from the modal force balance equation 

 ),( iii
T
jijiiji qFqkqc   , (2.8)

where Fi is the complex nodal force vector. The complex nodal damping force vector caused 

by a unit modal velocity of the source mode i is given by 

  dAqPqF ii
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where N is the vector of the FE shape functions. 

In contrast to the quasi-static FE simulations, which are necessary to extract capacitance in-

formation of electrostatic-structural interactions, the modal projection approach requires a 

series of harmonic response analyses to capture the dynamic nature of fluid-structural interac-

tions. In practice one can analyze just five frequencies which are regular spaced around the 

cut-off frequency or eigenfrequency of each mode [60]. The analysis based on linearized 

Reynolds equation known from Lubrication theory is widely used in MEMS to determine the 

fluid pressure P(v) with regard to frequencies. A modal decomposition of damping effects 

becomes admissible since the Reynold’s squeeze film equation is linear. It is possible to as-

sess the damping properties of individual modes for a unit velocity according (2.8) and later, 

when using the ROM, the modes are scaled to the current velocities. 

One should keep in mind that the linearized Reynold’s equation describes dissipative effects 

at the initial position. A repeated use of the numerical squeeze film analyses, similar to the 

electrostatic-structural data sampling, allows us to gather damping information at various 

points of operation. The behavior between data points can be interpolated by analytical func-

tions which are obtained by a least square fit [60]. 

Small and large signal capabilities of the discussed damping models are implemented in a 

beta-test element ROM140 in the ANSYS program. It allows up to nine shape functions and 

can directly be attached to the existing electrostatic-structural ROM144 element [43] for har-

monic and transient coupled domain simulations (see Figure 2.4). 
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2.3.2 Package-Transducer Interactions 

The cost of packaging, assembly and test of those new devices may be decreased through the 

increased use of simulation. The problem is the lack the appropriate tools to simulate the 

package model at system level. Because of size and functional aspects it is more efficient to 

create two separate FE-models, one for the package with a dummy block of silicon at the 

transducer’s location and one model for the transducer, capturing the electromechanical re-

sponse of the sensor [36, 68]. Package simulations are coupled thermal-mechanical analyses 

with the goal to determine the influence of mechanical stress and structural deformation on 

the transducer cell. After package simulations have been finished the obtained interface data 

are applied as displacement and temperature constrains on the substrate of the MEMS device. 

In a subsequent finite element run one computes the equilibrium position of the seismic mass 

and related capacitances of the transducer cell. 

Packaging interactions are usually unidirectional couplings to the transducer. Environmental 

and operating conditions of the sensor cause thermal and mechanical effects in the package. In 

particular parameters such as chip temperature, curvature radiuses and in-plane strains at the 

bonding face must be passed to the transducer cell. 

The ROM algorithm based on MSM was recently extended to account for package-transducer 

interactions [7, 36]. It turned out that modal shape functions E are not appropriate to map the 

mechanical deformation of MEMS caused by packaging stress. In many cases an excessive 

number of modes have to be chosen to guarantee accurate results for prestressed microme-

chanical components. A few additional basis functions A which describe the deformation 

states at snapshots of typical environmental conditions overcome the problem. Thermal-

mechanical effects in MEMS caused by the package can efficiently be represented by 
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The u(Tref) maps displacements at reference temperature, the second term the dynamic re-

sponse over time t and the third one improves accuracy for loads varying with temperature T. 

A single additional shape function is sufficient to capture linearly varying temperature and 

stress profiles caused by the package [36]. 

2.3.3 Assumptions and Restrictions 

The existed ANSYS ROM tool uses only polynomial types for fit procedures [43]. Polyno-

mials are very convenient since they can capture smooth functions with high accuracy. The 

strain energy functions are inherent polynomials. In the case of linear systems, the strain 

energy can be exactly described by a polynomial of order two since the stiffness is constant. 
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But for accurate approximation by means of a least squares method, the number of FE data 

points must be larger than the polynomial order. To get best polynomial fit it is an important 

to scaling and centering at zero mean the data. It is essential that the fitting function of capa-

citances must provide not only capacitance data but also the first and second derivatives 

needed for Maxwell force and electrostatic softening computations. The first and second de-

rivatives of strain energy describe force and stiffness terms. 

The fitted functions must be evaluated faster to increase the efficiency of the ODE time inte-

grator at system simulation. Essential speed up for the existed ROM tool at generation and 

uses passes is achieved since the deformation state of the mechanical system is represented by 

a weighted combination of a few eigenmodes. Moreover, modes considered for use in the 

ROM are classified as dominant or relevant, what allow a reduction of the set of polynomial 

coefficients. In ANSYS ROM tool, it turned out that two dominant modes are sufficient for 

most applications. The polynomials can then be described by the series representation of func-

tions with three variables [4]. 

Modes used for ROM can either be determined automatically from the results of the test load 

or based on their modal stiffness at the initial position. In these matters, ANSYS ROM tool is 

limited to systems moving primarily in one direction. Separating the generation of ROM 

models for different operation directions circumvents current limitations of the used ANSYS 

ROM tool method. Two separate ROMs have to be generated for the angular rate sensor: one 

representing the in-plane movement of the rotor and the other the out-of-plane movement 

[65]. 

Some type of MEMS (e.g. RF switch) requires an excessive number of modes to accurately 

describe its shape. Increase of the number of considered modes is a way to extend the consi-

dered effects within the ROM methods. Unfortunately, the memory and computational costs 

of the process grow exponentially with the order of the model. The grid-like data sampling 

process is expected to grow as nk, where n is the number of design parameters and k is the 

number of states for each design parameter. 

In order to overcome drawbacks of polynomial approximation, one needs the robust algo-

rithms for multivariate data fitting. Rational interpolation sometimes gives better approxima-

tions than polynomial interpolation [4]. Rational models are defined as ratios of polynomials 

and in multivariate case are given by 
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where r is the degree of the numerator polynomial and s is the degree of the denominator po-

lynomial, n is the number of parameters. Polynomial coefficients ar(bs) are arranged in suc-
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cessive order, whereby the multi-index  corresponds to the line location index r() (see Sec-

tion 4.6 for details). 

The disadvantage of rational is that they become unstable when the denominator has poles. In 

the multivariate case the issues of unique and convergence of solution is much more delicate 

than in the univariate case. To start a minimization, one needs to provide an initial guess and 

algorithms converge only if the initial guess is already somewhat close to the final solution. 

The Spellucci-Wittmeyer algorithm, that is more robust than the Gauss-Newton and Leven-

berg-Marquardt algorithms, is proposed for ROM in [69]. The SWA is an iterative and very 

fast procedure [70]. 

The ROM generation pass from the series of FE runs is a computationally expensive. The 

classical RSM, needed for the behavioral model extraction, is based on an orthogonal sam-

pling scheme. More valuable approach is based on spreading points over the design space. 

This can be done by a number of methods: random, Monte Carlo, Latin-Hypercube scheme. 

Alternatively to the data sampling techniques, power expansion approach for behavioral mod-

el extraction and building response surfaces was investigated in [71]. Like polynomial fitting, 

the power expansion is also using a polynomial form for the response surface, but the poly-

nomial represents a Taylor expansion at the initial point of the variation range of the parame-

ters, Figure 2.6. Padé approximants can be used to transform of a Taylor series into a rational 

function. In particular, the time consuming data sampling process in the static and frequency 

response domains has been replaced by a single FE run on the basis of the structural, electros-

tatic and squeeze film analyses with regard to modal amplitudes [71]. More details on deriva-

tives based approach algorithm are given in Section 6. 

  

a) Data sampling approach b) Power expansion approach 

Figure 2.6 Response surface method to the behavioral model extraction 

Drawback of the existing ROM techniques is that those algorithms can only analyze a single 

model configuration with specified dimensions and physical parameters. In practice, there is 

necessity to know the influence of parameter variations on the structural response in order to 

optimize the entire system and to assess the effect of tolerances or changed material. In this 

context the paper compares different techniques which are applied to parametric tasks. 
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Recently, parametric ROM using data sampling approach and design optimization algorithms 

has been presented to the angular rate sensor [72]. Parameterization of the reduced order 

model generation procedure is based on different fitting algorithms which have been com-

pared for an application example. K-nearest neighbor algorithm, polynomial fitting and Gaus-

sian models have been applied to fit the generated sampling data [72]. This approach is not 

computationally efficient, but can be used as a reliable method. The result is strongly depen-

dent on excellent fit procedures. Therefore, an optimized approach to generate parameterized 

ROMs is challenge task yet. Beyond the commercial software the thesis deals with advanced 

computational approaches required to extend the considered effects within the ROM proce-

dures. Two problems are highlighted: effective model extraction and parameterization of ma-

cromodel based on based on mode superposition method. 

 



 

3. Theoretical Background of HODM 

This chapter describes the mathematical basis of HODM for parameterization of the overall 

analysis procedures. In the standard matrix methods of analysis, based on lumped element 

idealization, as well as mesh-methods, the structure being analyzed is approximated as an 

assembly of discrete elements connected at nodes. By using HODM, a parametric solution is 

extracted as a power series with regard to the required parameter. To demonstrate the theory 

of the proposed method and its possibilities, two simple, easy to check examples are pre-

sented. The first example is the model of a Duffing resonator as the non-linear system. The 

second example is a 2-DOF mass-spring system with modal and harmonic responses. 

3.1 Power Series Expansion of a Function 

In many engineering problems a closed form solution of the problem cannot be obtained and 

one is content with using the power series expansion of the solution. The power series expan-

sion is a possibility to represent an arbitrary function in the form of an infinite sum of power 

functions. The three main generalizations of power series expansion of a function such as 

Taylor series, Padé approximant and Gevrey series are discussed here. Such approximations 

give faithful representations of the function near the point of expansion. Some recent works 

on two-point or multi-point approximants can be found in [73]. 

3.1.1 Taylor Series 

Taylor expansion is a common engineering approach to estimate the structural response ver-

sus parameter variation: 

 )()()( pRpTpf mm  . (3.1)

The coefficients of the Taylor series depend only on the derivatives of the function at the ini-

tial point p0: 
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The Lagrange form of the remainder is given by 
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There is a possibility on the representation of function in generalized orthogonal polynomials, 

for example the Legendre, Chebyshev, Jacobi, Hermite or Laguerre polynomials. According 
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to the theorems of the approximation theory, the Chebyshev polynomials gives a best approx-

imation to a continuous function over all possible. 

The Taylor series is convergent in a neighborhood of p0, if the function is analytic. In general, 

the Taylor series may not convergent to the original function f. Some functions with singulari-

ties on the real axis, with singularities in the complex plane or with branching point cannot be 

presented as Taylor series. When a pole in the Taylor expansion closes to the value of the 

parameters the convergence of the Taylor expansion can be slow even through a high deriva-

tion order (e.g. capacitance vs. gap between two electrodes, see Chapter 5 for details). 

3.1.2 Padé Approximant 

The [n/d] Padé approximant of a function f(p) is denoted as 
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pR

d

n [n/d] , (3.4)

where An(p) and Bd(p) are polynomials of degree n and d, respectively. For different values of 

n and d expression (3.4) form a table which called the table of Padé approximants [74, 75]. 

A Padé tries to extend the extrapolation domain over the poles. The zeros of denominator are 

the poles of the Taylor expansion. Using the rational function that includes the poles can 

make convergence faster than a polynomial approximation and it still work where the Taylor 

series does not converge. 

Padé approximant can be compute from a Taylor expansion by means algebraic manipulation, 

i.e. a transformation the coefficient array in some way without choosing any particular argu-

ment. The b0 must be normalized to unity and the other coefficients a and b are then related 

by matching terms in (3.2) and (3.4): 
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Firstly, the vector b is computed by solving the linear system: 
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The vector a is calculated by 
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Although the entries in the Padé approximant can be always generated by solving the system 

of equations (3.6) and (3.7), that approach is computationally expensive. More efficient me-

thods have been devised, including the epsilon algorithm [76]. 

It would be important for multiparametric analysis to construct a multivariate Pade approxi-

mation. During the few last decades much research has been done which try to apply the 

techniques developed for the univariate Padé approximants to the multivariate case and to 

find a generalization with good convergence properties [77, 78]. In contrast to the univariate 

case, the concept of degree is not clear and many choices are possible for developing the mul-

tivariate Padé approximants. The systematic developments on the subject are known as the 

Chisholm approximant (bivariate case) or Canterbury approximant (general multivariate 

case). For bivariate test functions, authors [79] find that the Levin-like transforms yield better 

approximants over a wide range of the two variables. However, as in the case of a function of 

one variable, the Padé approximants are better at reproducing the poles of the function. The 

multivariate representation can be consisting of a series of nested graphs. More details on how 

to build a Padé approximation from the derivatives of a function can be found in [78]. 

3.1.3 Gevrey Series 

An interesting alternative to Padé approximation is suggested in [80]. In contrast to Padé 

which tries to extend the extrapolation domain over the poles, the basic idea is to use Gevrey 

series, which avoid the singularities. A formal power series with complex coefficients 
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is the Gevrey of order s, if the associated series 
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has a non-zero radius of convergence, i.e. if C > 0 such that m > 0, |am| < Cmm!s [81]. Ge-

vrey series of order s > 0 are general divergent. For s < 0, Gevrey series define entire func-

tions. Gevrey series are widely used for describing solutions of differential equations near 

singular points and, in particular, for representations of elementary and special functions near 

their singular points. Using Gevrey series avoid the singularities by the mean of a variable 
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change. The singularities are rejected out of the convergence domain. The approximation is 

calculated by a Laplace transform [82]. 

3.2 Parameterization of a Static Analysis 

3.2.1 Linear Case 

The solution of an overall linear static system depending on a parameter p is described by 

 )()()( 1 ppp FKu  . (3.10)

The first derivative of the u with respect to p is given by implicit differentiation of the (3.10) 

  )()()()()( )1()1(1)1( ppppp uKFKu   . (3.11)

The first order derivatives are commonly used in structural optimization [1]. Haftka [83] pio-

neered in the application the second order derivatives. Consequently, the second derivative of 

the u with regard to p is 

  )()()()(2)()()( )2()1()1()2(1)2( ppppppp uKuKFKu   . (3.12)

Higher order derivatives can be computed from the recursive formula 
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where 
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  is the binomial coefficient. 

Finally the Taylor series expansion of the unknown displacement vector becomes in terms of 

derivatives at the evaluation point p0 
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It is important to note that the Taylor series needs just the value of the function and its deriva-

tives at a single point p0. The entire approach requires one factorization of the matrix K(p0) 

and all other operations for computing of the displacement vector derivatives are time effi-

cient matrix-vector products. 



