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1 Introduction 

1.1 Background 

Canoe sprint has a long history in Olympic Games, since its debut in 1936. 

For over 70 years, the performance level of this sport has shown tremendous 

improvements, as indicated by race result. This improvement could be 

attributed to a variety of factors. Among them, the physiological knowledge of 

this sport has played a significant role because this knowledge was the basis 

for establishing the training philosophy. 

The investigation on the physiology of canoe sprint dates back as early as the 

1970s, when tests were performed either on a modified Monark cycling 

ergometer (PYKE ET AL., 1973) or on open water with the Douglas gas 

analysis technique (TESCH ET AL., 1976). However, the direct investigation 

on the energetic profile of the canoe sprint was not found until 1997, when the 

relative aerobic contributions (WAER %) in three simulated racing distances 

(200 m, 500 m, and 1000 m) of canoe sprint tested on an ergometer were 

provided using the energy calculating method of maximal accumulated 

oxygen deficit (MAOD). More recently, the energetic profile of the canoe sprint 

was further investigated under various conditions, including with different 

energy calculating methods, paddling conditions, and with paddlers of 

different performance levels. These direct findings consistently indicated an 

underestimation of WAER % in canoe sprint when compared to the commonly 

cited table originally given by Astrand and Rodahl (1970). Nonetheless, the 

reported WAER % in the canoe sprint varies among different studies. For 

example, the WAER % varies from 29 % to 40 % (BYRNES & KEARNEY, 1997; 

NAKAGAKI ET AL., 2008) and from 57 % to 69 % (BISHOP, 2000; BYRNES 

& KEARNEY, 1997; NAKAGAKI ET AL., 2008; ZAMPARO ET AL., 1999) in 

40 s and 120 s maximal padding. A number of factors were suspected to 

influence the results, including energy calculating methods, paddling condition 

(on water vs. on ergometer), performance level of paddlers, motivation, 

muscle fiber composition, etc. 

With regard to WAER %, it has been summarized from a large number of 

relevant investigations that WAER % enhanced exponentially with the duration 
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of high-intensity exercises (GASTIN, 2001). The duration threshold between 

aerobic dominance (WAER % > 50 %) and anaerobic dominance 

(WAER % < 50 %) was approximately 75 s, according to the exponential 

regression function (GASTIN, 2001), which was shorter than the previous 

description (2 min (ASTRAND & RODAHL, 1970)). However, this function 

was drawn from the relevant investigations with different methods of energy 

calculation, as well as of different movement patterns. These two possible 

influencing factors should be investigated before extending the findings with 

one method of energy calculation and one movement pattern to others, the 

result of which would decide whether the findings from the energetics of 

canoe sprint could be useful for other sports with similar duration. 

In addition, other aspects of the energetic profile in one sport include the 

maximal lactate steady state (MLSS) and the energy cost (C). MLSS 

corresponds to the highest workload that can be maintained over time without 

a continuous blood lactate accumulation (BENEKE, 1995; HECK ET AL., 

1985). C is defined as the amount of energy above the resting level spent per 

unit of distance (CERRETELLI & DI PRAMPERO, 1990). However, it was 

demonstrated that MLSS seemed to depend on the involved muscle mass in 

the given movement patterns (BENEKE, 2003b). Few studies were found with 

the emphasis on MLSS in kayaking. Although C varies in different locomotion 

such as swimming (CAPELLI ET AL., 1998), running (DI PRAMPERO, 1986), 

and cycling (DI PRAMPERO, 1986), it is still unclear whether the C in 

canoeing is similar to that in kayaking. 

1.2 State of the Problem 

Although the energetics of canoe sprint have been well documented, there 

are still special issues in this area that need to be clarified. The possible 

factors influencing the energetic profile in canoe sprint are supposed to be 

excluded, or found out, to explain the variation between the findings in 

previous studies. Then, the possible influence of movement patterns on the 

exponential correlation between WAER % and the duration of high-intensity 

exercise are in need of support from comparative investigation of the 

energetic profile in different movement patterns, including kayaking and 

canoeing. Further, some special issues of energetic profile in canoe sprint 
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(e.g., C and MLSS) also require study. 

1.3 Purpose of this Study 

Therefore, this study aimed to investigate first the possible factors associated 

with WAER % in kayaking. With the findings from the first step, the energetic 

profiles of kayaking and canoeing would be investigated with controlled 

performance conditions. The exponential correlation between WAER % and the 

duration of high-intensity exercise would be resummarized from relevant 

literature according to the method of energy calculation. The possible 

influence of method of energy calculation as well as the movement pattern 

would be verified with subjects from canoe sprint and other sports in order to 

support the exponential correlation between WAER % and the duration of 

high-intensity exercise. Last, C in canoeing and MLSS in kayaking would also 

be investigated (Figure 1-1). 

 

Figure 1-1: Illustration of the research design 

1.4 Research Questions 

This study was devoted to clarifying the following issues: 

I. Do methods of energy calculation, paddling condition (on water vs. on 

ergometer), and performance level of paddlers (adult vs. junior) have 
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influence on WAER % in kayaking? 

II. How much are the energy contributions, especially WAER %, in kayaking 

and canoeing? 

III. Does WAER % depend on the movement pattern during high-intensity 

exercises with the same duration? 

IV. How is the C of canoeing? 

V. How is the MLSS in kayaking? 
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2 Literature Review 

 

Illustration of the research design - Chapter 2 

 

 

 

 

 

 

 

 

 

 

 

 

 



Literature Review                                                              6 

2.1 Development of Race Result in Canoe Sprint 

2.1.1 Introduction 

Olympic canoe sprint consists of canoe sprint and kayak sprint. Since its 

debut as an Olympic sport in 1936, four distances (500 m, 1000 m, 10,000 m, 

and 200 m) have been contested. The 10,000 m was cancelled in 1960, and 

200 m become a new race distance in 2009. Now, 12 disciplines are 

contested in Olympic canoe sprint. The finishing time of the six single 

disciplines during the 2012 Olympic Games were 210.1 s (kayak men 

1000 m), 222.1 s (canoe men 1000 m), 113.2 s (kayak women 500 m), 36.8 s 

(kayak men 200 m), 43.4 s (canoe men 200 m), and 45.5 s (kayak women 

200 m). 

During the past 70 years, 500 m and 1000 m were the two canoe sprint 

distances contested in the Olympic Games. The race results of these two 

distances in Olympic Games and world championships throughout the history 

of the sport could provide some information about its development. Figure 2-1 

is a description of the race results of men’s kayak single 1000 m (MK1-1000) 

and women’s kayak single 500 m (WK1-500) from 1948 to 2013. The race 

results of MK1-1000 and WK1-500 have increased 32.5 % and 42.1 %, 

respectively, which means a corresponding 5.0 % and 6.5 % increase in each 

decade, and a 2.0% and 2.6% increase in each Olympic cycle, respectively. 

