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Abstract 
The paper examines the problem of film stress applying a correct three dimensional model. 

The results are compared with two different forms of Stoney´s equation existing in the Litera-

ture and being widely used in the determination of stresses in thin films.  

It is shown theoretically that only one of the forms is based on an adequate model and yields 

accurate results whereas the other causes errors of about 30-40 % for typical substrate materi-

als. In addition limits for the applicability of the correct Stoney equation are given. 

Introduction 
Internal stress in a film on a plate-like substrate causes the film-substrate compound to warp 

until mechanical equilibrium is reached, i.e. until both net force and bending moment are 

zero. A plate-like form of the substrate means that the substrate thickness, hs, is constant and 

small in comparison to its lateral dimensions. From the curvature of the elastically deformed 

coated substrate the average film stress, σf, can be calculated. This method is very popular 

since the curvature of the bent substrate can easily be measured and no information on the 

elastic parameters of the film material is necessary. As substrate material often silicon is used 

since its mechanical properties are well defined and well known. If necessary, small beams 

(cantilevers) can be made of single-crystal silicon using micromechanical technology (e.g. 

Elwenspoek and Jansen 1998) which allows to apply the method also to very thin films. When 

the thickness of the film, hf, is small compared to that of the substrate, a simple formula holds 

which was first published by STONEY 1909: 
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with R - radius of curvature and Es - YOUNG´s modulus of the substrate. In its original form, 

the STONEY formula is valid only for a narrow coated beam. The index “zz” denotes the stress 

component in direction of the length side of the beam which we chose to be along the z-axis. 

When measuring thin films deposited on plate-like substrates, the corresponding biaxial de-

formation has to be taken into account (see, for instance Ohring 1992) by using the biaxial 

modulus, Eb,s, of the substrate rather than the YOUNG´s modulus alone: 

 Es → Eb,s = Es / (1 - νs)  (2) 

with νs - POISSON´s ratio of the substrate. This corresponds to the cap or bowl-like deforma-

tion of a circular substrate under the influence of intrinsic film stress. Since many solid mate-

rials have POISSON´s ratios between 0.2 and 0.3, using the biaxial modulus instead of Es yields 

a modification in the calculated σf values by 25 to 43 %.  

For practical reasons, instead of a circular substrate often an elongated rectangular substrate is 

used, either as a "macroscopic" strip having a length in the centimetre range, or as a microme-

chanical cantilever typically few 100 µm in length. It was argued by Berry 1988 that such a 

substrate rather curls into an approximately cylindrical shape instead of bowl or cap-like de-

formation. Therefore, in STONEY´s formula Es should be replaced in this case by the plate 

modulus, Ep,s, rather than by the bipolar modulus of the substrate: 

 Es → Ep,s = Es / (1 - νs
2).  (3) 

In the meantime, this apparently plausible argumentation was repeatedly followed in the lit-

erature (see, for instance Ljungcrantz et al. 1993 or Berry and Pritchet 1990). Considering 

transverse contraction in this manner modifies σf only by 4 to 9 % when typical νs values be-

tween 0.2 and 0.3 are assumed.  

The aim of this paper is to examine the argumentation given in Berry 1988.  

Theoretical Part 

General Preliminaries 
Let's consider a coated plate of arbitrary symmetry. The curvature R of this plate in the direc-

tion of x may be described exactly by (see figure 1): 
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Here, w means the displacement in z-direction. s and ϕ are the length and the angle of the arc, 

which follows the deformation curve of the plate. The latter approximation is valid for small 

deformations which is equivalent to small w'. 
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Fig. 1:  To the calculation Radius of curvature, R, of the plate. 

 

The basic relations between the deformations uij and stress components σij (i, j = x, y, z) in the 

isotropic linear elastic case may be written as (e.g. Landau and Lifschitz 1989) 
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The coated rectangular substrate 
We use the ordinary plate approximation (see e.g. the book of Landau and Lifschitz 1989 p. 