3. Theoretical Background of HODM 39
 

3.2.2 Non-linear Case 

The possibility to apply the HODM to the static non-linear structural analysis is discussed 

here. In this case, the displacement u is the solution of a non-linear equation: 

 0)),(( ppuR . (3.15)

Only the differentiable non-linearity is considered. Using of the chain rule to differentiate 

implicitly defined functions, the first derivative of u with respect to a structural parameter p is 

given by 
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R
 is the tangent matrix, Jacobian in the last iteration of Newton-Raphson’s algo-

rithm;  the term 
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 is the partial derivative of the residual term with respect to the structural 
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the residual term derivatives, the second derivatives of u can be obtained by continue the de-

rivation process 

  )1()1()2(1)2( )()( pp uJRJu   . (3.17)

The computation of the second derivative of u needs only the first derivative of Jacobian J, 

which could be computed with the variation of p and the corresponding variation of u. The 

right hand-side residual term R is an explicit function of u and p. 

Higher order derivatives can be computed from the recursive formula 
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The HODM applied to differentiable non-linear analysis has a high efficiency due to the fact 

that the cost needed to get all derivative displacement vectors is similar to the cost to get the 

derivatives of displacement vectors in linear case, and smaller than the cost to get the non-

linear solutions of (3.15). 
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3.2.3 Secondary Results 

In the structural based FE formulation, unknown displacements are computed in first. Derived 

results, like stresses or reaction forces are then obtained from nodal displacements. For exam-

ple, elastic strain and stress are computed at element level by 

 Buε   (3.19)

and 

 Dεσ  . (3.20)

Potential energy is obtained by 

 KuuTW
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1
 . (3.21)

Rewriting equation for linear analyses by separating out the matrix and vectors into those 

DOF with and without imposed values: 
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Reaction forces at suppressed DOF are obtained by 

 F
T
FSS uKR  . (3.23)

Naturally, the Taylor expansion of derived results is straightforwardly obtained by multiplica-

tion of the primary Taylor series of Β, u, D and K. Automatic differentiation, which is numer-

ically manipulating with the derivatives of Β, u, D and K, is the another efficient way to com-

pute Taylor series of secondary results, since the Taylor coefficients are simply scaled deriva-

tives. 

3.3 Parameterization of a Modal Analysis 

The equation of motion for an undamped system, which using for natural frequency and mode 

shape determination, is 
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The first equation in (3.24) is singular, and to fully define system, one adds an additional 

mass normalization equation. The pair (i,i) is the solution of (3.24), where i = i
2 is an 

eigenvalue and i is a corresponding non-zero eigenvector of mode i. The eigenfrequencies 
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and mode shapes of the systems are completely identified dynamic responses of the mechani-

cal systems. Variations in parameters lead to changes in dynamic responses of the system. 

Using the eigenpair derivatives in large systems can reduce the cost of reanalyzes. The deriva-

tives of the mode shapes with respect to design parameters are particularly useful for approx-

imating a new mode shape due to a variation in a design parameter, estimated the influence of 

design changes on the dynamic behavior of systems [84-89]. 

Consider non-repeated eigenvalue i, the first derivative of the system (3.24) with respect to 

the design parameter p writes: 
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Pre-multiplying the first equation in (3.25) by i
T leads to 
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Finally, the first derivative of eigenvalue i
(1) is obtained by 
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Then the mode shape derivative i
(1) is obtained by solving 

 iiiiii  )()( )1()1()1()1( MKMM K  . (3.28)

The eigenvector sensitivity i
(1) cannot be calculated directly from (3.28), because the matrix 

(K  iM) is singular. Nelson presented an algorithm for computing the eigenvector deriva-

tives of general real matrices with non-repeated eigenvalues and requires knowledge of only 

those eigenvectors that are to be differentiated [90]. He proposed that the i-eigenvector de-

rivative can be written as 

 iiii c  ν)1( . (3.29)

Unknown vector i is calculated from 

   iii FνMK  , (3.30)

with iiii  )( )1()1()1(  MMKF  . The kth component of i must be set to zero, where k is 

the location at which the eigenvector i has the maximum absolute value. Scalar constant ci is 

determined by differentiating the mass normalization condition in (3.24): 
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However, this latter value can be obtained with 
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Higher order eigenvalue and eigenvector sensitivities for non-repeated eigenvalues can be 

calculated by extending this method and provides iterative computation for nth order sensitivi-

ties. The nth order derivatives are expressed by 
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The system (3.33) can be rewritten in the form [38] 
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where )(n
S and )(n

S are right terms depending on the previous derivative order. 

Multiple eigenfrequencies are expected for the symmetric structure. Difficulties are arising 

when the matrix is close with repeated eigenvalues. A treatment of the repeated eigenvalues 

can be found in [1]. 

3.4 Parameterization of a Harmonic Analysis 

The steady-state response of a linear system to sinusoidally varied loads at the frequency f is 

determined by 

   ),()()2()()2()(),(
12 pfpfpfjppf FMCKu


  , (3.35)

or 

   ),(),(),( 1 pfpfpf FAu  . (3.36)

The matrix of linear system is denoted )()2()()2()(),( 2 pfpfjppf MCKA   . 

Concerning the harmonic analysis, there are three cases, as illustrated in Figure 3.1: 

 standard frequency sweep 

 parameter sweep at f0 

 parametric frequency sweep 
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a) Frequency sweep b) Parameter sweep c) Parametric frequency sweep 

Figure 3.1 Parametric harmonic response 

3.4.1 Frequency Sweep 

In order to solve a standard frequency sweep, a linear system needs to be solved for each fre-

quency fi. The cost of frequency response procedure increases significantly with the mesh 

density and the complexity of the problem. When frequency response must be obtained for 

large frequency intervals, the computational cost becomes so high that the calculation cannot 

realistically be made for an industrial problem. It is thereby possible to solve Equation (3.35) 

for additional load cases, i.e. several right hand sides, without much additional computational 

effort. An alternative to this frequency sweep procedure is to approximate the frequency re-

sponse function by a Padé approximant based on high order derivatives. Like linear problem, 

the Taylor expansion of the response u with regard to f at p0 is given by the Taylor expansion 

of A: 

 







 



  )(
0

)(
0

1

)(
0

1
0

)(
0 ),(),(),(),(),( ini

n

i

i
n

nn fpfpCfpfpfp uAFAu . (3.37)

Neglecting frequency dependent viscous damping, the derivatives of A matrix with regard to 

frequency are given by 
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The second derivative of A is constant and the higher order ones are zeros. Notice however 

that zeros higher order derivative of A do not implies zeros higher order derivative of u in 

(3.37). 

Proposed algorithm is a different version of the asymptotic waveform evaluation method [91] 

to approximate the solution by explicitly calculating the truncated Taylor series and the con-

verting the new transfer function to an ODE system. Usually, the procedure of calculating the 
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model from the transfer function is limited to about eight poles due to round-off errors. Note 

that this approximates the transfer function only locally around the expansion point of the 

series; however, multiple expansion points can be used and the subspace generated as the un-

ion of the individual subspaces [73]. 

3.4.2 Parameter Sweep 

The computation of the harmonic response at the frequency f0 with respect to the design pa-

rameter p will be based on the derivation of the A(p,f0) with regard to the p. 

3.4.3 Parametric Frequency Sweep 

As the coefficients of the matrix A depend on the frequency and design parameters, it must be 

calculated and factorized for each frequency of interest. The parameterization is provided by 

the crossed high order derivatives with an order n for frequency and an order m for parameter: 
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3.5 Parameterization of a Transient Analysis 

3.5.1 Full Method 

A discussion on the transient problem solution is provided before going into the details of the 

parameterization of transient analysis. The basic equation of motion solved by a transient 

analysis in the time domain is 

 )()()()( tttt FuKvCaM  , (3.40)

 where a(t) is the nodal acceleration vector, v(t) is the nodal velocity vector. 

These equations can be thought of as a set equilibrium equations that also take into account 

inertia forces M(p)a(t) and damping forces C(p)v(t). The response at the current time is calcu-

lated using the time integration method with the following initial conditions: v(0) = v0  and 

u(0) = u0. The Newmark family of time integration methods is discussed here. The velocity 

and displacement at time tn+1 can be integrated by 
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(3.41)
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where nnpr tavv  )1(   and nnnpr t avuu 2)21(   are the velocity and displace-

ment vector predictors,  and  are the integration parameters. 

Then, Equation (3.40) can be expressed in terms of acceleration vector at time tn+1, as 

 prprnntt CvKuFaKCM   11
2 )(  . (3.42)

After solution (3.42), the velocity and displacement vector are again corrected.  

The explicit integration method corresponds to the case in which  = 0 and  = 1/2 with di-

agonal matrices of K and C.  

Now, HODM can be extending to the time domain analysis. By assuming the time interval is 

independent of design parameter, differentiation of (3.40) yields the following equation: 
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The derivatives of displacement and velocity are updated in a manner similar to (3.41), after 

solving for the acceleration derivative. In addition to the derivatives of stiffness and mass ma-

trices, Equation (3.40) requires the derivative of displacement at the previous time step, which 

makes the sensitivity equation history dependent. The factored coefficient matrix from the 

response analysis can be reused in solving the sensitivity equation efficiently. In the explicit 

method, the sensitivity analysis becomes more expensive because calculating the right-hand 

side of (3.43) is more computationally expensive than that of (3.42) and the sensitivity analy-

sis cannot be take advantage of the factored coefficient matrix from the response analysis. 

3.5.2 Modal Superposition Method 

Linear structural dynamics may be effective solve using a modal superposition method [43]. 

One needs to start a parametric modal analysis in order to obtain the eigenfrequencies and the 

eigenshapes as explicit functions of the parameters p. After selection the parametric modal 

basis  m, one can to build the reduced matrices K
~

and M
~

 with 

 )()()()()(
~ 2 ppppp mm

T
m  ΦKΦK  (3.44)

and  

 IΦMΦM  )()()()(
~

pppp m
T
m . (3.45)

The damping matrix C
~

 is defined by a linear combination of K
~

and M
~

 [43]. When the natu-

ral modes are used as basis vectors the reduced mass and stiffness matrices are diagonal, and 

the reduced damping matrix can also be diagonal for proportional damping. This allows un-
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coupled solution of the reduced equations of motion. The reduced forces vector is defined 

as ),()(),(
~

ptppt T
m FΦF  . The modal displacement vector is written as ),()(),( ptppt T

m uΦq  .  

The design parameters-time domain equations of motion are then reduced to  

 ),(
~

),()(
~

),()(
~

),()(
~

ptptpptpptp FqKqCqM   . (3.46)

The differentiation of (3.46) can proceed as for the original full equations (3.40). On the other 

hand, the reduced system (3.46) can be also solved directly for each set p, because the modal 

reduction has greatly lower the computational cost of the time domain analysis. 

3.6 Examples 

It is interesting to consider how the HODM work for a simple lumped system. The purpose of 

this subsection is to use two simple examples to explain the basics of how derivatives of ma-

trices are formulated and how different parametric analyses are performed. 

3.6.1 Duffing Oscillator 

The Duffing oscillator, which is an odd nonlinearity system, is chosen as an application ex-

ample to illustrate the HODM approach, Figure 3.2a. The static non-linear equilibration equa-

tion of a Duffing oscillator is 

 Fuu  )( 2  , (3.47)

where  and  are the nonlinear and linear spring parameters respectively. 

Computer Algebra Systems software such as MathCAD or MATLAB Symbolic Toolbox [92] 

can be used to solving (3.47) in analytical form. The displacement of this oscillator under load 

F is expressed as 

 1

3
),(  
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. (3.48)

This solution is valid for hardening case  > 0. The nonlinearity  is selected as design para-

meter. Other parameters are given as:  = 1, F = 1. 

From Equation (3.18) follows that  1)()1()1()1()( ,...,,,...,,,...,,)(  JJJRRuufpu nnnn . Con-

sider the precomputed derivatives of residual force vector and Jacobian: 
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FuuuR  )()( 2  ,   23)( uuJ , 

3)1( )( uuR  ,   )1(2)1( 63)( uuuuJ  , 

)1(2)2( 3)( uuuR  ,  )2(2)1()1()2( 6)(612)( uuuuuuuJ   , 

)2(22)1()3( 3)(6)( uuuuuR  , )3()2()2()1(2)1()3( 61818)(18)( uuuuuuuuJ   . 

(3.49)

After that, the derivatives of displacements can be assembled from the (3.18). It should be 

noted that the analytical derivatives of (3.48) are more complicated than the function itself. 

The results of the parametric study are presented in Figure 3.2. 
 

 

 

 

a) Sketch of a nonlinear spring b) Displacement vs. nonlinearity  

  

c) Strain energy d) Relative error of displacement 

Figure 3.2 Static behavior of a Duffing oscillator 

The displacement is closely approximated by its Taylor polynomial of degree 4 (magenta 

curve) for an interval  [0…3]. So in this case (0 = 1.5, m = 4), the remainder (3.3) is given 

by  
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Since 0 <  < , or 1.5 <  < 3.0, the error is bound between: 0.0205 < R4(1.5) < 0.0008. 

The absolute relative error on the interval [0.3…3] is no more than 2.2%. 

The Taylor series has infinite terms and only in special cases such as a finite polynomial does 

it have a finite number of terms. In the case of linear systems, the strain energy can be de-

scribed by a polynomial of order two since the stiffness is constant. In a nonlinear case, the 

strain energy is exactly captured by polynomials of order four, Figure 3.2c. 

3.6.2 Mass-Spring System 

The mass-spring systems are wide used for describe the mechanical systems by lumped ele-

ments. To illustrate the results of the HODM analysis, consider a 2-DOF mass-spring system 

(e.g. cascaded micromirror, folded flexure resonator, housing to hold the PCB) with a rigid 

body mode and no damping. The mass and stiffness matrices for this system are, respectively: 

 









2

1

0

0

m

m
M  and 













22

221

kk

kkk
K .  (3.51)

The components of the mass matrix M of the system are 

 m1 = 15mg and m2 = 15mg. (3.52)

The components of the stiffness matrix K are given as 

 k1 = 20kN/m and k2 = 60kN/m. (3.53)

Modal analysis 

Solving the eigenproblems for the (3.51), the eigenvalues and eigenvectors of a 2-DOF mass-

spring system are given as 
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(3.54)

The results were obtained by use of a symbolic algebra program. First the eigenproblem of 

Equations (3.54) is solved for (3.52) and (3.54) to yield the eigenvalues and the mass-

normalized eigenvectors: 
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(3.55)

Two eigenmodes are observed, one in which the two springs on either side are in phase 

(symmetric) and the other mode in which the two springs are out-of-phase (anti-symmetric). 