This development could be attributed to all of the possible factors, such as 

anthropometry, physiology, equipment, training, and diagnostics. 
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Figure 2-1: Race results of men’s kayak single 1000 m (MK1-1000) and women’s kayak single 500 m (WK1-500) in Olympic Games and world championships from 

1948 to 2013 (bottom is the development of boat form, paddle form, and boat material; raw data see Appendix 1) 
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2.1.2 Anthropometry 

Canoe sprinters have gotten taller and stronger during the past decades, 

along with the anthropometric development of population, which might be the 

first reason for the development of race result in this sport. Table 2-1 is a 

summary of some anthropometric and physiological characteristics of canoe 

sprinters in various national teams as reported in the literature. As in Table 2-1, 

international male kayakers were characterized with a height of >180 cm and 

a body mass of >80 kg. For example, the average height and body mass in 

Spanish and British male kayakers were 183 cm and 86 kg 

(GARCIA-PALLARES, GARCIA-FERNANDEZ, ET AL., 2010), 183 cm and 

85 kg (VAN SOMEREN & PALMER, 2003), respectively. Additionally, some 

even taller paddlers did exist in some national teams. 

Although general anthropometric characteristics could be provided in Table 

2-1, the development of anthropometry in world canoe sprinters could still not 

be found because of the variation of performance level among these national 

teams. More reliable information about the developing trend of anthropometry 

would be possible if a large volume of data from international paddlers were 

gathered. Figure 2-2 is a summary of the height and body mass of male 

paddlers in several Olympic Games, in which a trend of increase is 

demonstrated. The increase of Olympic paddlers was in line with the trend in 

population. As reported by Cole, the height of most of the European adult 

population has increased 10–30 cm each decade since the 19th century 

(COLE, 2000), which means that it has been possible to recruit taller and 

stronger paddlers. Based on the data from ergometric testing with similar test 

protocols in Table 2-1, a correlation function could be drawn: 

Y = 0.5798 * e 0.0249*x. 

Among them, y is the VO2peak; x is body mass; and e is the natural logarithm 

(Figure 2-3). The figure reveals the positive correlation between body mass 

and VO2peak in international paddlers. Therefore, anthropometric increase 

could be one of the causes of the development of race results in canoe sprint 

during the past decades. 
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Figure 2-2: Summary of the height and body mass of male paddlers in several Olympic 
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Figure 2-3: Correlation between body mass and VO2peak (Data from Table 2-1; data of VO2peak 
from incremental test on kayak ergometer, raw data see Appendix 3) 
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Table 2-1: Summary of some anthropometric and physiological characteristics of canoe sprinters in various national teams 

Literature Country N 

Age Height Body Mass Body Fat VO2peak 

[yrs] [m] [kg] [%] [l/min] 

Men’s Kayak 

(TESCH ET AL., 1976) SWE 4 25    

5.40 ± 0.34
A,1

 

4.61 ± 0.26
B,1

 

(TESCH & LINDEBERG, 1984) SWE 7 20 ± 1.1 1.86 ± 0.04 82.4 ± 3.9 5.4 ± 1.1
§
 5.40 ± 0.24

A,2
 

(FRY & MORTON, 1991) AUS 7 26 ± 7.1 1.8 ± 0.05 81.1 ± 10.3  4.78 ± 0.60
D,3

 

(BILLAT, FAINA, ET AL., 1996) FRA 9 21 ± 5.1 1.78 ± 0.07 75.2 ± 10.5  4.03 ± 0.62
B,4

 

(PEREZ-LANDALUCE ET AL., 1998) ESP 8 22 ± 1.6 1.82 ± 2.9 81.3 ± 2.3  5.01 ± 0.38
C,5

 

(BISHOP ET AL., 2003) AUS 500 m 7 24 ± 4  80.4 ± 5.6  4.07 ± 0.52
D,6

 

(VAN SOMEREN & PALMER, 2003) GRB 200 m 13 26 ± 5 1.83 ± 0.06 84.5 ± 4.9 14.1 ± 2.9
＃

 4.45 ± 0.55
D,7

 

(KROFF, 2005) RSA 11 26 ± 6 1.83 ± 0.07 78.6 ± 6.9 11.6 ± 3.5
○
 4.40 ± 0.3

D,4
 

(BONETTI ET AL., 2006) NZL 10 23 ± 8.3 1.8 ± 0.04 81.2 ± 7.2  4.00 ± 0.5
D,8

 

(FORBES & CHILIBECK, 2007) CAN 10 20 ± 2.3 1.79 ± 0.05 76.3 ± 10.6  

3.64 ± 0.43
D,5

 

3.38 ± 0.60
B,5
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(GARCIA-PALLARES, 
GARCIA-FERNANDEZ, ET AL., 2010) 

ESP 11 26 ± 2.8 1.83 ± 0.07 86.2 ± 5.2  5.59 ± 0.03
D,9

 

(BUGLIONE ET AL., 2011) ITA 46 18 ± 2.7 1.81 ± 0.06 78.2 ± 6.1  4.79 ± 0.35
E,10

 

Men’s Canoe 

(BUGLIONE ET AL., 2011) ITA 5 22 ± 5.5 1.77 ± 0.02 76.8 ± 3.5  4.75 ± 0.45
E,10

 

Women’s Kayak 

(TESCH & LINDEBERG, 1984) SWE 4 20 ± 0.9 1.7 ± 0.08 66.5 ± 3.6  3.60 ± 0.25
A,2

 

(BISHOP, 2000) AUS 9 23 ± 5 1.7 ± 0.06 70.4 ± 6.3 22.1 ± 6.0
○
 3.15

D,6
 

(FORBES & CHILIBECK, 2007) CAN 5 18 ± 2.4 1.64 ± 0.06 61.6 ± 5.2  

2.86 ± 0.23
D,5

 

2.65 ± 0.40
B,5

 

(BUGLIONE ET AL., 2011) ITA 23 18 ± 2.5 1.72 ± 0.06 66.0 ± 6.6  3.45 ± 0.31
E,10

 

A 
treadmill; 

B incremental test with arm cranking; 
C not mentioned; 

D incremental test on kayak ergometer; 
E 

incremental test on water; 
1
 Douglas bag; 

2
 not 

mentioned; 
3
 Morgan ventiometer; 

4 
K2, Cosmed, ITA 

5
 MMC 4400 tc system, SensorMedics, CA; 

6
 Ametek, SOV S-3A and COV CD3A, PA; 

7
 Oxycon Alpha, NED; 

8
 MetaMax 3B, Cortex, GER; 

9
 Jaeger Oxycon Pro system, Ger; 

10
 K4b2, Cosmed, ITA; 

§
 three sites skinfold; 

＃

 four sites skinfold; 
○
 seven sites skinfold.
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2.1.3 Physiology 

While the anthropometric increase of canoe sprinters during the past decades 

resulted in some changes in their physiological characteristics, a better 

understanding of the physiological characteristics in canoe sprint could also 

contribute to the development of the race results. Extensive investigations on 

the physiology of canoe sprint did not exist until the 1970 s. In 1976, VO2peak 

in canoe sprinters was reported for the first time ever with a value of 5.4 l/min 

on the treadmill. The blood lactate after 500 m and 1000 m maximal paddling 

was 13.2 mM and 12.9 mM, respectively (TESCH ET AL., 1976). However, 

resulting from the lack of the technique in using portable spirometry on water 

and the lack of a reliable canoe/kayak ergometer, the physiological knowledge 

of canoe sprint was limited before the 1990 s. 

Among the physiological characteristics in canoe sprint, knowledge of energy 

contribution in competition is of significant importance. Prior to the 1990 s, 

knowledge of energy contribution in canoe sprint was indirectly from 

investigations on other sports. According to the table provided by Astrand and 

Rodahl in 1970, 50 % of the energy supply during 2 min maximal exercises 

with involvement of large muscles was from the aerobic metabolic pathway 

(ASTRAND & RODAHL, 1970). This table can still be found in current 

textbooks (ASTRAND ET AL., 2003;HOLLMANN & STRUEDER, 2009). 