48) assuming that the z-dimension of the plate is very small compared to the others and we 

can neglect all stress components in this direction: 

 0xz yz zzσ σ σ= = = . (6) 
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With the origin of the z-axis laying at the substrate bottom we can give the following equa-

tions for the normal deformations 
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with z = α being the position of the neutral surface within the compound. This yields with 

equation (5): 
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After few simplifications we get: 
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According to the original Stoney evaluation we assume a constant stress over the coating 

thickness and a linear z dependent stress distribution in the substrate. In the case of a rectan-

gular substrate the problem is asymmetric. Therefore, in order to stay on a general level, we 

will consider for the moment different film stress values in the x and y directions, and 

, respectively. Using the formula above one obtains from the conditions of the force and 

torque freedom of the whole compound: 

f
xxσ

f
yyσ

Force freedom: 

 ( ) ∫∫∫ +−







+

−
===

tot

s

stot h

h

f
xxs

h

s

s
h

xxx dzdzz
y
w

x
wEdzzF σα

∂
∂ν

∂
∂

ν
σ )(

1
0 2

2

2

2

0
2

0

, (8) 

 ( ) ∫∫∫ +−







+

−
===

tot

s

stot h

h

f
yys

h

s

s
h

yyy dzdzz
x
w

y
wEdzzF σα

∂
∂ν

∂
∂

ν
σ )(

1
0 2

2

2

2

0
2

0

. (9) 

Torque freedom: 
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The origin for the z-axis was again laid at the substrate bottom and htot stands for the com-

pound thickness being a sum of the substrate thickness, hs, and the thickness of the film, hf. 

From these four equations we first evaluate the position of the neutral surface within the com-

pound as2: 
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In addition we can give a relation between the normal stresses within the film and the result-

ing curvature of the compound: 
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where Rx and Ry denote the radius of curvature for the main axis directions x and y. Rearrang-

ing yields: 
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Assuming a homogeneous deposition process, the biaxial film stress should be isotropic and 

homogeneous, i. e.3 f
xxσ  = f

yyσ  = f
rrσ  at any single point and f

rrσ  being constant everywhere 

on the surface. This obviously holds in the case of a relatively thick substrate compared to the 

film thickness, because there the bending of the compound caused by the film stress and thus 

the reduction of this stress can only be relatively small. Applying the results of this section we 

can give a formula for the ratio of the film stress reduced due to bending, f
bσ , and the film 

stress f
rrσ  corresponding to equations (13) and (14) as a first perturbation of the f

rrσ =constant 

case: 

                                                 
2 A more general consideration for various forms of plate deformation using the calculus of the free energy is 

given in Schwarzer 2002. 
3 This directly follows in the case  and 0f

xyσ = f f
xx yyσ σ= , because we have the general transformation rule 
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which yields very low values for typical hf/hs ratios usually being well below 0.01. The reader 

may find a more comprehensive consideration which distinguishes between the effect of 

thermal and lattice mismatch caused stresses in Schwarzer 2002. 

For a rectangular substrate the above equations (13) and (14) can be used to find the dis-

placement w(x,y) applying a Fourier series approach. We obtain the result (for the evaluation 

see appendix A):  
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From that, one can prove directly that the assumption of a homogeneous and isotropic stress 

distribution within the film leads also for a rectangular substrate to a bowl or cap-like defor-

mation of the compound:  
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The value of the biaxial stress is given by: 
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For hf << hs the well known equation for the thin biaxially stressed substrate is received  
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which is usually referred to as "Stoney´s formula".  

It should be pointed out here that this result is independent of the concrete aspect ratio a/b of 

the rectangular substrate as long as the conditions for the plate approximation (6) are valid. 

This, however, is determined by the ratio of the substrate thickness to the smaller edge, b, of 

the rectangular plate (with b < a). If hs << b is not maintained, as for instance in the case of a 

very small cantilever, a certain deviation of the true stress value from that obtained from eq. 