The design parameter selected in this example is p = m2/m1, which is a mass ratio of the sys-

tem. Fixing the parameter m1, the second mass is m2 = pm1. 

  
a) Mode 1 eigenfrequency vs. ratio p b) Mode 2 eigenfrequency vs. ratio p 

                          
c) Mode 1 shape plot d) Mode 2 shape plot 

  
e) Mode 1 eigenshape vs. ratio p f) Mode 2 eigenshape vs. ratio p 

Figure 3.3 Parametric modal analysis of a 2-DOF spring mass system 

The parametric technique was applied in order to extract the eigenvalues and the mass-

normalized eigenvectors due to a perturbation in a design parameter. The variations of exact 

eigenfrequencies and eigenvectors are plotted in Figure 3.3. 
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To prepare for building the derivatives of the eigenvalues and eigenvectors, the derivatives of 

mass and stiffness matrices for this system are expressed: 

 











1

)1(

0

00
)(

m
pM  and 










00

00
)( )2(pM , 











00

00
)( )(npK . 

(3.56)

Considering the difference between the exact value and the Taylor expansion, the errors of the 

approximated eigenvalue 1 computed by using derivatives of the eigenvalue given by the 

proposed HOD method are relatively quite small, Figure 3.3a. A typical example, using the 

rational function that includes the poles, is illustrated in Figure 3.3b. Obviously eigenvalue 2 

tends to infinity as m2  0, the limit of this system is 
 2

02

lim 
m

. The use of a Padé approx-

imant makes it possible to compute an accurate approximation of f2(m2/m1) even at values of 

frequency for which the Taylor series of f2(m2/m1) diverges. 

Harmonic analysis 

The spring mass system is also studied in the frequency domain by sweeping frequencies. The 

closed form solution of the harmonic problem, representing the steady state response of the 

undamped system to a sinusoidal input, is given as 
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(3.57)

The load vector for this problem is F = {0 1}T. The harmonic response of a 2-DOF mass-

spring system is presented in Figure 3.4. It can be easily seen that the Padé method will pro-

vide an exact solution of this problem, whereas a Taylor series solution will require an infinite 

order to converge. Note that all the expressions (3.57) have the same denominator. The roots 

of a denominator are the eigenfrequencies and Padé correctly evaluated the response at these 

frequencies. The convergence radius of the Padé approximation is limited to the distance be-

tween the initial frequency and the first pole not included in denominator. Poles show the fre-

quencies where the system will amplify inputs. Unlike the poles, which are a characteristic of 

the system and depend only on the distribution of mass and stiffness, zeros can be different 

and some transfer functions may have no zeros. The zeros are defined by the roots of its nu-

merator. Zeros show the frequencies where the system will attenuate inputs. Comparison of 

exact solutions and Padé approximant shows excellent numerical agreement. 
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a) Real part of  the node 2 b) Imaginary part of  the node 2 

  
c) Amplitude of the node 2 d) Phase angle of the node 2 

Figure 3.4 Frequency sweep response of a 2-DOF spring mass system 

It is necessary to remember that polynomial of high degrees are extremely unstable and can 

inadequately describe the goal function. In presented examples, Taylor polynomial up to 5th 

degree was used in static and modal analyses. This order is quite enough for many applica-

tions. Thus, these HOD techniques can be considered reliably in obtaining parametric solu-

tions of the system in static, modal and harmonic analyses. The proposed method will be ap-

plied to FE analysis in the next Chapter 4. 
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4. Implementation of HODM in FEA 

In this chapter the implementation issues of the HODM in FEA are presented. The parametric 

FE-technique has been prototyped in MATLAB, because this is a good prototyping tool for 

quickly development and test of numerical algorithms. For solid modeling and mesh genera-

tion the commercial software can be used. A brief introduction to automatic differentiation is 

given. The implemented algorithms support static, modal and harmonic analyses of structur-

al, electrostatic, thermal and fluidic domains. It is necessary to point out the need for addi-

tional system memory, for parametric mesh-morphing procedures and for having access to 

the source code. HOD algorithms capabilities are restricted to MATLAB performance and 

Windows memory management on 32 bit x86 systems. 

4.1 Global Architecture 

The overall schematic of parametric FE technique is flowcharted in Figure 4.1. The software 

concept of the parametric FE-tool consists of forth main blocks. The preprocessing includes 

three substeps: parametric solid modeling and mesh-morphing what captures the influence of 

geometric design variables on a FE-mesh. Initial solid modeling and mesh generation can be 

realized within external tool. The second step is a FE-model importation into the parametric 

environment. Most CAD tools support this feature (e.g. NWRITE, EWRITE commands in 

ANSYS). 

Assembling of global FE matrices:
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Figure 4.1 Block scheme of parametric FE technique 

Parametric FE-mesh means that the nodal table does not only contain a single value for each 

spatial direction, rather each coordinate will be described by a polynomial with regard to 

global parameter. Especially geometrical parameter must carefully be mapped to the nodal 

table since local distortions affect the accuracy of the mesh discretization. A convenient way 
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to transform global parameter to polynomial nodal coordinates is a Laplacian smoothing algo-

rithm known from mesh-morphing of FEM [93]. 

The whole idea of the HOD approach is to compute not only the governing system matrix but 

also HOD with regard to design parameters. The system FE matrix K is obtained from a su-

perposition of the elementary matrices k. Therefore, calculations of the derivatives of the sys-

tem matrix need to be coupled with the assembling procedures. The derivatives can be calcu-

lated by the techniques including symbolic differentiation, divided difference, and automatic 

differentiation. Difficulties arose from the fact that extraction of high order partial derivatives 

becomes numerically unstable and time consuming. In contrast to the symbolic differentia-

tion, which propagates mathematical functions, AD algorithms operate on the numerical val-

ues. Efficiency of AD relies on the fact that every function is nothing else than a sequence of 

arithmetic operations and elementary functions. Remarkable is that AD gives an exact (up to 

the machine precision) representation of high order derivatives. AD technique utilizes the 

generalized differentiation rules, which give the exact representation of derivatives combining 

derivatives of the arguments with binomial coefficients [94]. 

Taylor expansion of the FE solution can be obtained by differentiation corresponding FE 

problem (static, modal, harmonic or transient) as described in Chapter 3. Direct methods are 

more expensive for factorization of large matrix K(p0) in (3.10). For linear static analysis the 

expression (3.10) can be rewritten as a system of linear equations in the following form: 
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where )(
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0
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n

i

i
n

n ppCp 


 uKF  is the pseudo load vector. 

All linear systems (4.1) have the same matrix K(p0) but different right hand vectors. Such 

form avoid direct computation of the inverse matrix K(p0), but require the n solution of the 

linear system in order to obtain u(p0)
(n). Iterative methods are superior for a single solution, 

both in terms of storage requirements and computational efficiency. But derivatives computa-

tions are need just one factorization of matrix K at p0, and then all operations only cost a for-

ward and backward substitution each. In that case, the high order derivatives have very low 

cost when using a factorization. As result, Taylor vectors of the model response can be ex-

panded in the vicinity of the initial position capturing parameters. 

Commercial FE software provides users with a programming language (e.g. APDL in AN-

SYS) that allows some manipulation of stiffness matrices and displacement vector without 

access to the source code. It holds the promise of derivatives of the system matrix with little 
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implementation effort. For example, Chang [95] implemented the sensitivity calculation mod-

ule that can connect with FE programs as ANSYS, ABAQUS and NASTRAN. 

In contrast to design sensitivity analysis, HOD calculations cannot be carried out outside ex-

isting finite element codes, using postprocessing data only. In order to have a general ap-

proach, capable of treating large size problem, all terms are saved in files instead of managing 

them all in the memory. Commonly, the derivatives of FE matrix have the same structure as 

original FE matrix. The FE matrices are naturally sparse. The derivatives of FE matrix may be 

sparser as the derivatives order increases. So, specific file format for sparse structures and 

access to the source code is need. 

A special topic of this chapter is the discussion and explanation of the automatic differentia-

tion algorithm, which is applied to all FEA stages (preprocessing, element stiffness matrices, 

finite element equations and postprocessing). 

MATLAB was chosen for prototyping of HODM algorithms. The input data to parametric 

solver are the parametric FE-mesh and parameters definitions. The output data is polynomial 

coefficient set of the solution vector (displacement) and the goal function (secondary results). 

In practice, the derivatives of solution vector are stored in a database for each degree of free-

dom of the structure. Evaluation and visualization can be interfaced with parametric postpro-

cessing stage. The parametric postprocessing will explore the parametric result in order to 

perform sensitivity curves or response surfaces. 

4.2 Derivatives of the FE Matrices 

The global FE matrix K is a superposition of the elementary matrices k: 

 
el

kK . (4.2)

So the derivatives of a global FE matrix K(n) are obtained from a superposition of derivatives 

of the elementary matrices k(n). The stiffness matrix of the isoparametric finite element can be 

computed according to the general relationship [96] 

 
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T dVBDBk . (4.3)

Evaluation of the integrals is done by Gauss integration 
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where |Ji| is the determinant of the Jacobian matrix J of the isoparametric transformation from 

local (,,) to global (x,y,z) coordinates, wi is the weighting factor. Generally, the expres-

sions of Jacobian matrix depend on the FE element type (through the shape functions) and the 

nodal coordinates of the element. The shape functions for different elements are given in Ap-

pendix A.3. 

Consider brick element having three degrees of freedom at each node: translations in the nod-

al x, y and z directions, the element is mapped to a cube of size 2 in the local coordinate sys-

tem (,,) (see Figure 4.2a). The strain-displacement matrix B is determined by operating on 

the shape functions Ni(,,), and it is found that 

 ][ 821 bb b bB  i , (4.5)

where the submatrix bi, which is associated with the nodal point i of the finite element, has the 

form 
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Here, the derivatives of the shape functions Ni(,,) with respect to global (x,y,z) coordinates 

are given by 
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The Jacobian matrix at integration point is computed according to (4.8). Note that J is ex-

pressed in terms of the derivatives of shape functions Ni(,,) with respect to the local ele-

ment coordinates evaluated at gauss points and of the global coordinates of nodal points of the 

element. The shape functions Ni(,,) of the finite element depend only on the local coordi-

nates within the element and thus are independent of the actual geometry of the element: 
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Like J, the strain-displacement matrix B depends on coordinates of the nodal points, whereas 

the constitutive matrix D depends only on the constitutive parameters. The derivatives of an 

elementary stiffness matrix k can be done with respect to material properties, to geometrical 

parameters or to load and boundary conditions. These expressions for derivatives of an ele-

mentary stiffness matrix k are explained below. 

4.2.1 Element Derivatives versus Material Properties 

All types of material properties like Young's modulus, mass density, conductivity coefficients, 

shear modulus, and components of the constitutive matrix and orientation of anisotropy for a 

silicon material can be chosen as design parameters. 

The derivatives of an elementary stiffness matrix k with regard to material properties are ob-

tained by equation 
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Linear material properties can be constant or temperature-dependent, and isotropic or ortho-

tropic. Material matrix for a linear elastic and isotropic material is given by 
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The material parameters E and  define the modulus of elasticity and the Poisson’s ratio, re-

spectively. 
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The groups of elements (components) can be considering as discrete parameters or Boolean 

parameters. Typical examples of such features would be ribs or holes. The effects of remov-

ing these components from the model can be study by changing their material properties: 

 pEpE )0()(  . (4.11)

Discrete parameter p corresponds to sets of elements in the model that can be turned 1 or 0. 

Then p = 0, the elements components remains in the model but contributes a near-zero stiff-

ness (or conductivity etc.) value to the global matrix like deactivates the specified element 

with the birth and death capability. 

4.2.2 Derivatives of a FE Matrix versus Geometrical Parameters 

The derivatives of an elementary stiffness matrix k with regard to geometrical parameters p 

are obtained by equation 
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Thus, the derivatives of elementary stiffness matrix (4.12) can be expressed from the deriva-

tives of analytical functions xi(p), yi(p), zi(p), which connect node coordinates of the element 

with involved geometrical parameters p. 

The extraction algorithm of the element matrix and its derivatives for an eight nodes solid 

element having three translations degrees of freedom at each node (like ANSYS SOLID45 3D 

structural solid element) is shown in Figure 4.2. 

Generally, the strain-displacement matrix B is depending on the inverse of the Jacobian ma-

trix. As shown by Guillaume [2] and Perrin [38], the derivatives of J-1 and |J | can be getting 

using automatic differentiation. 

Derivatives of the mass matrix versus geometrical variables can be established using the same 

approach as above for the mass matrix: 

 
V

T dVNρNm . (4.13)

Six different 2D/3D parametric finite elements have been implemented as shown in Ta-

ble A.1. 
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a) Sketch b) Flow chart 

Figure 4.2 Parametric 3D eight node solid element 

4.2.3 Derivatives of a FE Matrix versus Boundary Conditions 

The matrix K is singular after assembling, because the rows and columns of matrix are linear 

combinations of each other. The system of equations (3.10) can be solved only considering 

the boundary conditions. If the finite element equations are derived on the basis of variational 

principle; the natural boundary condition will be automatically incorporated in the formula-

tion, and hence only the geometric boundary condition are to be enforced on the solution. Es-

sential boundary conditions are boundary conditions, which directly involves the nodal free-

doms. The simplest essential boundary conditions in mechanical are support and symmetry 

conditions. To eliminate linear combinations of the columns and render the system nonsingu-

lar, the physical support conditions as displacement boundary conditions must be applied. 

Applying Displacement Boundary Conditions by Static Condensation 

The simplest way to account for support conditions is to remove equations associated with 

known joint displacements from the system. This can be systematically accomplished by de-

leting rows and columns corresponding to given zero displacements from K and the corres-

ponding components from F and u. The elimination gives the reduced system of rearranging 

nn pk  ][

 

AD: 
[f]=[u][v] 
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equations. The matrix rearrangement leads to the non-differentiable problem, because the as-

sociativity of the nodes in matrix is not retained. 

Applying Displacement Boundary Conditions by Modification 

As there, the main objective is to avoid rearranging the stiffness matrix. To apply support 

conditions without rearranging the equations, the i-rows and the i-columns from K, and force 

components from F corresponding to zero displacements are set to zero. Ones are placed on 

the diagonal to maintain non-singularity: 

 
1iiK , 0iF . 

0ijK , 0jiK   for i  j. 
(4.14)

Solving this modified system produces the complete displacement solution directly.  

The group of m-DOFs with displacement boundary conditions can be considering as discrete 

parameter. The parameterization of the displacement boundary conditions is described as 

 
ppKpK mmmm  )1)(0()( , )1)(0()( pFpF mm  . 