Accordingly, the WAER % of 500 m and 1000 m canoe sprint, in which the 

finishing time are approximately 2 min and 4 min, were approximately 50 % 

and 70 %. However, the first investigation on energy contribution in canoe 

sprint with a canoe/kayak ergometer indicated that the WAER % in maximal 

2 min and 4 min paddling were > 60 % and > 80 % (BYRNES & KEARNEY, 

1997). This means that the data provided by Astrand and Rodahl 

underestimated the WAER % in maximal exercises, including canoe sprint. 

Since WAER % was such basic physiological knowledge, an underestimation of 

WAER % could lead to an insufficiency of aerobic endurance training. However, 

although there were few direct investigations on energy contribution in canoe 

sprint before the end of the 1990 s, the importance of aerobic capacity in 

canoe sprint might be found during the training practice of this sport (KAHL, 

1997), as well as of other sports such as rowing (MADER & HOLLMANN, 

1977). At least since the beginning of the 1990 s, the German canoe sprinters 
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have trained with >75 % of their water training volume in the aerobic-intensity 

zone (ENGLERT & KIESSLER, 2009; KAHL, 1997). Consequently, it could be 

speculated that the renewed knowledge on aerobic energy contribution in 

canoe sprint leads to an emphasis on aerobic capacity during training, which 

may have also contributed to the development of race results during the past 

decades. 

2.1.4 Equipment 

Revolutionary development in the race result of canoe sprint during the past 

decades is due to the improvement of equipment design in canoe sprint. As 

illustrated at the bottom of Figure 2-1, improvement of equipment design 

happened primarily in three aspects, including boat form, paddle form, and 

material of boat. The carbon fiber boat has been widely used in international 

competitions since 1990, but before that the boat was made of wood. The 

advantage of carbon fiber compared to wood as a boat material was not found 

in reports. In contrast, the invention of the “wing” paddle by the Swedish in the 

1980 s brought a huge leap to the race results in canoe sprint (JACKSON ET 

AL., 1992). Compared to the former flat paddle, “wing” paddle is reported to 

increase the area of paddle vortex, to generate the forward lift force, and 

therefore, to increase the blade efficiency from 72 % to 88 % (JACKSON ET 

AL., 1992). 

Compared to the improvement of boat material and paddle form, the form of 

the boat experienced a more frequent alteration, which contributed much 

more to the development of the race results. With the introduction of the 

V-form boat in the 1952 Helsinki Olympics, the winning time by Gert 

Fredriksson was improved by 25.3 s. When a newly invented diamond boat 

was used in the next Olympics, Gert Fredriksson enhanced his finishing time 

again by 16.9 s, but won only a bronze medal. However, the Danish athlete 

Erik Hansen participated in four Olympics in a row, from 1960 to 1972, with 

the same diamond boat, but with an improvement of less than 1 s 

(ROBINSON ET AL., 2002). 

Some other aspects of alteration in equipment design included the beam of 

boat and the seat in kayak boat (MICHAEL ET AL., 2009). The beam was 

fixed to the minimum limit by the International Canoe Federation (ICF) before 
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2000. Since the removal of this limit, new boats with smaller beams have 

been manufactured. Although the narrower boats put a higher demand on the 

stability of paddlers, they can decrease the water resistance during paddling. 

In 2004, the swivel seat in the kayak boat was again allowed by the ICF. It was 

reported that it allowed a higher leg-push force and a higher range of motion 

in the knee on kayak ergometer (PETRONE ET AL., 2006). However, the 

swivel seat would demand a higher level of balance when paddling on water, 

which is why its application is still under debate. 

Table 2-2: Examples of old and new equipment in canoe sprint 

 Kayak Boat/Paddle Canoe Boat/Paddle Kayak Seat 

Old 

a 

 

b 

 

c 

 

New 

d 

 

d 

 

e 

 

a: http://www.flickr.com/photos/blufftonlibrary/469923044/in/photostream/ 
b: http://www.americancanoe.org/?page=legends 
c: http://www.nelo.eu/shop/en/racing/seats.html 
d: http://www.tsn.ca/summer_sports/story/?id=396289 
e: http://www.zimbio.com/pictures/WhfteciBSEk/Olympics+Day+10+Canoe+Sprint/LAXJQRzL463 
e: http://www.nelo.eu/shop/en/racing/seats.html 
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Table 2-2 is a summary of some examples of old and new equipment during 

the past decades. It indicates the advancement in boat material, boat form, 

paddle form, beam of boat, as well as kayak seat. Conclusively, the 

advancement in the equipment might have played a significant role in the 

development of race results during the past decades. 

2.1.5 Training 

With regard to training, solid support could not be provided from longitude 

studies, but some case reports were found to explain the development of race 

results during the past decades. The legendary athlete in world canoe sprint 

Birgit Fischer was reported to have trained with a volume as high as 1300 h in 

late 1970 s, in which the specific volume was 600–800 h. Her contemporary 

canoeist Olaf Heukrot had a similar training volume (LENZ, 1994). However, 

when Birgit Fischer retrained for the 2004 Olympic Games, her yearly training 

volume was only 359 h, with 228 h specific training (FISCHER, 2006). Some 

other training documentation revealed a volume of 900 h in 1989/1990 in the 

German national team (KAHL, 1997), and a volume of 710 h in 2005/2006 in 

the Chinese national team coached by former German head coach Josef 

Capousek (2009). Additionally, Issurin reported a decrease of training volume 

from 1100 h in the 1980 s to 900 h in the 1990 s (ISSURIN, 2008). A Finnish 

canoeist was reported to have a yearly training volume of 6000 km in the 

1980 s (胡松楠, 1989). Comparatively, the Spanish national team had a yearly 

volume of 4415 km on water during the preparation for the 2008 Olympic 

Games, with an additional volume of 109.6 h in strength training 

(GARCIA-PALLARES ET AL., 2010). As illustrated in Figure 2-4, there 

seemed to be a trend of decrease in training volume during the past decades, 

and yearly the training volume in the new century was approximately 

700–800 h. 

The high training volume before the 1990 s might have resulted from the 

politicization of sport in the former East Germany and Soviet Union, where the 

athletes could train full-time (personal communication), with the support of 

doping, with which more volume could be sustained by athletes, and from the 

method of training documentation, with which the training volume might have 

been documented as more than the actually trained volume. However, those 
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factors have become less possible since the 1990 s. High-quantity (volume) 

training been replaced by high-quality training done in a more scientific way, 

(e.g., more emphasis on aerobic capacity and aerobic endurance training as 

mentioned above). 
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Figure 2-4: Yearly training volume based on case reports (77/78, 78/79, 79/80 (LENZ, 1994); 
80 s (ISSURIN, 2008); 89/90, 94/95 (KAHL, 1997); 03/04 (FISCHER, 2006); 
04/05 (CAPOUSEK, 2009); 05/06, 06/07, 07/08 (ENGLERT & KIESSLER, 2009) ), 
raw data see Appendix 4 

2.1.6 Diagnostics 

Diagnostics in canoe sprint have not been as early and extensive as in other 

sports (e.g. rowing), but, doubtlessly, the importance of physiological and 

biomechanical diagnostics for the development of the race result of canoe 

sprint could not be ignored during the past decades. Along with the 

development and application of valid and reliable technology, diagnostics in 

canoe sprint became more extensive. Historically, the first cycling ergometer 

was invented in Paris in 1896; the Douglas gas analysis technique was 

invented as early as 1911; and the first portable spirometriy was invented by 

two German scientists at the beginning of the 1940 s (HOLLMANN ET AL., 

2006). However, it was not until Pyke et al. (1973) that the first ergometer 

modified from the Monark cycling ergometer was applied to kayaking. The 

first application of Douglas gas analysis technique on open water kayaking 

was reported in 1976 (TESCH ET AL., 1976). The modern air-brake kayak 

ergometer was invented in 1988 (LARSSON ET AL., 1988). Additionally, the 
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portable spirometry was first applied to open water kayaking in 1992 (GRAY, 

1992) (Figure 2-5). The development of technique promoted changes in the 

use of diagnostics in canoe sprint from a result-emphasis to a 

process-emphasis. 