(20) (general case) or eq. (21) (for hf <<hs) occurs. From three dimensional calculations ap-

plying the Fourier approach for an internally stressed rectangular thick bi-layer plate given in 

appendix B we can extract the limits of the Stoney equation (21) concerning the ratios 

(hf+hs)/b and a/b. At first, however, we need to determine the number of terms in our Fourier 

series in order to fulfil the condition of a sufficiently homogenous film stress. As an example 

we use the parameters given in table 1. Figure 2 shows the resulting stress distribution along 
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the x-axis (y=0, co-ordinate origin at x=y=0) with 99 terms for an assumed average film stress 

of  at z=h1f
xx GPaσ σ= = f/2.  
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Fig. 2: Film stress along the x-axis as evaluated applying the three dimensional ap-

proach given in appendix B with 99 terms. 

 

We see that the approach also provides a rather constant stress distribution along the normal 

axis (here z) within the film (Fig. 3) and a linearly dependent stress in the substrate (Fig. 4).  
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Fig. 3: z-dependence of film stress as evaluated applying the three dimensional ap-

proach given in appendix B with 99 terms. 
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Fig. 4: z-dependence of substrate stress as evaluated from the three dimensional ap-

proach given in appendix B with 99 terms. 

 

Now we compare the radius of curvature of the 3-D–approach (cf. Appendix B) with the re-

sults corresponding to equations (20) and (21) for a variety of different geometrical condi-

tions.  

In Figures 5 and 6 the ratio between the 3-D-approach and the Stoney value are plotted for 

five different aspect ratios a/b as a function of the substrate thickness.  
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Fig. 5: Ratio between the substrate bending of the "Stoney equation" (21) and the 3-D-

approach of appendix B as a function of the substrate thickness for 5 different 

aspect ratios a/b of the rectangular substrate 
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Figure 6: Ratio between the substrate bending of equation (20) and the 3-D-approach of 

appendix B as a function of the substrate thickness for 5 different aspect ratios 

a/b of the rectangular substrate 
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It is not surprising, that the apparently less approximated formula (20) provides a better 

agreement (see Fig. 6) especially in the case of bigger ratios hf/hs while the so-called Stoney-

formula (21) yields significantly higher deviations from the 3-D-approach within the investi-

gated parameter field (Fig. 5). 

 

We also find (figures 5, 6 and especially 7), that for thin to middle thick plates (b/(hf+hs) > 

10) the influence of the aspect ratio b/a on the curvature wyy in direction of the varied side 

length is relatively small while the influence on the curvature wxx in direction of the side 

length held constant is almost none existent. The dependence of the ratio of curvatures from 

the Stoney result using equation (21) at one hand and the 3 D calculation on the other hand on 

the aspect ratio b/a is shown in figure 7 (hf = 1 µm, hs = 200 µm). Here we see, that in fact the 

difference between the Stoney result and the 3-D approach never exceeds 3.5 %.  
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Figure 7: Influence of the aspect ratios b/a of the rectangular substrate on the curvature in 

x- and y-direction, 
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, as calculated using the 3D ap-

proach, in units of the Stoney-value (eq. 21) 

 

For thin plates this also holds in the case of relatively big or small b/a ratios (b/a>100/1 or 

b/a<1/100), which are not shown in figure 7. One would also expect symmetry between the 

two sides. So one can evaluate for b/a=100/1 with a=50*hs:  
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 wStoney/wxx=1.034 and wStoney/wyy=1.031 

and for b/a=1/100 b=50*hs:  

 wStoney/wxx=1.031 and wStoney/wyy=1.034.  

 

Concerning the effect of the thickness of the plate we find (Fig. 8), that the plate approxima-

tion (both equation (20) and the Stoney equation (21)) provides a good agreement of below 

5% with our 3-D solution as long as the total thickness htot is at least 11 times smaller than the 

shortest side of the rectangular substrate (concerning experiments, this of course holds only 

apart from other uncertainties, like for example substrate roughness and coating inhomogenei-

ties of course).  
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Figure 8:  Error function for the Stoney-value – calculated from the ratio of the centre cur-

vature of the 3D-approach (appendix B) and the approximated solution (eq. 21). 