)1)(0()( pKpK mjmj  , )1)(0()( pKpK jmjm    for i  j, 
(4.15)

where p is the discrete parameters that can be turned 1 or 0. 

Traditional techniques for applying boundary conditions in FEA like penalty method and La-

grange multiplier can be parameterized using the same approach as above. 

4.3 Derivatives of the Load Vectors 

In practical problems, distributed loads are more common than concentrated loads. Distri-

buted loads may be of surface FS or volume FB type [41]. In FE analysis, distributed loads 

must be converted to equivalent nodal forces as illustrated in Figures 4.3 and 4.4. The consis-

tent element load vector f el is given by 

 


 ddA BT

A

STel FNFNf . (4.16)

Obviously, converted nodal forces depend on the geometrical variations of the element. 

4.3.1 Surface Load 

Pressure in a structural analysis is an example of a distributed load applied over a surface: 
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 
A

Tel dAPNf . (4.17)

The derivatives of the nodal force vector versus the geometrical design variable, becomes 
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Figure 4.3 Surface load on the element 

4.3.2 Volume Load 

 

Figure 4.4 Body load on the element 

An initial strain is a typical example of a volumetric load in structural discipline. A consistent 

nodal force vector f el due to the initial induced strains at element level is given by 

 
V

Tel dV0DεBf , (4.19)

where initial strain has the form 

 T
zyx }000{ 0000 ε . (4.20)

The derivatives of the nodal force vector with respect to geometrical design variable, becomes 
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4.4 Differentiation 

In contrast to symbolic differentiation, novel approaches make use AD algorithms which 

process numerical values extracted at the initial position. Chain rules of differential calculus 

describe how to combine partial derivatives and binomial coefficients in order to form ele-

mentary mathematical operations and where to store results in arrays. 

4.4.1 Automatic Differentiation 

Research for AD methods has existed as a research topic since the 1980s. Automatic differen-

tiation is having a deep impact in many areas of science and engineering. The capability of 

automatic differentiation opens up a wide range of applications such as sensitivity analyses; 

solution of nonlinear systems: Jacobian and Hessian exact estimation for Newton solver; im-

proving the optimization algorithms by computing the relevant derivative information effi-

ciently; inverse problems. 

In terms of implementation, there are mainly two ways to implement an automatic differentia-

tion tool. One is source-to-source transformation and the other is operator overloading. AD 

has two basic modes of operation known as forward and reverse. These modes correspond to 

a bottom-up and a top-down strategy of derivatives accumulation of elementary functions that 

define the computational scheme of the function [97, 98]. 

Source transformation consists in adding into the existed code the new data structures (va-

riables, arrays) that will hold the derivatives and in generation the new subroutines that com-

pute these derivatives. The advantage is that the resulting program can be compiled into an 

efficient code, and the reverse mode is possible. 

Operator overloading is available in computer languages, such as C++, that provide the ability 

to redefine the meaning of elementary operators for various classes of variables. Each elemen-

tary operator is overloaded, i.e. internally replaced by a new one, working on object, which 

computes the value and its derivatives. The advantage is that the original code is virtually 

unchanged, i.e. the code can be transformed without increasing its size substantially. E.g., 

ADOL-C overloads all the mathematical functions contained in the ANSI C standard for the 

math library are overloaded for active arguments. It is very difficult to implement the reverse 

mode with overloading. The drawback of the operator overloading approach is that it requires 

more computing time, compared to explicitly stated code. 

Finally, automatic differentiation refers to a differentiation of the computer code itself. Even 

if the finite element programs are composed of many complicated subroutines and functions, 

they are basically a set of elementary functions, arithmetic expressions, do-loops and if-then-

else constructs. The AD methods define the derivatives of these elementary functions, and 

then the derivatives of complicated subroutines and functions are computed using propagation 



4. Implementation of HODM in FEA 63
 

and the chain rule of differentiation. The AD tools have been applied to FLUENT with over a 

million lines of source code [99]. Although, programs that calculate the derivatives of output 

of other source codes are now available, the human intervention in the process is required in 

many cases in order to obtain an acceptably efficient code. The better performance can be 

achieved by using AD to parts of the source. 

The main characteristics are summarized in the Table 4.1 and details are available in [100]. 

Several tools have been developed to handle the automatic differentiation process. Much AD 

software tools release under the GNU/GPL license. 

Table 4.1 Overview of AD software 

Tools Language Technique Order Comment 

ADIFOR Fortran77 source transformation 1st 1991 

ADOL-C C/C++ operator overloading up to n 1992 

ADMIT-1 MATLAB operator overloading up to 2nd 1996 / 98 

ADIC C/C++ source transformation up to 2nd 1997 

FFADLib C/C++ operator overloading up to n 2000 

ADiMat MATLAB 
source transformation 

operator overloading 

up to 2nd 2002                            Ja-

cobian and Hessian 

ADOGEN C/C++ source transformation up to n 
patented, proprietary tools 

for derivate matrices 

The AD tool for parametric FEA must support the differentiation of matrices (including ma-

trix product, inverse and determinant) and matrix-vector operations (sum, product) up to arbi-

trary order. Only in the last decade have programs begun to appear that compute multivariable 

Taylor series for any arbitrary number of variables, up to arbitrary order. It can be a massive 

problem for any complicated expression with several variables. While various AD tools are 

until under academic research and development, the tool AD, based on [94] and extended on 

matrix functions, have been prototyped and implemented as a subroutine call. 

4.4.2 Differentiation Rules 

HODM is required for basic arithmetic matrix-vector operations such as addition, multiplica-

tion and division. The matrix product is done element by element. E.g., the product of two 

multivariate scalar functions u(p) and v(p) is expressed by 
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where multi-index  ={1, …, n} defines the order of the partial derivatives in multivariate 

case, the n is the number of independent arguments. The following notation is used: 
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where 
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
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i
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μ , m μ0 and m is the order of the highest derivative. 

By employing certain concepts in combinatorial analysis [101], one can derive the expres-

sions for the mth order derivatives of a matrix inverse from derivatives of a matrix J(p): 
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where the elements of matrix J are functions of a parameter p, the matrix Ai is defined as 

Ai = J-1D i J. The summation is taken over all the integers (i1, i2, …, ik > 0) distinct or other-

wise, such that mi
k

n
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. 

The mth order derivative of a matrix determinant is given by 
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The generalized chain rules propagate the partial derivatives in forward mode – from inde-

pendent to dependent variables. The storage scheme of partial derivatives is the important 

issue, which affects the efficiency of the algorithm. Several authors suggested arranging the 

partial derivatives in an array by increasing order of the derivatives [94]. Such scheme rather 

than pyramidal array guarantees the constant time access to the derivatives via indices.  How-

ever, the chain rules require the partial derivatives to be addressed thought the multi-index . 

The mapping of multi-index  to the array index R() is 
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where 1
1

0







j

i
injK  . According to (4.26), the position of the partial derivatives in the ar-

ray depends not only on its order, but also on the number of independent parameters. 
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4.5 Parametric Mesh-Morphing 

A new mesh generation with regard to the varying geometrical parameter provides a mesh 

that is topologically different from the initial one. This mesh will has different number of 

nodes, elements and new element connectivity. Using different meshes to compute Taylor 

expansion of the solution is impossible. In contrast to ordinary FEM, one need a special pa-

rametric FE-model what captures the variation of geometrical design variables without a re-

mesh procedure. Mesh-morphing affects only nodes. The associativity of the nodes and ele-

ments is retained with the solid modeling entities. Unlike sensitivity analysis of a shape de-

sign variable, where only finite elements situated at the surface are perturbed [1], the HOD 

approach require the perturbation of the internal nodes. Parametric mesh-morphing means that 

the node table contains not only a single numerical value for each spatial direction as it is 

supported by most CAD tools, rather each node i will be described by analytical functions 

{xi(p), yi(p), zi(p)} with respect to geometrical parameters p. 

4.5.1 Design Velocity Field 

The geometry can be described as a continuous function of the parameters [102]. Consider a 

structural domain  with its boundary  as continuous medium at the initial design p = 0 

shown in Figure 4.5 (solid line). 

 

Figure 4.5 Morphing process 

Parameter p defines the transformation T: x )(~ xx  that changes the structural domain from  

to ~  (dotted lines). Define the design velocity v with design parameters p plays the role of 

time: 
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In the neighborhood of initial parameters p = 0, ignoring higher-order terms, T can be approx-

imated by 
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where x = T(x,0) and v(x) = v(x,0). 

The linear approximation (4.28) means that the design velocity v(x) can be easily computed if 

the initial and final meshes are known. The crucial aspect of using mesh-morphing is the per-

turbation of the internal nodes computation after the boundary perturbation with regard to 

geometrical parameter. 

4.5.2 Smoothing Technique 

A convenient way to transform global parameters to internal nodal coordinates is a Laplacian 

smoothing used for mesh-morphing in FEA. Generally, internal FE nodes must move smooth-

ly with respect to dimensional modifications, especially in case of large displacements or 

complicated shape (e.g. perforation holes, sharp notches). Similar problems are widely known 

from mesh morphing of coupled domain analyses [93]. Especially geometrical parameter 

must carefully be mapped to the node table since local distortions affect the accuracy of the 

Taylor series solution. The accuracy of parametric solutions depends mainly on the quality of 

mesh perturbations caused by mapping of global parameters p to the nodal table.  

There are mainly two types of smoothing methods, namely Laplacian smoothing and optimi-

zation-based smoothing. Laplacian smoothing [103] is a technique commonly used for im-

proving finite element meshes by iteratively adjusting node locations to the centroid of their 

surrounding nodes. It is require a very low computational cost, but it does not guarantee an 

improvement in the geometric mesh qualities. For example, for node k at location xk, its 

smoothed location is defined as 
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where xi
c is the centroid of element i adjacent k, and Ai is the area or volume of element i. The 

total number of adjacent elements is given by n. After applying the structural displacements to 

the nodes on the boundary, a few iterations of (4.29) can be applied to all nodes of the mesh 

within proximity of the deformation. Although in most cases Equation (4.29) will improve the 

surrounding elements, there is no guarantee that the resulting elements will be optimal or on 

occasions, even better than a previous iteration. 

The goal of an optimization based approach is to minimize the mesh modification. The use of 

the usual strain tensor to measure the modification rate gives good results. This strain tensor is 

defined on the integration points of each element [38]. 
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4.5.3 Automated Mesh-Morphing Algorithm 

Two automated the parametric mesh-morphing algorithms are proposed here. The description 

of the shape change at the outer boundaries is necessary first. Any 3D linear transformation 

(translation, rotation, scaling and combinations above-mentioned) can be represented by a 

coordinate transformation matrix T. A wide variety of configurations can be created with 

these transformations, as shown in Figure 4.6. Partial derivatives of the transformation matrix 

T with regard to design parameters p can be compute by means of AD. The design velocity 

for points on the outer boundaries can be calculated by compare the shape before and after the 

design variable change. After transformation, the topology of the mesh is unchanged but the 

finite elements are distorted, Figure 4.7d. This is due to the moving of the nodes linked to the 

parameter. In contract to iterative Laplacian smoothing, the electrical analogy can be effective 

used to compute design velocities for nodal transformations with regard to geometrical para-

meter, Figure 4.7b. Using the boundary velocity results as boundary condition for Laplace 

problem, the design velocity at interior points can be computed. After all design boundary 

velocity is calculated, the perturbation is extended to the interior domain, Figure 4.7g. In case 

of the n design variables, the method requires n additional analyses. 
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b) Scaling 
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c) Rotation 
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Figure 4.6 Solid transformations 
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a) Laplacian smoothing algorithm 

             
c) Original mesh 

 
d) Perturbated mesh 

 
 e) Mesh after Laplacian smoothing: 2 iterations 

 

 

f) Design velocity field 

 

 
 

g) Final mesh 

b) Developed mesh-morphing algorithm  

Figure 4.7 Comparison between mesh-morphing algorithms 

There are two main situations that cause the proposed design velocity field computation me-

thod to fail. First, when dimension is chosen as a design variable for which the variation of a 
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design surface is not linearly dependent. The second difficulty arises, when the design va-

riables are related to general surfaces, e.g. surface intersection regions or some kinds of sur-

faces, the parametric representation of the design surfaces may not support natural mapping 

relations which cause great difficulty for automatic velocity field computation. If the resulting 

mesh quality is not acceptable, one must utilize nonlinear algorithms for mesh perturbations 

[38]. 

4.6 Data Structure 

A specialized data structure is commonly applied to process and store partial derivatives with 

given order. Partial derivatives have been arranged in successive planes of matrices in a third 

dimension as shown in Figure 4.8b. 

a) Pascal tetrahedron b) 3D array           c) Compressed 2D array 

Figure 4.8 3D array (n = 3, order = 4) and its compressed 2D representation 

This allocation scheme simplifies the mapping (4.26) of the multi-index µ, which defines the 

partial derivatives, to the plane location index R(µ). Another important piece of information is 

the total number of panels. This is an indication of how much memory is needed to complete 

the calculation. Notation of the Lagrange and Pascal coefficient terms are explained in Ap-

pendix B. 

The number of matrices planes can be estimate by formula 
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E.g., three variable Pascal polynomial (n = 3) with 4th order has 35 coefficients. The six vari-
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exponential grown of the data structure with number of parameters and order of the deriva-

tives. 

To store nonzero sparse FE matrix elements, a coordinate column-wise format is used. Only 

nonzero entries are provided, and the coordinates of each nonzero entry is given explicitly. 

Compressed array is illustrated in the Figure 4.8c. 

4.7 Substructuring Technique 

Parametric technique typically requires large increases in system memory to store system ma-

trix and its derivatives. In order to save system memory, the combine of substructure tech-

nique and parametric analysis is proposed. The FE-model can be divided into superelements, 

which are independent or variable with regard to parameter. The substructure technique uses 

the Guyan approaches [104] of global matrix transformation to reduce the system matrices to 

a smaller set. It represents a set of elements that are reduced to act as one superelement. The 

substructure technique may be used in any linear analysis type: modal, harmonic and transient 

analyses. This technique belongs to the standard procedures of the FE software.  The one su-

perelement may be used to generate more superelements. To reconstruct the solutions (e.g. 

displacements and stresses) within the superelement, an expansion pass is required. 