 

Figure 2-5: Ergometer and portable spirometry in kayaking (top left is the first kayak 
ergometer modified from Monark cycling ergometer (PYKE ET AL., 1973); 
bottom left is the first modern air-brake kayak ergometer (LARSSON ET AL., 
1988); top right is the first application of Douglas gas analysis technique on 
open water kayaking (TESCH ET AL., 1976); bottom right is the application of 
portable spirometry on open water kayaking (REGNER, 2004)) 

The other aspect of diagnostics in canoe sprint would be biomechanics. 

Systematic biomechanical diagnostics date back to the former Soviet Union 

and East Germany in the 1970 s (SPERLICH & BACKER, 2002). After the 

reunification, German biomechanical experts continued their investigation on 

canoe sprint (LENZ, 1994). At the same time, experts from other countries, 

including Great Britain (BEGON ET AL., 2009), Australia (BAKER ET AL., 

1999), New Zealand (JACKSON ET AL., 1992), Italy (LIMONTA ET AL., 2010), 

Portugal (GOMES ET AL., 2011), and China (马祖长, 2007), started to focus 

on biomechanical diagnostics in canoe sprint from aspects of paddle force on 

water and on ergometer, as well as paddling kinetics. All of these 

investigations expanded the knowledge of canoe sprint. In summary, 
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physiological and biomechanical diagnostics might also be one of the causes 

of the development of race results in canoe sprint during the past decades. 

2.1.7 Summary 

The development of race results in canoe sprint during the past decades 

resulted from the contributions of various aspects. The recruitment of taller 

and stronger athletes improved the physiological capacity of paddlers. Direct 

investigation on energy contribution in canoe sprint enhanced the emphasis 

on aerobic capacity and aerobic endurance training. Advancement of 

equipment design improved the efficiency of paddling. Physiological and 

biomechanical diagnostics in canoe sprint led to a more scientific way of 

training. Additionally, other aspects might also have contributed to the 

development of race results during the past decades. For example, the 

establishment of national teams after World War II provided the possibility of 

systematic training, and the use of drugs in last century accelerated the 

development of race results in that period. 
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2.2 Overestimate of Relative Aerobic Contribution with 

Maximal Accumulated Oxygen Deficit (MAOD) 

2.2.1 Introduction 

The findings of WAER % with maximal physical effort in various durations from 

Astrand and Rodahl (1970) have been widely used. Their findings have 

played an important part in many physiology textbooks (ASTRAND ET AL., 

2003; BADTKE, 1995; BOMPA & HAFF, 2009; GRASSI ET AL., 2009; 

HOLLMANN & STRUEDER, 2009; POWERS & HOWLEY, 2007; WEINECK, 

1986; WILMORE ET AL., 2008) and official material of sport federations 

(KAHL, 2005; THOMPSON, 2009) since the 1970 s. However, their findings 

tended to underestimate the WAER % as shown by recent investigators 

(GASTIN, 2001). Most of them used the method of MAOD introduced by 

Medbo et al. (1988) to calculate the energy supply. 

Whereas, the introduction of MAOD brought the knowledge of WAER % in 

sports closer to the real physiological character, the debate over the method 

of MAOD existed along with the popularization of MAOD (BANGSBO, 1992). 

Some case studies found that MAOD could result in an underestimate of 

anaerobic energy production (BANGSBO, 1998; DUFFIELD ET AL., 2004, 

2005a), because of its principals to determine the accumulated oxygen deficit 

(OD) (BANGSBO, 1998; BANGSBO ET AL., 1990; BANGSBO ET AL., 1993). 

Given that there was a lack of cross-sectional comparisons among different 

methods of calculating energy supply, it was hoped that the answer of 

whether an underestimate or overestimate of anaerobic energy production 

could be found by summarizing various studies that reported WAER % with 

different methods of calculating energy supply. 

Therefore, the purpose of this study was to review the relevant studies that 

reported the WAER % in various maximal exercises. The studies utilizing 

MAOD were compared to studies that utilized other methods. Because there 

was no disagreement on calculating the aerobic part of energy supply, this 

review emphasized primarily the calculating of anaerobic energy supply. 
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2.2.2 Historical Overview of Calculating Energy Supply 

The development of calculating energy supply in humans originated from one 

point, but it can be divided into two directions. The first direction is related to 

OD and it emphasizes aerobic and anaerobic energy supply. The second 

direction is based on the three pathways of energy supply (anaerobic alactic, 

anaerobic lactic, and aerobic). The methods of calculating energy supply in 

these two directions are named MAOD and phosphocreatine-lactate-oxygen 

(Pcr-La-O2) in this review, respectively. 

The concept of OD was first introduced by Krogh and Lindhard (1920), and it 

had been used as a means to determine anaerobic energy production during 

both sub- and maximal exercises. The description of WAER % provided by 

Astrand and Rodahl (1970) was also based on OD as reported in 1960 

(ASTRAND ET AL., 1960), whereas the OD was calculated as the difference 

between accumulated actual oxygen uptake (VO2) and the oxygen demand, 

which is determined by dividing the work done on a bicycle ergometer by an 

assumed mechanical efficiency (23 %). During the 1980 s, the basic ideas of 

the MAOD principle were investigated independently by three groups 

(FOSTER ET AL., 1989; HERMANSEN & MEDBO, 1984; MEDBO ET AL., 

1988; PATE ET AL., 1983), and the method was popularized after it was 

introduced by Medbo et al. (1988). Different from the previous OD methods, 

the oxygen demand during maximal exercise in MAOD is calculated by 

extrapolating the linear relationship between exercise intensity and VO2 in 

submaximal incremental exercise. Therefore, the aerobic and anaerobic 

energy release can be expressed in the form of VO2. With a caloric equivalent 

of 21.131 J·ml-1 (STEGMANN, 1977), the energy release from these two 

pathways can be expressed in joule or calorie. Currently, MAOD is the most 

popular method utilized to calculate energy supply in high-intensity exercise. 

The method of Pcr-La-O2 started from the knowledge of oxygen debt. Krogh 

and Lindhard reported the phenomenon of excess oxygen consumption at the 

transition from work to rest in 1920 (KROGH & LINDHARD, 1920). Hill et al. 

attached the term oxygen debt to this phenomenon and hypothesized that the 

oxygen debt was due to the delayed oxidation of a fraction of lactic acid 

produced during the anaerobic process of muscular activity (HILL & LUPTON, 
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1923). Margaria et al. demonstrated the independence of the oxygen debt to 

the lactic acid removal from blood, and subdivided the overall oxygen debt in 

alactic oxygen debt and the lactic oxygen debt (MARGARIA ET AL., 1933b). 