 

As we see in the case of a bent circular thick plate one obtains about the same limits for exter-

nal loading, too. The formulae for this example are already at hand. They have been presented 

by Lurje 1964 (see also Schwarzer 2002). Comparing them with the thin plate case we extract 

the error behaviour given in figure 9.  
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Figure 9:  Error function for the plate approximation – calculated from the ratio of the 

curvature at the edge of the correct and approximated solution for a bent circu-

lar plate fixed at the edge and loaded at the centre (both solutions from Lurie 

1964). 

 

There the quotient w’’c/w’’ between the correct solution w’’c and the plate approximation w’’ 

is given as a function of the ratio b/htot (b now denoting the radius of the plate). We see, that 

the radius of the substrate b should not fall short of at least 9 times the thickness of the com-

pound in order to fulfil the conditions (6) such that the plate-formulae of the external loading 

case will provide an accuracy of about 5%. So we see, that at least concerning the curvature, a 

1:10-ratio between the plate thickness and the shortest side of the plate seems to make the 

much simpler plate-formulae applicable with an error of about 5% in both cases internal and 

external loading. 

Conclusion 
The investigation has shown that the nature of deformation is determined by the ratio of sub-

strate thickness to the lateral dimension of the substrate. Provided that  

• hs << b (b<a with a and b denoting the two sides of the rectangular substrate) , i.e. pro-

vided the plate approximation is valid and 

• the film thickness hf is small compared to the substrate thickness hs, thereby assuring a 

constant film stress over the whole substrate surface, 
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the coated substrate gets a constant curvature everywhere on its surface. In particular, even for 

an elongated, strip-like substrate a cap or bowl-shaped deformation is formed, as far as the 

smaller side of the strip is large in comparison to the substrate thickness. Hence, replacing the 

YOUNG´s modulus in eq. (1) by the biaxial modulus is appropriate, yielding equations (20) 

and (21), resp.. Using the plate modulus instead would deliver stress values which are too big 

by a factor of (1 - νs
2) / (1 - νs) = 1 + νs, i.e. by 20...30 % for typical νs values of 0.2...0.3. It 

has been shown, that a ratio of about b/htot ≥ 11 assures the validity of Stoney’s equation (eq. 

(21)) with maximum deviation to the results of the 3D calculation of less than 5% no matter 

what aspect ratio a to b of the side lengths of the rectangular substrate is used.  

So, as b/htot ≥ 11 is the case for many substrates, both macroscopic strips and micromechani-

cal cantilevers used in laboratories for stress measurement, Stoney’s equation (eq. (21)) pro-

vides the suitable tool for the analysis of these experiments. 
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Appendix A 
We start with the approach  
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and can now determine the coefficients cj and ck 
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Assuming a constant stress distribution in x- and y-direction one obtains the simple result 
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3
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j x
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∫  (A.6) 
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π π
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  ⋅ =     = ⋅ = ⋅ − =      
     =

∫
4,6,...

 (A.7) 

Appendix B 
In order to come to a suitable three dimensional approach for thick substrates we assume the 

coating as to be separated from the substrate and pressed at its rim such, that exactly the bi-

axial intrinsic stress state with a defined σxx and σyy appears. This pre-stressed coating is now 

“stuck” on the substrate. The external forces Fx and Fy producing the pre-stress-state are re-
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moved allowing the coating-substrate-system to find its equilibrium. The former forces acting 

on the rim of the coating must be now taken on by the elastic stiffness of the substrate. They, 

the forces, couple into the substrate as shearing forces Sx and Sy via its surface. In order to 

simplify the calculation we consider a substrate of rectangular geometry with the side lengths 

a and b. We do not know yet the distribution of this shearing stress on the substrate surface so 

we start with a general solution of the problem, which can be given due to the displacements. 