4.7.1 Static Analysis 

The stiffness matrix K may be partitioned into two groups, the master and the slave DOFs 
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or expanding 

 
ssssmsm
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FuKuK
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
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. (4.35)

Solving Equation (4.35) for us, 

 msm
-
sss

-
mms uKKFKu 11  . (4.36)

Substituting us into Equation (4.35) 

   s
-
ssmsmmsm

-
ssmsmm FKKFuKKKK 11  , (4.37)

or 
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 FuK ˆˆˆ  . (4.38)

K̂ and F̂  are the superelement stiffness matrix and load vector, respectively 

 

sm
-
ssmsmm KKKKK 1ˆ  , 

s
-
ssmsm FKKFF 1ˆ  , 

muu ˆ . 

(4.39)

The factorization of reduced matrices Kmm, Kss, needing for solution (4.39) is less expensive in 

compare to factorization of the full matrix K. In solving the statics problems, this approach 

yields the exact solution for the particular FE-model. DOF of master nodes keep their physi-

cal meaning and no back transformation needed for master nodes. 

The master DOFs will be used to couple the superelement to other superelements as shown in 

Figure 4.9. 

 

 

a) FE-model b) Sparsity pattern of the FE stiffness matrix 

Figure 4.9 Substructure of a resonator 

4.7.2 Component Mode Synthesis 

Component Mode Synthesis is a modal analysis of the entire assembly from its superele-

ments. The displacement vector u may be represented in terms of component generalized 

coordinates [105]: 
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where yδ is the truncated set of generalized modal coordinates.  For the fixed-interface method 

[106], the transformation matrix has the form 

Superelement: 
Seismic mass 

Interface: 
Master nodes 

Superelement: 
Spring 

z 

y x 



72 4. Implementation of HODM in FEA
 

 









ssm ΦG

0I
T , (4.41)

where Gsm = Kss
-1Ksm is the redundant static constraint modes, Φs is the fixed-interface nor-

mal modes (eigenvectors obtained with interface nodes fixed). 

After applying the transformation in Equation (4.41), the reduced mass and stiffness matrices 

of the CMS substructure will be 

 

MTTM Tˆ , 









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K0

0K
KTTK mmT

ˆ
ˆ , 

(4.42)

where mmK̂  stiffness partition obtained from the Guyan reduction and sss
T

s ΦKΦK  . 

In the modal problems, the Guyan reduction gives an approximate solution [106]. 

4.8 Error Estimation 

The parametric solution error  is defined as the difference between its approximation and the 

ordinary FE-solution, as shown in Figure 4.10. 

The three main sources of error in a typical FE-solution are: 

 formulation errors (simplifications made in the analysis: geometry, load, boundary 

condition, material properties; using of elements that do not precisely describe the be-

havior of the physical problem) 

 discretization errors (errors due to insufficient mesh discretization; new mesh lead to a 

different discretization error; mesh-morphing procedures avoid the meshing errors due 

to remeshing) 

 numerical errors (result of numerical calculation procedures, the loss of precision due 

to computer rounding of decimal quantities). 

In such a way, convergence domain of the Taylor expansion of FE-solution depends on the 

regularity of the mesh perturbation, order derivatives and parameters range. These parameters 

are possible to control. Primary, the mesh perturbations must be smooth as possible. If the 

parameter variation range is bigger than the convergence radius, the range will be reduced to 

be within the convergence radius, and using a fixed derivative order. Based on the requested 
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accuracy of the expected results, the necessary order of the approximation can be automatical-

ly determined. 

 

Figure 4.10 Error estimation in parametric analysis 

 

p 

G(p) 

p0 

Validity range: p0   p 

 

Parametric 
solution 

Evaluation  
point 

 FE-solution 
 

 FE-solution error i 

0 

Reference  
point 

1 2

0  1  2 





 

5. Application of HODM 

The objective of this section is to demonstrate the viability of HOD methods for the parame-

tric FE simulation in the static, modal, frequency response domains on the basis of the struc-

tural, electrostatic and coupled field analyses. Two basic issues, which can be viewed as the 

criteria for reliability and correctness of HOD method are numerical accuracy and computa-

tion time. To validate the approach, parameterized solution, using the polynomials is com-

pared to converged FE results, achieved by restarting for each set of parameters. Numerical 

details, accuracy and observed problems are discussed on several examples, which come 

from MEMS problems. For solid modeling and mesh generation the ANSYS Academic Re-

search product is used. The perturbation of internal nodes with respect to parameters is ob-

tained by solving Laplace’s equation with Dirichlet boundary conditions. 

5.1 Parametric Structural Analysis 

5.1.1 Linear Static Analysis 

The first example for which the above described algorithm has been applied is a fixed-fixed 

beam under uniform load, which is a basic element for many MEMS structures. The beam is 

assumed to be made of a homogeneous isotropic material with Young’s modulus 

E = 169 GPa, Poisson’s ratio  = 0.066, and mass density  = 2.329 g/cm3. The difficulty for 

the application of beam element lies in the power law dependences of beam performance spe-

cifications on dimensions (see Appendix C). The fabrication process typically involves under-

cutting the beam structure. These dependences also mean that beam is quite sensitive to varia-

tion in process parameters. The length L, width B and thickness H of the beam were used as 

design parameters, as shown in Figure 5.1a. 

 
a) FE-mesh b) FE stiffness matrix 

Figure 5.1 FE-model of a fixed-fixed beam 

The beam is discretized by a grid of the 50×10×4 parameterized eight nodes element having 

three degrees of freedom at each node (translations in the x, y and z directions). The stiffness 
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matrix K is of dimension 84158415 with 539081 nonzeros. For the static analysis, the max-

imum displacement, the maximum nodal Von-Mises stress and the strain energy are the crite-

ria to be analyzed. 

The mesh perturbations are described as 
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where p1 = (LL0), p2 = (BB0), p3 = (HH0) are the length, width and thickness variation, 

respectively. Design velocity v for i-node can be expressed analytically as 
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Using AD, the derivatives of the global matrix K(n) was assembled up to 4th order at the initial 

configuration. The derivatives of the solution vector u(n) has been computed by (3.13). The 

derivatives of strain energy are extracted from derivatives of K(n) and u(n) at the evaluated 

point by means of AD for the product uTKu according (3.21). The design curves of a fixed-

fixed beam under pressure load P = 12.5 kPa with regard to selected parameters are shown in 

Figure 5.2. Table 5.1 summarizes the parameters using in the analysis. 

Table 5.1 Parameters summary for a fixed-fixed beam 

Parameter 
Evaluation 

point 

Parameter 

variation 
Approximation method 

Maximal relative error 

of the displacement, % 

Length L, µm 200 50…400 4th order Taylor series 0.5 

Width B, µm 50 25…200 1st order Taylor series 0.8 

Thickness H, µm 2 1…8 [2/2] Padé approximant 1.0 

As seen from Figure 5.2, in accordance to the theoretical consideration, the maximum dis-

placement, the maximum stress and the strain energy increase as the length of the beam is 

increased. Similarly in accordance with the theoretical formula (see Appendix C), the maxi-

mum displacement should be independent of the width of the beam. No change in the maxi-

mum displacement of the beam was observed on changing the width in the specified range. 

Only the strain energy increases with increasing the width of the beam. The relationship be-

tween the thickness and the maximum displacement of the beam has been plotted in Fig-

ure 5.2c. It could be shown that Taylor series of mechanical deflection or strain energy with 

regard to thickness capture the system behavior only in a very limited circle close the evalua-

tion point. Basic transformation of a Taylor series to a Padé approximant allows extending of 

the acceptable thickness range to about 300 percent as shown in Figure 5.2c. 
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The present results indicate a correct implementation of the HOD methods for parametric FE 

analysis of static problems with respect to geometric design variables. 

   
a) b)  c) 

   
d) e) f) 

   
g) h) i) 

Figure 5.2 Design curves of a fixed-fixed beam under pressure load 

Figure 5.3 present the study of time efficiency. The extra time taken for parametric modeling 

and mesh at the beginning of HODM does not consider. The solution of a system of linear 

equations is carried out by Cholesky factorization uses the LAPACK subroutines. These re-

sults were computed on a desktop PC with Intel® Core™ Duo CPU T2300@1.66GHz and 

2.00 Gb RAM running Microsoft® Windows® XP. 

The number of partial derivatives needed for a series expansion is comparable with the num-

ber of samples required for polynomial fit methods. Sampling procedures are powerful if a 

low number of sampling points have to be taken into account. Figure 5.3 shows that compu-

ting time for four sampling points was still lower compared to parametric FE technique. On 

the other hand, data acquisition time of sample methods grow exponentially the more va-

riables must be processed. Fortunately, automatic differentiation of additional matrix planes is 

usually less expensive compared to further FE solution runs needed for sampling. 
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Figure 5.3 Comparison of the time cost between FE-reanalysis and HODM 

Benefits of the novel approach compared to ordinary data sampling procedures needed for 

parametric modeling become obvious for large problems. Hence, the extra time taken for pa-

rametric modeling and mesh at the beginning of variational techniques disappears rapidly. 

5.1.2 Variation in Material Properties 

Silicon is an anisotropic material. Dependence of the Young’s modulus and Poisson’s ratio of 

the monocrystalline silicon on orientation in (100)-plane can be approximated by equations: 

 
)(sin)(cos704.0768.0

10
)(

22

5

)100( 



E , (5.3)

 
)(sin)(cos708.0768.0

)(sin)(cos708.0214.0
)(

22

22

)100( 





 , (5.4)

where  is the orientation angle [12]. It is possible to involve material properties as design 

parameters taking into account the dependence of a matrix D(E,v) on the angle . Depen-

dences of maximal displacement, maximal equivalent stress and strain energy of the uniform 

loaded silicon beam on crystalline orientation in (100)-plane are shown in Figure 5.4. The 

difference between the parametric 4th order solution and the ordinary FE solution is only 

0.5%. 

   
a) b) c) 

Figure 5.4 Static response: variation in orientation angle 
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5.1.3 Modal Analysis 

Parametric modal analysis is important for identification of dimensional parameters by vibra-

tion analyses and macromodeling of MEMS [4]. The eigenvectors are M-orthonormalized, 

and the first eigenfrequency of a fixed-fixed beam is considered. Exemplarily, the dependence 

of first frequency on length of a beam is shown in Figure 5.5a. The analytical solution is de-

scribed f1(L) as L-2 that correspond selected Padé approximant [0/2]. The peak amplitude 

along of a beam was used for the mode shape estimates, Figure 5.5b. The responses of 

HODM and ordinary FEA are quite close. 

  

a) First eigenfrequency vs. length b) First mode eigenshape vs. length 

 

c) Eigenshape derivatives of first mode shape (z-direction exaggerated for clarity) 

Figure 5.5 Parametric modal study of a fixed-fixed beam 

The shape of the mode remains the same whereas the magnitude is different. The eigenvector 

derivatives of first mode shape are visualized in Figure 5.5c. 

5.1.4 Harmonic Analysis 

The harmonic response analysis is performed over the frequency range [0…15] MHz. The 10 

modes have been within this frequency range. The frequency response at the center node 

along the z direction is presented visualized in Figure 5.6. Results obtained with the FE simu-

lations were compared with the one obtained with HOD method. Padé approximant [8/7] is 

already sufficient to reproduce the harmonic response of the beam with a relative error small-

er than 1%. 
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Figure 5.6 Undamped harmonic response of a fixed-fixed beam 

5.2 Parametric Electrostatic Analysis 

The comb-drive consisting of interdigitated fingers is one of the main blocks of MEMS reso-

nators. A comb cell with a large lateral displacement of movable finger was proposed as a 

benchmark for assessing the accuracy of simulation tool in [4]. Parametric model extraction 

of the one capacitive cell is selected as an application of the general HOD methodology. Fig-

ure 5.7 illustrates the model sketch and FE-mesh of a capacitive cell. The dimensions of the 

fingers are 40×4×4 µm. The air-gap between the electrodes and the initial electrodes overlap 

are 2 µm and 20 µm, respectively. 

 

 

a) Solid model b) FE-model 

Figure 5.7 Parametric model of a comb cell for computing capacitance stroke functions 

The FE-model consists of the 1980 elements and 2682 nodes. Parameterized eight nodes ele-

ment having one degree of freedom at each node (electrical potential ) is used for the analy-

sis. Capacitance stroke functions are directly extracted from the electrostatic field solution 

based on Laplacian partial differential equation. The system of FE equations can be subdi-

vided into nodes laying on conductor surfaces and nodes in the dielectric region. For capacit-

ance computation, the voltage potential of conductor nodes is entirely constrained and charges 

on all other nodes become zero. The system of FE equations is written as 
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where the index c represents conductor nodes and e nodes of the electrostatic region (e.g. air). 

The solution procedure starts with a first step where all unknown potentials are computed: 

  cec
-
eee VKK  1 . (5.6)

A second step the charges on conductor nodes are determined: 

 eeccc KVKQ  cc . (5.7)

Note, all vectors and matrices are depended on parameters p. The six geometrical parameters 

(motions and rotations of the moving finger) are used to parameterize the cell model. The 

design velocity field for mesh perturbations is obtained by solving Laplace equation with Di-

richlet boundary conditions for outer nodes. The set of matrix derivatives contains the 210 

planes, which cover partial derivatives for 4th order Taylor expansion with regard to six para-

meters. The derivatives of electrical potentials vector are extracted at the evaluated point by 

means of AD according (3.17). Finally, capacitances are extracted from the accumulated 

charge on conductor surfaces at unit electrical potential Vc: 
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The capacitance relationships depending on design parameters are illustrated in Figure 5.8. 

 
a) b)  c) 

 
d) e) f) 

Figure 5.8 Capacitance stroke function of a movable finger with regard to six degrees of freedom 
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Figure 5.8c shows that the levitation effect of comb cells could be captured well with 2nd 

order polynomial. The accuracy of parametric results depends mainly on mesh perturbations 

caused by mapping of global parameter to the nodal table. Figure 5.9 shows the study of the 

mesh perturbations associated to the design parameter. 

   
a) b)  c) 

   
d) e) f) 

Figure 5.9 Comparison between capacitance functions obtained by different approaches 

The obvious disadvantage is that applicable range limited by mesh-morphing procedures. The 

large mesh perturbation of electrostatic FE mesh is a bottleneck and cannot be applied to pa-

rametric analysis, Figure 5.10c. 

The domains of practical use, for a reasonable accuracy of 5% with 4th order Taylor series, are 

[2…2] µm in case of the motion in operating direction x. 

It is essential that the obtained parametric solution in polynomial form provides not only ca-

pacitance data but also the first and second derivatives needed for Maxwell force and electros-

tatic softening computations. 