Later on, Margaria et al. demonstrated an oxygen-lactate equivalent of 3.3 ml 

O2·kg-1 ·mM-1 in 1963 (MARGARIA ET AL., 1963), which was also reported by 

di Prampero et al. as 3.0 ml O2·kg-1·mM-1 (DI PRAMPERO, 1981); given that, 

the energy production from the lactic part of oxygen debt, or glycolysis, could 

be equal to VO2. Meanwhile, the alactic part of oxygen debt was investigated 

by Knuttgen (1970), as well as by Robert and Morton (1978), which led to the 

possibility of calculating the energy supply from the alactic anaerobic pathway 

in an equivalent of VO2. The anaerobic alactic energy was also calculated in 

some studies from the volume of phospocreatine in a certain muscle mass 

(CAPELLI ET AL., 1998; DI PRAMPERO, 1981). Compared to the anaerobic 

process including both lactic and alactic acid, the quantification of aerobic 

process was of less debate. During maximal muscular effort, the metabolic 

respiratory quotient was ＞  1.0. Nearly all of the aerobic energy was 

provided from the depletion of carbohydrate in the presence of oxygen, and 

the caloric equivalent of 1 ml oxygen was 21.131 J (STEGMANN, 1977). 

Therefore, all three energy types that release from alactic anaerobic, lactic 

anaerobic, and aerobic pathways could be calculated with a unit of joule or 

calorie. In recent years, the method of Pcr-La-O2 has become more popular 

(BENEKE ET AL., 2004; BUGLIONE ET AL., 2011; BUSSWEILER & 

HARTMANN, 2012). 

2.2.3 Descriptions of Methods in Calculating Energy 

As provided by Medbo et al. (2010;1988), the idea of using the accumulated 

OD as a measure of the anaerobic energy release during maximal exercise is 

based on the following four principles: 

1) Energy release (ATP-resynthesis) is aerobic or anaerobic. The anaerobic 

part is thus the total energy release minus the aerobic part. The aerobic 

part is taken from the measured VO2. 

2) During exercise at moderate intensities where anaerobic processes are 

negligible, VO2 increases linearly, with exercise intensity measured as the 

speed of running or the power of ergometer cycling at constant frequency 
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(Figure 2-6, left panel). Since there is no anaerobic contribution, the 

measured VO2 reflects the total rate of ATP-turnover or oxygen demand. 

Consequently, during these conditions, the total ATP-turnover rate or 

oxygen demand increases linearly by exercise intensity. This linear 

relationship between exercise intensity and oxygen demand is 

extrapolated to maximal intensities, where anaerobic contribution is not 

negligible. 

3) During exercise at constant intensity the rate of ATP-turnover is constant 

throughout the exercise even until exhaustion (Figure 2-6, right panel). 

4) The accumulated OD is taken by integrating OD over the exercise period 

(see doted area in Figure 2-6). 

 

Figure 2-6: Scheme of MAOD provided by Medbo et al. (1988) 

Given the four principles, it is required, in consideration of reliability, that a 

minimum of 8–10 steps for incremental tests, taking the VO2 in the period 

8–10 min of each step; constant intensity in the range of 35-90 %VO2max for 

each step; and a fixed Y-intercept for the linear function are needed to 

determine the relationship of oxygen demand versus exercise intensity 

(MEDBO, 2010). However, these test requirements are very time-consuming. 

Thereafter, the experimental design of MAOD was modified by investigators 

in order to make it more practical. For example, the number of steps was 

deceased to 4–8 (GASTIN, P.B. & LAWSON, D.L., 1994; SEILER & 

KJERLAND, 2006); the duration for each step was deceased to 5 min 

(BILLAT, BEILLOT, ET AL., 1996; BISHOP, 2000; DUFFIELD ET AL., 2005a; 

GASTIN, P.B. & LAWSON, D.L., 1994); a fixed Y-intercept was not utilized 

(BILLAT, BEILLOT, ET AL., 1996; BISHOP, 2000; DUFFIELD ET AL., 2005a); 
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and the method was used in other movements (e.g., kayaking (BISHOP, 

2000), swimming (BILLAT ET AL., 1996), and rowing (DE CAMPOS MELLO 

ET AL., 2009)). 

Even though no consistent method of Pcr-La-O2 exists, there are several 

foundations of this method: 

1) The energy release from the anaerobic alactic pathway is calculated either 

from the fast component of oxygen debt (BENEKE ET AL., 2004; 

KNUTTGEN, 1970; ROBERTS & MORTON, 1978), from the volume of 

phospocreatine in a certain muscle mass (CAPELLI ET AL., 1998; DI 

PRAMPERO, 1981), or from the OD before the appearance of the steady 

state of VO2 (HARTMANN ET AL., 1988b). 

2) The energy release from the anaerobic lactic pathway is calculated from 

the net production of blood lactate above the rest level during exercise (DI 

PRAMPERO, 1981; MARGARIA ET AL., 1933b). 

3) The energy release from the aerobic pathway is calculated from the 

accumulated VO2 above the rest level during exercise (STEGMANN, 

1977). 

Anaerobic alactic, anaerobic lactic, and aerobic energy supply are termed as 

WPCR, WBLC, and WAER, respectively, with WTOT for the total energy supply. 

Calculation of each energy supply could be performed by the following 

equations： 

WPCR = VO2PCR (ml) × caloric equivalent (J·ml-1) 

WBLC = net blood lactate (mmol·l-1) × oxygen-lactate equivalent 

(ml·kg-1·mmol-1·l) × body mass (kg) × caloric equivalent (J·ml-1) 

WAER = VO2（ml）× caloric equivalent（J·ml-1） 

WTOT = WPCR + WBLC + WAER 

Among them, VO2PCR is the fast component of oxygen debt (KNUTTGEN, 

1970; MARGARIA ET AL., 1933a; ROBERTS & MORTON, 1978)；caloric 

equivalent is 21.131 J·ml-1, corresponding to a respiratory exchange ratio > 

1.0 (STEGMANN, 1977)；net blood lactate is the peak value during recovery 

minus the rest value; oxygen-lactate equivalent is 3.0 ml·kg-1·mmol-1·l, under 
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the consumption of a distribution space of lactate of approximately 45 % of 

the body mass (DI PRAMPERO, 1981)；VO2 is the actual VO2 during maximal 

exercise above the rest level. 

2.2.4 Analysis of Relevant Reports of WAER % 

Studies up to the year of 2012 (raw data see Appendix 2) on energetics or 

energy contribution in sport were searched in PubMed, and 47 investigations 

(153 data of WAER %, together with 14 data of our own) were selected, which 

were then divided into two groups according to the methods of calculating 

energy supply, as mentioned previously. Among the selected investigations, 

32 (100 data of WAER %) utilized the MAOD method, whereas 15 (69 data of 

WAER %) utilized the Pcr-La-O2 method. MAOD was the most popular method 

utilized during the past few decades. 