Thus, for both substrate and film we apply the following approach for the displacements 

 in x, y and z-direction: ( , , )u u v w=

  (B.1) 

( ) ( )( ) [ ] ( ) [ ]

( ) ( )( ) [ ] ( ) [ ]

( )( ) ( )( )( ) [ ]

( )( ) ( )( )( ) [ ]

2 2

2 2
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sin cos

3 4 3 4 cos
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u z u z c z c z
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c z u z
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c A Bcz e D Fcz e cx u Ce Ge u y
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u c
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ν ν

− −
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−

−
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+ + + + + 





+ + + + += 

 − − − + + + + − +
 + − − − + + + + − + 

∑











with properly chosen c and u (a and b denoting the side lengths of the rectangular substrate) it 

can be assured that the shearing stresses σxy, σxz and σyz being zero at the substrate rim (with 

σxz only at |x|=a/2 and σyz only at |y|=b/2). The constants , , , , ,A B C D F G  and , , , , ,A B C D F G  

are different for film and substrate so altogether we have 24 constants to determine. In this 

case a suitable Fourier series would be necessary to construct the desired stress distribution 

for either the normal or shearing stresses within any chosen z=constant-plane of the com-

pound. It can be shown that (B.1) satisfies the equation for equilibrium for an isotropic elastic 

medium (see e.g. Landau and Lifschitz 1989). The stress components can be found using the 

following identities: 

 , , , ; ; ;
1 1 2jk jk ll jk xk yk zk .E u vu u with j k x y z u u u

k k
νσ δ

ν ν
w
k

∂ ∂ = + = = = = + − ∂ ∂ 
∂
∂

 (B.2) 

Setting the co-ordinate origin at the interface (z=0) the further boundary conditions: 
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∫
/ 2

.
a

∫
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give the equations necessary to determine all constants. One can extract from (B.1), that the 

structure of the normal stresses in lateral direction of the film-substrate-compound xxσ  and 

yyσ  can in principle be given in the following form: 

 1 1

1 1

( ) cos( ) ( ) cos( ),

( ) cos( ) ( ) cos( ).

xx x i y k
i k

xx x i y k
i k

i x k yfx z c fx z c
a b

i x k yfy z c fy z c
a b

π πσ

π πσ

∞ ∞

= =

∞ ∞

= =

= +

= +

∑ ∑

∑ ∑
 (B.3) 

Now we need to find equations for the determination of the Fourier coefficients ci and ck. 

From the bi-axial stress conditions f
xxσ  = f

yyσ  = σ  at a distinct depth z=z0 together with (B.3) 

we obtain: 

 

( )

( )

/ 2
0 0

0 0 0 0/ 2

/ 2
0 0

0 0 0 0/ 2

( ) ( )2 cos ,
( ) ( ) ( ) ( )

( ) ( )2 cos .
( ) ( ) ( ) ( )

a
y y

i
y x x ya

b
y y

k
y x x yb

fx z fy z i xc
a fx z fy z fx z fy z a

fx z fy z k yc
b fx z fy z fx z fy z b

σ π

σ π

−

−

−  =  −  

−  =  −  

∫

∫
 (B.4) 

In addition, in order to satisfy the condition that also the stress components ,f s
xxσ  and ,f s

yyσ  
should be zero at the edges of the plate, namely 
 , ,

2 2

0 0f s f s
a bxx yyx y

andσ σ
=± =±

= = , 

additional terms are necessary. However, the influence of these terms is insignificant as long 

as the length of the shortest side is big against the total thickness of the coating substrate com-

pound. 

Tables 
Table 1: Mechanical parameters for a system of a 1µm TiN-coating on silicon 

 Young’s modulus Poisson’s ratio Thickness 

Coating 450 GPa 0.25 hf = 1µm 

Substrate 164.4 GPa 0.224 hs = 200µm 
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