The HOD approach can be applied to finger shape optimization with different force profiles. 
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a) Initial FE-mesh p1= 0 µm  

 

 

b) Mesh-morphing p1= 18 µm  

 

 

c) Remesh p1= 18 µm 

Figure 5.10 Comparison between mesh-morphing and remesh approaches 

Table 5.2 Parameters summary for a comb cell 

Parameter 
Eval. 

point 

Parameter 

variation Approximation 

method 

Max. relative 

error 

of the capa-

citance, % 

1D 

variation 

6D 

variation 

motion in operating 

direction p1, µm 
0.0 -10…4 -8.0…8.0 4th order Taylor series 5.0 

horizontal shift in y-

direction p2, µm 
0.0 -1.8…1.8 -1.0…1.0 [2/2] Padé appr. 0.2 

vertical shift in z-

direction p3, µm 
0.0 -1.9…4.0 -1.0…1.0 2nd order Taylor series 0.5 

x-rotation p4, grad 0.0 -5.0…5.0 -1.0…1.0 2nd order Taylor series 0.2 

y-rotation p5, grad 0.0 -2.5…2.5 -1.0…1.0 4th order Taylor series 0.5 

z-rotation p6, grad 0.0 -2.4…2.4 -1.0…1.0 [2/2] Padé appr. 0.2 

5.3 Parametric Squeeze Film Analysis 

Squeeze film analysis simulates the effects of fluid damping of structure moving in small gaps 

between fixed walls. A harmonic analysis based on linearized Reynolds equation is used to 

determine the fluid pressure P(x,y) with regard to frequencies of moving wall [60]. At each 

frequency step i, a following linear system is factorized and solved in order to obtain the 

complex pressure distribution over the area: 

y 
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where P1 and P2 are the real and imaginary components of the pressure, respectively; Q is the 

nodal volume flow rate vector. 

The calculations of the stiffness and damping forces are done by summing the pressure distri-

bution over the area: 

 
A

dAyxPF ),(11 . (5.10)

 
A

dAyxPF ),(22 . (5.11)

The frequency-dependent damping c and stiffness k coefficients are extracted by 

 
zv

F
c 1 , (5.12)

 
zv

F
k

2 , (5.13)

where F1 is the real part of the pressure force, F2 is the imaginary part of the pressure force 

and vz is the normal velocity component of the moving structure. 

A rectangular plate under transverse motion is modeled by 4-node 3D isoparametric finite 

element having one degree of freedom at each node (pressure) [107]. The element matrices k 

and c are obtained by numerical integration over the element area: 

 
A

T dABDBk , (5.14)

where 
1210

01 3gap








D  is the constitutive matrix, and 

 
A amb

T dA
P

gap
NNc . (5.15)

The element volume flow rate vector is computed from the velocity body loads (wall velocity 

in normal direction vz) according to Equation (4.17). The pressure at edges Pamb = 101 kPa 

and the fluid dynamic viscosity  = 18.310-12 kg/µm/s are assumed. The initial air gap height 

is 4.0 µm, which makes the Knudsen number of the air gap flow Kn to be 0.016 and the conti-
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nuum theory based on a modification of the dynamic viscosity is used [107]. The estimated 

stiffness and damping coefficients are 3.43 N/m and 5.410-6 Ns/m, respectively. The com-

puted effective damping and squeeze stiffness coefficients are shown in Figure 5.11. The ob-

tained results and analytical solution according to Blech [108] for a rigid plate moving with a 

transverse motion are quite close. The HOD approach correctly takes into account the fre-

quency-dependence in a single FE run. The derivatives of the real P1
(n) and imaginary P2

(n) 

parts of the pressure with respect to frequency are extracted from (5.9) by means HODM. In 

next step, the derivatives of nodal damping force vector F1
(n) and F2

(n) are computed from 

(5.10) and (5.11), respectively. 

Figure 5.11 shows that the frequency-dependence of the damping and squeeze stiffness coef-

ficients could be captured well with 2nd order TS.  First eigenfrequency is used as an evalua-

tion point. The agreement is very good at low frequencies and fair at eigenfrequencies. The 

difference between the parametric and ordinary FE solutions is 1.8%. 

  
a) Squeeze stiffness coefficient vs. frequency b) Damping coefficient vs. frequency 

Figure 5.11 Squeeze film analysis of a rectangular plate 

5.4 Advanced Examples 

This subsection presents several advanced topics related to MEMS simulation. The first ex-

ample is a discrete analysis. The next examples are a substructuring technique and a parame-

terized sequential coupled FE-analysis. Finally, a nonlinear structural FE-analysis is pre-

sented. 

5.4.1 Discrete Analysis: Perforated Beam 

Perforations are widely used in MEMS for several reasons. The main purpose is to decrease 

the damping and spring forces of vibrating structures due to the gas flow in small air gaps. 

The second goal is to increase eigenfrequency due to reduce the total mass of structures. The 

following example builds a perforated beam with circular holes having a radius of 25 μm. The 

five holes are set as discrete variables, allowing simulating the effects caused by removing 

holes. For n discrete parameters, the 2n configurations can be explored at one solution step. 
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The aim of this example is to illustrate how the results of Sections 5.1 can be used in discrete 

analysis. The five holes are group into three element components as shown in Figure 5.12. For 

the present study, the 8 configurations have been explored. The initial point p = {1,1,1} was 

used for extracting the derivatives of solution vector. The obtained parametric solution is 

shown in Figure 5.13. Numerical tests have shown that in case of pressure load also needs to 

correct the pressure for removing area. Then pi  0, the surface load applied to the i elements 

component must have zero contributes in order to extract a correct parametric solution. Ta-

ble 5.3 resumes the available configurations found from discrete analysis. The histogram in 

Figure 5.14 visualizes obtained results. All units are normalized to the maximal values in 

terms of relative values. Different optimization methods such as Monte-Carlo or genetic algo-

rithms can be used to determine the best configuration using this parametric database. 

 

Figure 5.12 FE-model of a perforated beam for discrete analysis 

   

a) b) c) 

Figure 5.13 Results of a discrete static analysis of a perforated beam 

Figure 5.14 Histogram: Discrete analyses of a perforated beam 
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Table 5.3 Results summary of the discrete analyses of a perforated beam 
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1 0 0 0 0.94 0.85 0.84 0.91 0.03 0.17 

 

2 1 0 0 0.92 0.88 0.78 0.95 0.11 0.28 

 

3 0 1 0 1.00 0.92 0.91 0.94 0.19 0.39 

 

4 1 1 0 0.96 0.93 0.96 0.98 0.50 0.61 

 

5 0 0 1 0.93 0.92 0.81 0.94 0.24 0.43 

 

6 1 0 1 0.92 0.95 0.88 0.97 0.32 0.54 

 

7 0 1 1 0.99 0.98 0.95 0.96 0.62 0.76 

 

8 1 1 1 0.96 1.00 1.00 1.00 1.00 1.00 
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5.4.2 Substructuring Technique: Folded-Flexure Resonator 

The objective here is to illustrate that the CMS analysis of eigenfrequencies can be carried out 

in an accurate way based on the results of parameterized superelements. The resonator is di-

vided into two superelements as depicted in Figure 5.15a. Sensitivity analysis of the folded 

spring element is performed in order to better understand what will be the real impact for each 

parameter. Note that sensitivity curves do not require the parametric coupling computations.  

 

a) Substructure (in plane view) b) Response surface 

Figure 5.15 Folded-flexure resonator 

The length and width of the spring were selected as design parameters. The extracted response 

surface for the first eigenfrequency by parametric modal FE analysis is shown in Fig-

ure 5.15b. The result demonstrates that the eigenfrequency could be captured correctly by 

polynomial of degree [4,4]. 

5.4.3 Parametric Sequential Coupled Analysis:                              

Piezoresistive Element 

The coupled-field FE matrix for the piezoresistive analysis is given by 
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where KS is the stiffness matrix, KG is the conductivity matrix, I is the nodal current vector 

and   is the nodal electric potential vector [55]. 

The piezoresistive coupling problem (5.16) is solved sequential for two iterations. At the first 

step nodal displacements, under action of external mechanical load are computed: 
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Then the elements stress at the gauss points is calculated by (3.16). At the second step a dis-

tribution of electrical potentials in the deformed body are calculated: 

 IK 1 G .  (5.18)

As sensitive element p-type silicon layers on an n-type substrate are widely used [109, 110]. 

In p-type silicon, strains cause a change of electric conductivity: 

 G = G 0 + G 1, (5.19)

where G 0 = g0{1 1 1 0 0 0}T is the vector of conductivity matrix components and g0 is the 

specific conductivity, and 

 G 1 = G 0[1], (5.20)

where [1] is the piezoresistive matrix. 

The silicon cantilever 3000100030 µm with the four-terminal piezoresistive element have 

been used as test object, Figure 5.16. The cantilever is oriented along the crystallographic 

direction [100]. The piezoresistive element is a p-type layer and is oriented at a 45° angle to 

the sides of the cantilever. The sensing element is a plate of length L with four contacts of 

width B located at the ends of the plate. A supply voltage Vs is applied to the electrodes to 

produce a current in the length direction of the plate. The mechanical stress in the sensing 

element generates a proportional transverse electric field in the width direction. This signal is 

detected from the two output conductors. 
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a) Sketch b) FE-model 

Figure 5.16 Parameterized four-terminal piezoresistive element 

Here HOD technique is extended on the sequential coupled problem: calculation the deriva-

tives of secondary variables (strains, stresses) and material properties with regard to design 

parameters p under mechanical load. At the second step the derivatives of electrical potentials 

in the deformed sensitive element are extracted, using the derivatives of conductivity matrix 
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G as input data. With the help of developed AD matrix rules, the parametric sequential 

coupled algorithm is introduced below. 

 

Figure 5.17 Parametric sequential coupled algorithm 

The shape of the sensing element is used as design parameter for the optimizations, as shown 

in Figure 5.16a. Figure 5.18 presents data from numerical studies of problem. First, these re-

sults demonstrate that HOD methods are capable of good precision for coupled analysis. 

Second, the present optimization finds an optimal shape of the sensing element. There are two 

different optimal shapes of sensing element depend on type of power source. HOD technique 

allows finding optimum configurations very efficiently. 

Elastostatic problem solution at the point p0:  

Compute the derivatives of the resistance: 

Compute the derivatives of the dissipation power: 
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a) Shape of the piezoresistive element b) Output signal 

Figure 5.18 Parametric analysis of a four-terminal piezoresistive element 

5.4.4 Non-Linear Static Analysis: Semiconductor Microtube 

Semiconductor microtubes, fabricated by selective underetching and releasing of a strained 

bilayer from a substrate, have attracted much attention due to their possible integration into 

semiconductor technology. The built-in mechanical strain is a driving force of the rolling-up 

micro- and nanostructures. The residual mechanical strain of the rolled-up microtubes is sub-

ject of a number of theoretical and experimental studies [111, 112]. 

GaAs/In0.15Ga0.85As bilayer-based structures were grown by molecular beam epitaxy on GaAs 

substrate. The sacrificial AlAs layer with a thickness of 10 nm was deposited onto substrates 

before growth of the bilayers. After removing the sacrificial layers by selective etching rolled-

up microtubes were formed. A schematic of a microstructure is presented in Figure 5.19a. 

 

a) FE-model b) Response surface 

Figure 5.19 Semiconductor microtube 

The bilayer structure is modeled with 20-node hexagonal isoparametric elements. Fixed 

boundary conditions are applied along at the end of the structure. The total number of the 

elements used in the model is approximately 1000. The material database [113] is used to 

provide the mechanical properties information for numerical simulation. It is assumed that 

rotations and translations are large but strains are small. This makes the problem geometrical-
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ly nonlinear. Finite element procedures for solution of geometrically nonlinear problems have 

been considered by Bathe [96]. The nonlinear equation relating load and displacement incre-

ments looks like follows: 

 r
i

a
ii FFuK  1

 .  (5.21)

Here iK is the tangent stiffness matrix at step i, Δu is the nodal displacement increment, i+1Fa 

is the applied load vector at next step i+1, and iFr is the vector of nodal internal forces that 

correspond to the current stress state at step i. The tangent stiffness matrix K is a sum of two 

matrices: the usual linear stiffness matrix K and the nonlinear addition KS depending on the 

stress state:  

 SKKK  . (5.22)

The nonlinear element stress stiffness matrix kS is defined in Appendix A.5. Nodal internal 

forces are obtained by integration of stresses over the current element volume: 

 
V

iT

i

dVσBf el
r

i . (5.23)

The difference in lattice constants creates the initial strain in the lower strain layer 

 ε0 = (a2 − a1)/a1. (5.24)

The initial strain ε0 of 1.08% is divided into n increments. At each step, an increment the nod-

al stretching forces, which correspond to an increment of the strain were computed by (4.19) 

and applied to the elements of the lower layer. After that, iteration (5.21) is solved. Coordi-

nate update is performed at each iteration. 

The parametric and ordinary analyses for the microstructure with different thickness of layers 

were performed. The thickness of GaAs/InGaAs layers was varied from 5 to 100 nm. The 

curvature radius R of a bilayer tube can be estimated with [111] 
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The dependence of the curvature radius R on the thickness of layers is presented in Fig-

ure 5.19b where the values of R determined by the parametric method are compared with 

FEM data at references points. Equation (5.25) was used to select an appropriate approxima-

tion. The results showed excellent agreement. The values obtained by parametric modeling 

are about 3% lower than correspondent referenced FE values. 
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5.5 Discussion on Examples 

The results from numerical case studies of test problems have been presented in this chapter. 

The examples demonstrate the accuracy of the implemented HOD methods for parametric FE 

analysis of static, modal, and harmonic problems in structural, electrostatic, fluidic and 

coupled domains. 

As illustrated in the chapter, the HOD parametric FE analysis are a promising alternative to 

existing data sampling and function fit procedures utilized for MEMS parametric model ex-

traction from ordinary FE analyses. By using the HOD method, the simulation results become 

directly polynomial or rational functions in terms of design parameters. Polynomials are very 

convenient since they can capture smooth functions with high accuracy. E.g. the strain energy 

functions are inherent polynomials. Comparisons with ordinary FE results have been used to 

validate the accuracy of the parameterized solutions, where up to 5th orders polynomials have 

been computed. Padé approximant allows extending of the acceptable parameter range. The 

disadvantage is that Padé approximants do not have a global error estimate, and hence it is 

necessary to select the order manually. It is vital to choose a proper order. From univariate 

rational approximation theory it is know that for some classes of functions, the most accurate 

rational models exhibiting the smallest truncation error, are the ones with approximately equal 

numerator and denominator degree [74]. 

In cases where the large lateral perturbations of the FE mesh, the HODM method has been 

shown to be prone to yield erroneous results. This is demonstrated for electrostatics analysis 

of a capacitive cell in Section 2.2. In this case the solution can be approximate in few subdi-

vided interval by Taylor expansions that must be matched on overlapping intervals. An alter-

native to the approximation of the solution in the form of a piecewise polynomial in several 

subintervals is considered in [73] that simplifies the computations. 