 

Figure 2-7: Correlation between WAER % and duration of maximal exercise based on summary 
analysis of the literature (raw data see Appendix 5) 

All of the reports of WAER % during maximal exercise were summarized into 

two groups according to the methods utilized (MAOD vs. Pcr-La-O2). Two 

exponential regressions were performed to the two groups of data. It was 

found that the WAER % from MAOD was higher than those from Pcr-La-O2 

(Figure 2-7). The results suggested an overestimate of WAER % with MAOD 

compared to with Pcr-La-O2. 
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According to two regression functions in Figure 2-7, the WAER % in maximal 

exercise with various durations was presented in Figure 2-8. Although the 

WAER % was higher for certain durations of maximal exercise with MAOD than 

it was with Pcr-La-O2, it still could not be proven which method was more 

accurate. Therefore, an exponential regression function for all the data using 

one of the two methods was developed (Figure 2-8, Total). The equation of 

y = 22.253Ln(x) + 44.948 

 (y = WAER % in percentage, x = duration of the maximal exercise in minute) 

could be used to predict the WAER % for the maximal exercise with certain 

durations. For example, the average finishing time in the final race in men’s 

single canoe 1000 m in the 2011 World Championship was 4.16 min. 

According to the above-mentioned equation, the WAER % in this exercise could 

be calculated as 76.7 %. Further, the half-half point of duration for aerobic and 

anaerobic energy release was calculated to 75.3 s. This updated value is 

consistent to that (75 s) reported by Gastin (2001). 

 

Figure 2-8: Recommendation of WAER % in maximal exercises with different durations 
according to the equations calculated from the data using MAOD and Pcr-La-O2, 
as well as from all of the data (Total), raw data see Appendix 6 

2.2.5 Limitations of MAOD 

Since the introduction by Mebdo et al. in 1988, the reliability of using MAOD to 

calculate energy supply during maximal exercise has been questioned 

(BANGSBO, 1992, 1998; BANGSBO ET AL., 1990). Briefly, three of the 

principles of MAOD are challenged by the findings from other investigators. 
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1) Does VO2 increase linearly with exercise intensity even at higher 

intensity? 

The linear relationship between VO2 and exercise intensity at moderate 

intensity ( 35-90 %VO2max (MEDBO, 2010)) is the primary assumption of 

MAOD. With this linear regression equation, the oxygen demand at higher 

(＞ 90 %VO2max) intensity is extrapolated. However, it was found that the 

relationship between exercise intensity and VO2, especially at higher intensity, 

was exponential (Figure 2-9, actual curve) rather than linear (Figure 2-9, 

linear curve 1)) in running (MENIER & PUGH, 1968), cycling (PUGH, 1974), 

rowing (NOZAKI ET AL., 1993; SECHER, 1992), and canoeing (see Chapter 

5). According to the protocol of MAOD, the oxygen demand at maximal 

exercise includes the accumulated VO2, the area of ① and ②, when 

extrapolating the linear curve 1. 

However, the oxygen demand would cover an additional area of ③ when 

extrapolating the actual curve, as illustrated in Figure 2-9. Therefore, there is 

a small underestimate of the anaerobic energy share with MAOD, which 

results in an overestimate of WAER %. The underlying reason for a higher VO2 

at high intensity could be explained by the observation of decrease in 

mechanical efficiency at higher intensities (GAESSER & BROOKS, 1975; 

GLADDEN & WELCH, 1978; LUHTANEN ET AL., 1987). 

 

Figure 2-9: Illustration of the causes of overestimate in WAER % with MAOD (GDX: graded 
exercise) 
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2) What is the influence of shortening the duration of each step in an 

incremental test? 

After being introduced by Medbo et al. in 1988, the method of MAOD was 

widely used. However, some modifications were made by investigators during 

the application. One of which was shortening the duration of each step in 

incremental tests from 8–10 min to 5–8 min (BILLAT ET AL., 1996; BISHOP, 

2000; DUFFIELD ET AL., 2005a; GASTIN & LAWSON, 1994). However, it 

was demonstrated that this would lead to a lower slope of the linear 

regression (Figure 2-9, linear curve 2), and therefore a lower accumulated OD 

if the accumulated VO2 is the same. This means when the duration of each 

step in incremental test shortens from 8–10 min to 5–8 min, an additional 

underestimate of anaerobic energy release (Figure 2-9, area ②) could 

happen, leading to an additional overestimate of WAER %. 

3) Is anaerobic part of energy release in submaximal exercise 

negligible? 

Another principle of MAOD is that the anaerobic process during exercise at 

moderate intensities is negligible. However, it was found that the blood lactate 

can reach approximately 4 mM when the intensity was 70–80 %VO2max 

(ALIVERTI ET AL., 2009; BENEKE, 2003a; BILLAT ET AL., 2003), which 

means at the upper range of the submaximal exercise, as suggested by 

Medbo (35–90 %VO2max) (2010), the blood lactate can increase to a certain 

high level, and this part of anaerobic energy release cannot be neglected. 

Consequently, the neglect of the anaerobic processes during exercise at 

moderate intensities can cause another underestimate of anaerobic energy 

(Figure 2-9, ④), and again, an overestimate of WAER %. 

4) The shorter the duration of maximal exercise is, the greater 

overestimate of WAER% with MAOD will be 

Given the above-mentioned points, it seems apparent in Figure 2-9 that the 

area of ③ and ④ will be larger if the extrapolation is performed further, right 

away from 90 %VO2max. It is already known that the time to exhaustion 

decreases with the increase of exercise intensity (HECK, 1990a). Therefore, 

the overestimate of WAER % with MAOD will be greater when the duration of 

maximal exercise is shorter, resulting from the decrease of mechanical 
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efficiency and the increase of energy release from anaerobic system. This 

speculation has been proved by the findings from kayakers (see Chapter 3), 

where the overestimate of WAER % at 40 s (36.0 % vs. 30.0 %, p ＜ 0.05) was 

much greater than at 120 s (60.9 % vs. 57.5 %, p ＞ 0.05). 

2.2.6 Summary 

MAOD is the most popular method in calculating the energy contribution in 

high-intensity exercise. Utilizing MAOD could lead to an overestimate of 

WAER % compared to the method of Pcr-La-O2. The overestimate of WAER % 

could result from the linear extrapolation of VO2 at high intensity, the neglect 

of anaerobic energy release in submaximal incremental test, and the 

shortening of the duration of each step in the submaximal incremental test. 

However, because no study has compared the content validity between 

MAOD and Pcr-La-O2, it is still not clear which method can generate more 

accurate results and which method is more reliable. The muscle biopsy 

technique might provide better insight into anaerobic energy production 

during intensive exercise (GASTIN, 2001). 



Possible Factors Associated with Relative Aerobic Energy Contribution in Kayaking           29 

3 Possible Factors Associated with Relative 

Aerobic Energy Contribution in Kayaking 

 

Illustration of the research design - Chapter 3 
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3.1 Introduction 

Since the first study in 1997 (BYRNES & KEARNEY, 1997), the WAER % in 

kayaking has been widely investigated (BISHOP, 2000; BISHOP ET AL., 2001, 

2002; BISHOP ET AL., 2003; BUGLIONE ET AL., 2011; NAKAGAKI ET AL., 

2008; ZAMPARO ET AL., 1999). However, a range of variation in WAER % in 

kayaking was observed. For example, the WAER % varied from 29 % to 40 % 

(BYRNES & KEARNEY, 1997; NAKAGAKI ET AL., 2008) and from 57 % to 

69 % (BISHOP, 2000; BYRNES & KEARNEY, 1997; NAKAGAKI ET AL., 2008; 

ZAMPARO ET AL., 1999) in 40 s and 120 s maximal padding. 