The benefits of parametric technologies compared to ordinary data sampling procedures be-

come obvious for multi-parametric problems. The method is also very efficient for large ma-

trices, because the factorization of the system increases with the matrix dimensions. It is ne-

cessary to point out the need for additional system memory and for parametric mesh-

morphing procedures. Further, optimization methods of high order can be applied to parame-

tric results, which have significantly higher convergence speed. 

Usually, the design parameters values are randomly scattered and defined by probability dis-

tributions. A few thousands MCS are performed to proof the interplay of packages and trans-

ducers with the electronic circuit [36]. For this purpose, the profits of using HODM are evi-

dent. 

The presented approach to parametric analysis based on differentiation of element matrices 

has been shown to yield accuracy for all studies made and must be recommend a very reliable 

tool in MEMS design. 





 

6. Application of HODM         

to MEMS Macromodeling 

The objective of this chapter is to demonstrate the viability of HOD method for automated 

MEMS macromodel generation using a single FE run for ROM data extraction, which allows 

accelerating the generation of macromodel. In the second part, HOD technique is applied for 

extraction geometrically parameterized reduced order models model of the MEMS compo-

nents. The parameterization of the mode superposition based reduced order models in the 

coupled-physics domains, numerical details, accuracy and observed problems are demon-

strated by the macromodel generation procedure of an electrostatically actuated fixed-fixed 

beam. 

6.1 Generation of MEMS Macromodels Using HODM 

The ROM generation pass from the series of FE runs is computationally expensive. Alterna-

tively to the data sampling techniques, derivatives based approach for behavioral model ex-

traction and building response surfaces is investigated. 

This information is gathered in a so-called ROM model Generation Pass [43]. The following 

diagram explains the generation process, Figure 6.1. A test load is applied to the model to 

simulate the primary motion of the device. Then a modal analysis is performed to compute the 

mode shapes i(x,y,z). The test load deflection u(x,y,z) is compared with the mode shapes 

i(x,y,z) in order to select modes which become the state variables of the macromodel. 

A time consuming FE data sampling process can be replaced by single parametric FE runs in 

structural, electrostatic and fluid domains. The characterizing parameters of electromechanical 

system must be captured in modal coordinates. Now the extraction process of the characteriz-

ing parameters like strain energy, capacitances and damping parameters is considered in de-

tail. 

6.1.1 Extraction of Strain Energy Functions 

A set of the higher order derivatives of the reaction force vector F(n) at the point q0 is obtained 

by performing a parametric linear analysis (small signal case) in structural domain. The nodal 

displacements u(x,y,z) is applied as load. The displacements are given by (2.3). The eigenvec-

tor i(x,y,z) is normalized with respect to its largest element. The derivatives of the displace-

ments vector u(n) with regard to qi can be computed from (2.3) analytically. The derivatives of 

strain energy WSENE are extracted from the matrix-vector product uTKu by means of AD. Tay-

lor series coefficients of strain energy (WSENE(q0)
(i) / i!) are store in ROM database for further 

use. 
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Figure 6.1 Overview of the data generation for MEMS reduced order macromodel by HOD technique 

6.1.2 Extraction of Capacitance Functions 

Capacitance stroke function is directly extracted from the electrostatic field solution based on 

Laplacian differential equation as described in Section 5.2. 

6.1.3 Extraction of Modal Damping Parameters for Squeeze Film 

Problems 

A harmonic analysis based on Equation (2.9) is used to determine the fluid pressure P(v) with 

the normal velocity component of the moving structure defined by vz(x,y) = i(x,y,zneut)const. 

The derivatives of the real P1
(n) and imaginary P2

(n) parts of the pressure with respect to fre-

quency are extracted by (5.9). In next step, the derivatives of nodal damping force vector F(n) 

are computed by means AD from (5.10). Finally, the derivatives of the damping c(n) and stiff-

ness k(n) coefficients of each mode can be found on the main diagonal terms: 

Mode # Frequency 
[kHz] 

Factor 
[%] 

1 34.03 81.58 
3 58.55 18.27 
7 420.06 0.09 
2 43.38 0.03 
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6.1.4 Example 

An example for assessing the accuracy of reduced order models is a micromirror with two 

degrees of freedom, the transversal shift and tilt angle [43, 114]. The coupled FE-model con-

sists of the 3844 elements, 5733 nodes. Three conductors with three capacitance functions are 

involved. The following model considers the three modes: torsion mode, transversal mode in 

z-direction and one mode responsible for plate warp, Figure 6.1. 

In order to obtain the strain energy and capacitance information in the modal space, the mov-

able structure must be displaced to linear combinations of considered eigenmodes. The per-

turbations of internal nodes with respect to modal amplitude qi as parameter are obtained by 

solving Laplace equation with Dirichlet boundary conditions for outer nodes [71]. 

The results from numerical studies of test problems in linear static and harmonic structural 

domains are presented in Figure 6.1. This results were computed on a desktop PC with Intel® 

Core™ Duo CPU T2300@1.66GHz and 2.00 Gb RAM running Microsoft® Windows® XP.  

Comparisons with ordinary FE results have been used to validate the accuracy of the parame-

terized solutions. 

Capacitance stroke functions and strain energy terms have been computed for three modes: 1, 

3 and 7 up to order four (1 + 3 + 7  4). The differential tuples contain R = 35 planes, ac-

cording to (4.21), which cover partial derivatives for Taylor series expansion. The number of 

differential planes is comparable with the number of samples required for polynomial interpo-

lation assuming 35 sample points for three modes: 
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The 125 orthogonal sampling points (5 sample points for each mode) are used for the function 

fit method. Figure 6.2 shows that the response functions for capacitance and strain energy can 

be captured correctly with order two. The relative errors are less than 0.8 %.  
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a) Strain energy vs. q1 b) Capacitance vs. q1 

  
c) Strain energy vs. q3 d) Capacitance vs. q3 

  
e) Strain energy vs. q7 f) Capacitance vs. q7 

  
g) Stiffening coefficient k11 e) Damping coefficient c11 

Figure 6.2 Accuracy of HOD method compared to ordinary FE sampling for ROM 
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In small signal case, the dependence of squeeze parameters on the film thickness can be not 

taken into account. The HOD approach correctly captures the frequency-dependence of stiff-

ness and damping coefficients in a single FE run. Exemplarily, dependence of damping coef-

ficients c11 on frequency is shown in Figure 6.2e. Numerical results demonstrate that the gen-

erated models are highly accurate in a wide range of modal amplitudes. 

The computation times are summarized in Table 6.1. 

Table 6.1 Summary of computation times: small signal case; number of modes = 3 (1,3,7) 

ROM Gener-

ation Pass 

Type 

of element 

Number 

of elements 

Number 

of nodes 

Time, s 

Data sampling HODM 

    35 points 125 points 4th order 

Structural 

domain 
8-node solid 624 1197 1050 3750 880 

Electrostatic 

domain 
20-node solid 2932 5223 1522 5375 1175 

    8 points  6 th order 

Fluid domain 4-node shell 288 371 9.1  12 

Total  3844 5733 2581.1 9125 2067 

Table 6.1 shows that computing time for one parameter (squeeze film analysis c11(f), k11(f)) 

was still lower compared to the HOD approach. The reason is the overhead for computing 

derivatives of functions. On the other hand, data acquisition time of sample methods grows 

exponentially if more variables are taken into account. For the parametric analysis of linear 

systems, the reduction in expected computing time is at least a factor of two. 

6.2 Parameterization of MEMS Reduced Order Models 

6.2.1 Algorithm Description 

The equilibrium equation of an electrostatically actuated flexible structure can be rewritten in 

parameterized form as follows: 

 ),()),(,()),(()()()()),((2)()( ptfptqtfptqftqpmpptqtqpm qelecriiiiii    , (6.6)
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force and  fq is the external modal force. A set of modal coordinates qi(p) is define by 

 ),(),,,(),,,,(
1

ptqpzyxptzyxu i

m

i
i



  . (6.7)

The basic steps in performing the parametric ROM generation process are as follows: 

1. Create the fully-meshed FE-model of coupled-domain device 

2. Mesh parameterization {xi(p),yi(p),zi(p)} with regard to geometrical design para-

meters 

3. Assembling of the system matrices and its derivatives M(p)(n) and K(p) (n) with re-

gard to design parameters p 

4. Assembling load force vectors and its derivatives F(p)(n) with regard to design pa-

rameters p 

5. Perform ordinary modal analysis at the point p0: (i(p0),i(p0)) 

6. Selection of the m appropriate modes and their operating range qimax 

7. Parameterization of the eigenvalues i(p) and eigenvectors i(p) 

8. Re-parameterization of the system matrices K(q1,q2,…,qm,p) with respect to modal 

amplitude qi and design parameters p 

9. Extraction of strain energy WSENE(q1,q2,…,qm,p), capacitance functions 

Cr(q1,q2,…,qm,p) and modal damping parameter i(qi,p) with regard to modal am-

plitude qi and design parameters p. 

As a first step, a solid model of the structure and the electrostatic field surrounding the struc-

ture is build. It is assumed that the mode set is not changed during parameter variation. After 

the data for reduced order model is extracted, the time and parameter dependent simulations 

can be performed with external simulators. 

6.2.2 Fixed-Fixed Beam 

An example for assessing the accuracy of pROM generation process is an electrostatically 

actuated fixed-fixed beam [115]. The nominal dimensions of the beam are 200202 µm. 

Figure 6.3a shows the 3D model of the structure. Three conductors with three capacitance 

functions are involved. The air-gap separation is 4µm. The beam length L is considered as a 

design variable and all other dimensions are fixed as annotated in the drawing. The analytical 

models for the important parameters derived below and also reports the dependence on the 
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beam length of each parameter are summarized in Appendix C. The observed scaling provides 

important design insight for dimensioning the beam resonators. The beam should be designed 

for the smallest possible aspect ratio L/B. However, very small L/B approximately less than to 

10 may cause departure from the assumed mode shape as the long beam assumption breaks 

down. 

 
 

a) Solid-model b) FE-model 

Figure 6.3 Model of an electrostatically actuated fixed-fixed beam 

At the same time, the narrow air gap between the moving beam and the substrate will gener-

ate back pressure force on the beam due to the squeeze film effect. As the beam becomes 

shorter, the pull-in voltage of the switch becomes higher [116]. 

The coupled FE-model consists of the 4294 elements, 7138 nodes. The model uses hexahedral 

solid elements for the structural domain and tetrahedral elements for the electrostatic domain. 

Ordinary modal FE analysis at L0 = 200µm is performed in order to select appropriate modes 

for ROM. Table 6.2 illustrates the difference between using different approaches for auto-

mated mode selection. Bound for total deflection range is 4.0 µm. In first case, the modes and 

their amplitude range was determined with respect to the linear modal stiffness ratios in the z-

operating direction. The nine lowest modes are considered. In second case, a voltage test load 

applied on the beam excites only symmetric eigenmodes in the operating direction. In third 

case, a voltage test load correspond to large displacement is applied. Finally, the beam is dri-

ven due to applied voltage greater than pull-in voltage to the ground conductor placed at the 

center of the structure. The mode contribution factors are determined by LSM [43]. The 

amount of applied loads is not important for mode selection. The resulting displacements are 

essential only to evaluate the ratios between modal coordinates. The simplest test load could 

be recommended for automated mode selection. 

The first and third modes were selected as basis functions. Perturbation of the nodes in struc-

tural domain with regard to length variation is given by (5.1). The extracted eigenfrequencies 

dependences on length by parametric modal FE analysis are plotted in Figure 6.4. 
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Table 6.2 Mode specifications for ROM 

Mode 
Eigenfrequency 

at L0, MHz 

Operating range, µm / 

 Modal contribution factor, % Mode shape 

1 case 2 case 3 case 4 case 

1 0.439469 
3.17 

81.91 

3.92 

98.48 

3.73 

94.27 

3.51 

88.47 
 

2 1.217759 
0.41 

10.67 
   

 

3 2.405750 
0.11 

2.73 

0.08 

1.38 

0.20 

4.98 

0.42 

10.60 
 

4 3.022455 
0.07 

1.73 
   

 

5 4.017995 
0.06 

0.98 
   

 

6 4.172344     

 

7 6.080111 
0.06 

0.43 
 

0.07 

0.75 

0.07 

0.93 
 

8 6.103776 
0.06 

0.42 
   

 

9 8.624934 
0.06 

0.21 
   
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a) First eigenfrequency b) Third eigenfrequency 

Figure 6.4 Eigenfrequencies of a fixed-fixed beam vs. length 

Comparisons with ordinary FE results have been used to validate the accuracy of the parame-

tric solutions. The numerical result demonstrates that the dependences fi(L) can be captured 

correctly by 4th orders polynomials. The absolute relative error in this approximation on the 

length interval [160…240] µm is no more than 1.4%. It has previously been speculated that 

accurate approximation of eigenfrequencies is very important for parameterization of ROM 

model [7]. The L−2 scaling of the resonant frequency is predicted in Appendix C. The use of a 

Padé approximant makes it possible to represent the dependences fi(L) with an accuracy of 

0.1%. 

Fixed-fixed beam can behave in a highly nonlinear behavior due to deflection dependent stif-

fening. Application HODM to macromodeling can be expanded in a nonlinear case. In order 

to obtain the strain energy information for stress stiffened structures, it is necessary to choose 

nodes on a neutral plane of the beam, which is perpendicular to the operating direction and to 

apply the appropriate displacement constraints [4]. Perturbations of the nodes on a neutral 

plane of the structure with respect to modal amplitude qi and design parameters p are given by 

 ),,,(),,,(),0,0(),,( 331131 pzyxqpzyxqpzpqqz zz   . (6.8)

After parametric nonlinear solution in structure domain, the displacement constraints are im-

posing on all nodes in electrostatic domain: 

 ),,(),,,(),0,0(),,( 31 zyxvpzyxupzpqqz z  . (6.9)

Figure 6.6 illustrates the parametric ROM database information with regards to modal ampli-

tude q1 extracted by derivatives based technique. The result demonstrates that the structural 

energy W(q1,L) and capacitance C(q1,L) functions could be correctly captured over a wide 

range of modal amplitudes by rational R[4 3/0 3] and R[2 2/2 2] respectively. Figure 6.6a demon-

strates nonlinear effects: strain energy WSENE(q1,p) of  stress-stiffened could be captured cor-

rectly by polynomials of order four. The linearized Reynolds equation was used to estimate 

the squeeze film damping factor and modal damping ratio is shown in Figure 6.6h. 
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a) Contour plot of design velocity v(x,y,z) for mesh perturbations 

  

b) Structural mesh perturbation with q1 = 2.0µm c) Structural mesh perturbation with q3 = 1.0µm 

  
d) Air mesh perturbation with q1 = 2.0µm e) Air mesh perturbation with q3 = 1.0µm 

Figure 6.5 Mesh-morphing for parametric macromodeling of a fixed-fixed beam                                  

(z-direction exaggerated for clarity) 

Exemplarily, Figure 6.7 shows the accuracy of strain energy capacitance functions with re-

gard to length and modal amplitudes q1 and q3. Calculated data demonstrate that the generated 

models accurately predict effects over a wide range of modal amplitudes. 

A transient dynamic analysis on a beam can be performed using the extracted parameters. 

There is no procedure that describes the complex nature of the involved energy loss mechan-

isms in MEMS through a modal projection. The geometrical parameter and deflection depen-

dent modal damping factors based on modal projection procedure for squeeze film damping 

are assumed for transient analysis [60]. 

MATLAB/Simulink was used to execute the simulation of the resulting parameterized equa-

tions of motion (6.6). The developed parametric ROM model is shown in Figure 6.8. It also 

defines the functions, which calculates the strain energy and capacitances as well as their first 

derivatives with respect to the modal amplitudes q1, q3 and L using the information of the po-

lynomials defined at the generation step. 

A double-step voltage pulse is applied over a short duration (20µs) then released as shown in 

Figure 6.9a. The displacement of the master node near the center of the plate over time for a 

voltage pulse excitation is plotted in Figure 6.9b. The example illustrates a coupled electros-

tatic-structural-fluid transient solution. The maximum amplitude of displacement (0.07 µm) is 

small enough to ignore large deflection damping effects for short beam. As seen in Fig-

ure 6.9b, the damping plays an important role in the behavior of the MEMS resonators. 

The phase noise performance of very small MEMS resonators is limited by nonlinear effects, 

due to fundamental physical phenomena [117]. Based on the parametric dynamic macromo-

del, the proper scaling to smaller sizes can help to optimize the resonator performance. 
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a) Strain energy b) Capacitance C12 

  

c) Modal restoring force d) First derivative of the capacitance C12 

  
e) Modal stiffness f) Second derivative of the capacitance C12 

 

 

g) Modal mass m1 h) Modal damping ratio 1 (small signal case) 

Figure 6.6 Parametric ROM data extracted by HOD technique 
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In contrast to traditional ROM tool, a new derivatives based technique is proposed for ma-

cromodel extraction. The accuracy of the derivatives method is compared to ordinary ROM 

method. The derivatives technique was found to provide good accuracy in the geometrical and 

modal space. As a summary it can be concluded that method have been successfully used for 

macromodel extraction. 

 

 
 

a) Strain energy W(q1,q3,L0) b) Capacitance C12(q1,q3,L0) 

 
 

c) Strain energy W(0,q3,L) d) Capacitance C(0,q3,L) 

 
 

e) Strain energy W(q1,0,L) f) Capacitance C(q1,0,L) 

Figure 6.7 Accuracy of HOD technique compared to ordinary FE sampling for parametric ROM 
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Figure 6.8 Parametric ROM model of a fixed-fixed beam in MATLAB/Simulink 

 

a) Electrical excitation 

 

b) Displacement at master node 

Figure 6.9 Simulated transient response of the beams to an electrical excitation 
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The HOD method is well suited for parametric macromodeling using design changes that can 

be represented as changes of finite element model parameters, such as material properties and 

modifications of the geometry. The accuracy achieved with of the HOD method, making it 

practical for optimize MEMS components at system level in the design phase. HOD technique 

allows parametric studies of MEMS devices in a cost-effective manner. The method provides 

a two times to five times speedup for the macromodel generation, depending on the hardware 

and complexity of the model. The drawback of reduction methods is not a prior computable 

error bound for the transient analysis. More complicated examples and an experimental com-

parison of accuracy of developed methods should be performed [118]. Extensions of the pre-

sented parametric squeeze film model by full Navier-Stokes equations are suggested for fur-

ther work. Future developments must address computational issues for improving the effi-

ciency and automation of the prototype tools presented herein. 

 



 

7. Conclusions and Outlook 

Many topics in the field of parametric FE analysis and parametric reduced order modeling are 

covered in this work. A short summary and conclusions of the presented work are given in the 

following: 

 A parametric FE-solver based on the derivation of discretized FE equations and the 

computation of a Taylor polynomial or Padé approximant of the solution from the 

high order derivatives has been prototyped 

 Automatic differentiations technique for extraction high order derivatives of the FE 

matrixes, its inverse and determinant has been utilized 

 A Library of parameterized finite elements has been developed 

 A new mesh-morphing algorithm has been successfully implemented 

 A large number of numerical tests have been performed in order to evaluate the accu-

racy and efficiency. 

The microbeam and capacitance cell were used as the benchmarks. The parametric models 

were compared with the result obtained by the ordinary FE-method. Comparisons with stan-

dard FE results have validated the accuracy of the parameterized solutions, when up to six 

orders were computed to give reasonably engineering accuracy within 2%. For parametric 

problem with three coupled parameters, presented method is more effective than ordinary FE 

runs. HODM is a technique to build explicit functions with respect to design parameters. The 

parametric database allows interactive update of model response for any parameter values. 

Consequently, HODM is particularly attractive where the number of evaluation point is large. 

Behavior model extraction and design optimization is a main field of applications of HODM. 

It has been found that this technique is limited to moderate parameters variations 15% due to 

the mesh-morphing procedures. 

The concepts of automatic macromodel generation and parametric macromodeling were well 

known and have been investigated in the past, but this research makes several advances. For 

the extension of possibilities for reduced order methods based on mode superposition tech-

nique the following investigations were done. 

First, this thesis introduces the concept of Taylor expansion or Padé approximant in order to 

accurately replace computationally cumbersome full three-dimensional simulation. Effective 

ROM model generation was evaluated by the example of micromirror. 
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Next, this research introduced and implemented the parametric macromodeling. In the thesis, 

the successful implementation of a methodology for parameterization of macromodel by the 

example of microbeam and for exporting these macromodels into MATLAB/Similink to de-

termine dynamical behavior has been reported. 

Further Work 

Although a very general approach has been developed, there are still many possibilities for 

extensions and improvement. Future works will address larger MEMS applications (over 105 

DOF) with a fully automatic approach to parametric mesh generation, and other topics related 

to the pre- and post-processing facilities. Key remaining issues include: data structure for 

symmetry sparse matrices, and parallel implementation. Algorithms for functions represented 

by Fourier-type series can be used to obtain the coefficients of the series expansions, much 

like what has already been done for Taylor series. 

In the future MEMS will get more and more complex so that further research on parametric 

ROM/MOR methods is required to improve the automation of the model extraction and ex-

tend the coverage of considered effects within the macromodel, making it practical for de-

signers to optimize MEMS at the system level. More work should be done in integration of 

the methods with projection technique based on Krylov subspace and methods based on mode 

superposition technique. 



 

Appendix A                  

Isoparametric Finite Elements Formulations 

A.1 Element Geometry 

Table A.1 Finite element geometry 

Type Linear Quadratic 

2D plane 

quadrilateral 
 

 

 
 

3D shell 

quadrilateral  
 

3D solid 

hexahedral 

(brick) 

 

 

 

A.2 Interpolation inside the Finite Element 

Within the isoparametric formulation of a finite element, the displacement field and coordi-

nates are interpolated inside the finite element from nodal values ui and xi, yi, zi using shape 

functions: 
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. (A.2)

Shape functions for the 2D/3D isoparametric finite elements are given in Section A.3. 
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A.3 Shape Functions 

The shape functions for the 4-node 2D/3D elements are given 

 
4/)1)(1(1  N ,   4/)1)(1(2  N , 

4/)1)(1(3  N ,   4/)1)(1(4  N . 
(A.3)

The shape functions for the 8-node 2D/3D elements are given 

 

2/)1)(1( 2
5  N ,  2/)1)(1( 2

6  N , 

2/)1)(1( 2
7  N ,  2/)1)(1( 2

8  N , 

   2/)(4/)1)(1( 851 NNN   , 

   2/)(4/)1)(1( 652 NNN   , 

   2/)(4/)1)(1( 763 NNN   , 

   2/)(4/)1)(1( 874 NNN   . 

(A.4)

The shape functions for the 8-node and 20-node 3D elements are given, respectively 
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8/)1)(1)(1(7  N ,   8/)1)(1)(1(8  N . 

(A.5)
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  2/)(8/)1)(1)(1( 1011193 NNNN   , 
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A.4 Gauss Quadrature 

The numerical integration of 2D quadrilaterals is given by 
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The 3D integration of bricks is given by 
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The integration point locations and weighting factors are given in Table A.2. 

Table A.2 Gauss numerical integration parameters 

Integration points Integration point locations xi Weighting factors wi 

quadrilateral 

22 points 3

1
  1.000 

hexahedral 

222 points 3

1
  1.000 

A.5 Element Initial Stress Stiffness Matrix 

In the derivation of element initial stress stiffness matrices it is convenient to reorder nodal 

degrees of freedom by introducing the element displacement vector u, where translational 

DOFs are reordered so that first all x-direction DOF are given, then y and z as follows: 

 Tz
n

zy
n

yx
n

x uuuuuu }.........{ 111u . (A.9)

The element initial stress stiffness matrix for the 3D isoparametric finite elements is given by 

 
V

T
S dVGSGk , (A.10)

where G is the matrix obtained by appropriate differentiation of shape functions N, S is the 

matrix of initial stresses. The matrix G is given by 
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Each submatrix g is given by 
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The stress matrix S is given by 
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and each submatrix s is defined as 
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The stresses are obtained by an initial static stress analysis. 

 



 

Appendix B 

Polynomial Index Notation in 2D Case 

Table B.1 Polynomial index notation 

Pascal type: 1+2  max() Lagrange type: 1, 2  max() 
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Appendix C 

Analytical Models in an Electrostatically        

Actuated Fixed-Fixed Beam 

Analytical models [11, 116, 117, 119, 120] and scaling dependencies on length L for related 

properties in an electrostatically actuated fixed-fixed beam are summarized here. 

Table C.1 Analytical models of a fixed-fixed beam 

Property Analytical model L dependence 

Mass LBHm   L 

Stiffness  

(point force excitation at the center) 3

3

425.10
L

EBH
K   L-3 

Third order stiffness coefficient K
B2

767.0
  L-3 

Center deflection 

under uniform pressure P 
P

EH

L
3

4

32
  L4 

Maximum stress 

under uniform pressure P 
P

H

L
2

2

2
  L2 

Bending energy 3

24

96L

EI
W


 , 

12

3BH
I   L5 

Resonant frequency 


E

L

Hn
f i

i 2

2

3
  

n1 = 2.365 

n2 = 3.927 

n3 = 5.498 

L-2 

Modal mass 2
i

i
i

k
m


  L 
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Table C.2 Analytical models in an electrostatically actuated fixed-fixed beam 

Property Analytical model L dependence 

Pull-in voltage 
A

gapK
V eff

PI 27

8 3

  L-2 

Optimal bias voltage 
A

gap
Vbias 


4

5

  L-2 

Power handling 2

3
0337.1

Q

mB
Power


  L-5 

 

According to Blech [108] an analytical solution for the damping C and squeeze stiffness K 

coefficients for a rigid rectangular plate moving with a transverse motion is given by 
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where c is the ratio of plate length a divided by plate width b, d is the film thickness. The 

squeeze number is given by 
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Theses 

1. Finite element techniques have become state-of-the-art for component design of 

MEMS. Physical effects related with mechanical, electromagnetic, thermal and fluid 

fields in complex devices are accurately described for static, harmonic and transient 

load situations. Drawback of existing finite element techniques is that those algorithms 

can only analyze a single model configuration with specified dimensions and physical 

parameters. 

2. The key idea of the novel approach which accounts for parameter variations in a single 

finite element run is to compute not only the governing system matrices of the finite 

element problem but also high order partial derivatives with regard to design parame-

ters. As result, Taylor vectors of the system’s response can be expanded in the vicinity 

of the initial position capturing structural dimensions and physical parameter. 

3. Behavioral models with singularities on the real axis, with singularities in the complex 

plane or with branching points cannot be presented efficiently by a Taylor series. Tay-

lor expansions of functions with poles converge slowly or fail even with a high order 

of derivatives. In order to overcome the problem, rational polynomials (e.g. Padé ap-

proximation) can be utilized to extend the operating range over the poles, which are 

the zeros of the denominator term. 

4. A Jacobian matrix is used for the isoparametric transformation of a finite element to a 

unit cell. Generally, the mathematical expression of a Jacobian matrix depends on the 

element type (through the shape functions) and the nodal coordinates of the element. 

The Jacobian matrix is expressed in terms of the derivatives of shape functions with 

respect to the local element coordinates evaluated at Gauss points of the element. The 

shape functions of the finite element depend only on the local coordinates within the 

element and thus are independent of the actual geometry of the element. Like Jaco-

bian, the strain-displacement matrix depends on coordinates of the nodal points, whe-

reas the constitutive matrix depends only on the material parameters. So, the deriva-

tives of an elementary stiffness matrix can be done with respect to material properties, 

to geometrical parameters or to load and boundary conditions. 

5. The derivatives of the inverse Jacobian matrix as well as the determinant of the Jaco-

bian matrix can be obtained by using automatic differentiation (AD). AD technique 

utilizes generalized differentiation rules, which give an exact representation of the par-

tial derivatives up to the specified order by combining derivatives of the arguments 

with binomial coefficients. AD allows to compute exact high order derivatives up to 

the machine precision. 
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6. A convenient way to transform global parameters to internal nodal coordinates is a 

Laplacian smoothing used for mesh-morphing. In contract to iterative Laplacian 

smoothing, the electrical analogy can be effectively used to compute design velocities 

for nodal transformations with regard to geometrical parameters. 

7. The mechanical components based on flexible beams and electrostatic components 

based on comb fingers are two important classes of MEMS applications. The beam 

performances scale with a power law dependence on its dimensions with exponent be-

tween -3 and 5. A proper chosen order of a Taylor series is vital to build an accurate 

approximation. Generally, HOD technique is limited to moderate parameters varia-

tions 15% due to the mesh-morphing procedures. 

8. In contrast to traditional data sampling and function fit procedures, a novel HOD tech-

nique can be utilized to extract parametric reduced order models (macromodels) based 

on the mode superposition method. The implemented automatic differentiation tech-

nique provides high accuracy and efficiency in the frequency and time domains. 
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