Many factors might contribute to the variation of WAER % in kayaking. The 

methods utilized to calculate the energy contributions, different paddling 

conditions (on ergometer vs. on water), and the level of performance are three 

potential factors. MAOD was commonly used to calculate the energy 

contribution in kayaking, but this method was suspected to overestimate 

WAER % during high-intensity exercises (BANGSBO, 1998; DUFFIELD ET AL., 

2004, 2005a) (also see Chapter 2). The kayak ergometer is able to simulate 

the physiological demands of short-term, high-intensity kayaking (VAN 

SOMEREN ET AL., 2000). However, it was unknown whether the kayak 

ergometer would alter the WAER % in kayaking. Adults kayakers were heavier 

and taller (RYNKIEWICZ & RYNKIEWICZ, 2010), and they had a greater 

training volume than junior kayakers (i.e., 874 h in year for ≥ 21-year group vs. 

690 h in year for 16-year group) (KAHL, 2005). However, the WAER % between 

adult and junior kayakers was still unclear. 

Therefore, the objective of this study was to investigate the influence of 

energy calculation method, paddling condition, and performance level on 

WAER % in kayaking. It was hypothesized that the calculation method and 

performance level would affect WAER % in kayaking. The findings of this study 

can provide information in comparing the WAER % in kayaking findings among 

different studies. 
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3.2 Methods 

3.2.1 Study 1 - Energy Calculation Method 

3.2.1.1 Subjects 

Eleven junior female kayakers of regional level (JF) participated in study 1. 

Subjects performed maximal paddling twice (40 s and 2 min) and step-test 

paddling once on an ergometer on separate days (Figure 3-1). 

Anthropometric data of these kayakers were provided in Table 3-1. All of the 

participants in this study, as well as in study 2 and study 3, read and signed a 

consent form before measurement. These studies were conducted according 

to the corresponding ethical standards. 

 

Figure 3-1: Description of the study design (J = junior; A = adult; F = female; M = male; 
W = on water; E = on ergometer) 

3.2.1.2 Maximal and Step-Test Paddling 

The durations in maximal padding were designed to simulate the 

corresponding racing distances (40 s for 200 m and 2 min for 500 m). The 

tests were performed on an air-braked kayak ergometer (Dansprint, 

I Bergmann A/S, Hvidovre, Denmark). No intensive exercise was allowed the 

day before the test, and no food was allowed two hours before the test; water 

was permitted. A typical diet with high carbohydrate was adhered to by the 

subjects before the tests. Subjects performed a 10 min warm-up with 

self-controlled intensity and had a 5 min rest prior to the maximal paddling test. 

The subjects were instructed to paddle with a self-chosen strategy. Oral 

encouragement was given during the paddling to increase subjects’ 

motivation. A portable breath–by-breath gas analyzer (MetaMax 3B, Cortex 

Biophysic, Leipzig, Germany) was used to measure the VO2, expired carbon 
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dioxide (VCO2), and minute ventilation (VE) from warm-up to 10 min after the 

end of maximal paddling. From the earlobe of each subject, 20 µL blood was 

taken prior to warm-up, immediately after the warm-up, and before the 

maximal paddling, as well as at the 1st, 3rd, 5th, 7th, and 10th min time points 

during the recovery. The spirometric information was measured, saved, and 

analyzed with the standard software (MetaSoft, Cortex Biophysic, Leipzig, 

Germany). The blood samples were analyzed with a lactate analyzer 

(Biosen S_line, EKF Diagnostic, Barleben, Germany). Individual fan 

resistance (3 for juniors in study 1 and study 3; 5 for adults in study 2) and 

distance between seat and foot stretcher on the ergometer were individually 

adjusted prior to paddling. 

Table 3-1: Anthropometric and physical data of all the kayakers 

 

Height Mass Age VO2peak
*
 Training Experience 

[cm] [kg] [yrs] [l/min] [ml/min/kg] [yrs] 

JF 

(N = 11) 
172 ± 4 65.4 ± 4.2 14 ± 1 2.767 ± 0.318 42.6 ± 4.9 1.5 ± 0.3 

AM 

(N = 9) 
189 ± 3

§
 84.2 ± 6.0

§
 21 ± 3

§
 4.749 ± 0.538

§
 56.3 ± 4.1

§
 5.3 ± 2.0

§
 

JM 

(N = 12) 
184 ± 6 73.7 ± 6.6 16 ± 1 4.013 ± 0.413 54.7 ± 6.3 1.1 ± 0.4 

J = junior, A = adult, F = female, M = male, 
* 
average values of last 30 s during 4 min or 2 min 

maximal paddling, 
§ 
significant from JM (p ＜ 0.05) 

The step test started from an intensity of 40–50 watts, with an increment of 

15 watts, and it stopped when the paddlers could not keep paddling with the 

required intensity. The duration of each step was 5 min, with 1 min brake 

between each two steps for blood taking. Steps 4–6 were performed by the 

paddlers. 

3.2.1.3 Calculating the Energy Contribution 

MAOD became popular after it was introduced in 1988 (MEDBO ET AL., 

1988), and it was modified by other researchers (see Chapter 2) (BISHOP, 

2004; BYRNES & KEARNEY, 1997; NAKAGAKI ET AL., 2008). The modified 

MAOD, instead of the original MAOD, was used in this study. The power and 
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VO2 in the last two minutes of each step was averaged and used for this step. 

Accordingly, an individual linear regression function between intensity (power 

in watt) and VO2 (ml/min) was drawn for each subject. By extrapolating this 

function for the power during 40 s and 120 s maximal paddling, an oxygen 

demand could be calculated for each power. Total energy contribution (WTOT) 

could be calculated from the oxygen demand, with a caloric equivalent of 

21.131 J·ml-1 (DI PRAMPERO, 1981). The difference between oxygen 

demand and actual VO2 was calculated as OD, which could then be 

calculated into anaerobic energy contribution (WANA). Further, the aerobic 

energy contribution (WAER) was calculated directly from the actual 

accumulated VO2. Additionally, WAER % could be calculated as 

WAER % = 100 × (WAER / (WAER + WANA)). 

The method of Pcr-La-O2 (as named in Chapter 2), is based on the theory that 

energy was produced in three pathways (anaerobic alactic, anaerobic lactic, 

and aerobic). The methodology introduced by Wilkie (1980) was one of the 

popularly utilized ones. However, this study utilized the methodology 

implemented by Beneke et al. (2004; 2002), in which the anaerobic alactic 

energy (WPCR) was calculated from the fast component of oxygen debt after 

maximal exertions (KNUTTGEN, 1970; MARGARIA ET AL., 1933a; 

ROBERTS & MORTON, 1978). The anaerobic lactic energy (WBLC) was 

calculated from net blood lactate in maximal paddling, with an oxygen-lactate 

equivalent of 3.0 ml·kg-1·mmol-1·l (DI PRAMPERO, 1981). The aerobic 

energy was calculated from the actual accumulated VO2 (WAER) above rest 

level, which was fixed at 4.0 ml·kg-1·min-1 for males and 3.5 ml·kg-1·min-1 for 

females (CIBA-GEIGY, 1985). With a caloric equivalent of 21.131 J·ml-1 (DI 

PRAMPERO, 1981), these three parts of energy contribution could be 

calculated into kilojoule. Therefore, 

WTOT = WPCR + WBLC + WAER, 

WANA = WPCR + WBLC, 

WAER % = 100 × (WAER / WTOT). 

3.2.1.4 Statistical Analysis 

The energy contributions were calculated using MAOD and Pcr-La-O2 for the 

same individual. The absolute WANA, absolute WAER, absolute WTOT, and 
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WAER % between the two methods were compared using two-tail paired t-tests. 

A type-I error rate was set at 0.05. 

3.2.2 Study 2 - Paddling Condition 

3.2.2.1 Subjects 

Nine adult male national level (AM) kayakers participated in two maximal 

paddling sessions (4 min on ergometer, 4 min on water) on separate days 

(Figure 3-1). Anthropometric data of these kayakers are provided in Table 3-1. 

3.2.2.2 Maximal Paddling 

The duration of 4 min was chosen to simulate the 1000 m racing in this study. 

Subjects performed one maximal paddling session on a kayak ergometer 

(Dansprint, I Bergmann A/S, Hvidovre, Denmark) and maximal paddling on 

water with racing boats. The test procedure was the same as the maximal 

paddling in study 1. 

3.2.2.3 Calculating the Energy Contribution 

The method of Pcr-La-O2, as described in study 1, was utilized in this study. 

3.2.2.4 Statistical Analysis 

The energy contributions on a kayak ergometer and on water were calculated 

for the same individual. The absolute WPCR, absolute WBLC, absolute WANA, 

absolute WAER, absolute WTOT, and WAER % between the two paddling 

conditions were compared using two-tail paired t-tests. A type-I error rate was 

set at 0.05. 

3.2.3 Study 3 - Performance Level of Paddler 

3.2.3.1 Subjects 

Nine adult male national level (AM) kayakers (see study 2) and twelve junior 

male regional level (JM) kayakers participated in 4 min maximal paddling on 

an ergometer to simulate the 1000 m racing (Figure 3-1). Anthropometric data 

of these kayakers are provided in Table 3-1. 
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Table 3-2: Energy contributions in maximal paddling 

Study 

WPCR WBLC WANA WAER WTOT 

[kJ] [kJ] [kJ] [kJ] [kJ] 

1 

JF-40 s 

(N = 11) 

MAOD / / 41.9 ± 8.8
*
 23.3 ± 3.5 65.2 ± 11.5

*
 

Pcr-La-O2 32.0 ± 5.5 20.7 ± 4.5 52.8 ± 4.0 23.3 ± 3.5 76.1 ± 5.5 

JF-2 min 

(N = 11) 

MAOD / / 64.1 ± 27.9 92.4 ± 12.2 156.5 ± 28.3 

Pcr-La-O2 32.9 ± 6.3 35.3 ± 5.3 68.2 ± 10.0 92.4 ± 12.2 160.6 ± 17.3 

2 
AM-4 min 

(N = 9) 

W 60.4 ± 14.6 49.4 ± 8.1 109.8 ± 16.0 332.2 ± 37.0 442.0 ± 36.0 

E 56.2 ± 11.3 44.3 ± 13.3 100.4 ± 20.8 325.8 ± 37.2 426.2 ± 46.6 

3 

AM-4 min 

(N = 9) 
E 56.2 ± 11.3 44.3 ± 13.3 100.4 ± 20.8 325.8 ± 37.2 426.2 ± 46.6 

JM-4 min 

(N = 12) 
E 46.0 ± 13.0 40.2 ± 7.8 86.2 ± 17.8 275.4 ± 34.9

§
 361.6 ± 42.6

§
 

J = junior; A = adult; F = female; M = male; W = on water; E = on ergometer; 
MAOD = maximal accumulated oxygen deficit; Pcr-La-O2 = method based on three energy 
pathways; WPCR = anaerobic alactic energy contribution; WBLC = anaerobic lactic energy 
contribution; WANA = anaerobic energy contribution; WAER = aerobic energy contribution; 

WTOT = total energy contribution; 
* 
= significant from Pcr-La-O2 in JF-40 s (p ＜  0.05); 

§ 
= significant from AM-4 min on ergometer 

3.2.3.2 Maximal Paddling 

Subjects performed one maximal paddling session on a kayak ergometer 

(Dansprint, I Bergmann A/S, Hvidovre, Denmark). The test procedure was the 

same as the maximal paddling in study 1. 

3.2.3.3 Calculating the Energy Contributions 

The method of Pcr-La-O2, as described in study 1, was utilized in this study. 

3.2.3.4 Statistical Analysis 

The energy contributions were calculated for two groups of subject. The 

absolute WPCR, absolute WBLC, absolute WANA, absolute WAER, absolute WTOT, 

and WAER % between the two groups were compared using two-tail non-paired 

t-tests. A type-I error rate was set at 0.05. 
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3.3 Results 

3.3.1 Study 1 - Energy Calculation Method 

MAOD resulted in smaller absolute WANA and absolute WTOT, but greater 

WAER % compared to the results of Pcr-La-O2 (p ＜ 0.05) in 40 s paddling 

(Table 3-2, Figure 3-2). No significant difference was observed between the 

two methods in 2 min paddling. 

 

Figure 3-2: WAER % in maximal paddling (J = junior; F = female; A = adult; M = male; W = on 

water; E = on ergometer; 
§ 
significant between MAOD; and Pcr-La-O2 (p ＜ 0.05)), 

raw data see Appendix 7 

3.3.2 Study 2 - Paddling Condition 

No significant difference was observed between the paddling conditions 

(p > 0.05) (Table 3-2, Figure 3-2). 

3.3.3 Study 3 - Performance Level of Paddler 

Adult kayakers had greater absolute WAER and absolute WTOT than junior 

kayakers had (p < 0.05) (Table 3-2). No significant difference was observed in 

other comparisons (p > 0.05). 

3.4 Discussion 

Because a wide range of WAER % in kayaking was reported during the past 

years, the aim of the current study was to investigate three possible factors 

associated with WAER % in kayaking. We found that the energy calculation 
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method might be an influencing factor on WAER % in short-duration kayaking. 

Adult kayakers had greater absolute WAER and absolute WTOT than junior 

kayakers had. WAER % in maximal kayaking seemed to be independent of 

paddling condition and level of performance. 

The underestimate of WANA, which results in the overestimate of WAER %, with 

MAOD has been documented since its introduction (BANGSBO, 1992, 1998; 

DUFFIELD ET AL., 2004). First, it was reported that the relationship between 

intensity and VO2 was exponential instead of linear (MENIER & PUGH, 1968; 

NOZAKI ET AL., 1993; PUGH, 1974; SECHER, 1992 ). At higher intensity, 

there would be a decrease of efficiency (GAESSER & BROOKS, 1975; 

GLADDEN & WELCH, 1978; LUHTANEN ET AL., 1987), which could lead to 

a higher VO2 than that extrapolated from the linear equation. Therefore, a 

lower oxygen demand resulted in a lower OD and an underestimate of WANA, 

especially in shorter duration with higher intensity. Second, a basis of MAOD 

was that the anaerobic processes (alactic and lactic) were negligible at 

moderate intensity (MEDBO, 2010). However, the findings in this study 

demonstrated a lactate level of 7.3 ± 1.7 mM after the last step in incremental 

paddling, which was an approximation of the level of 40 s maximal paddling 

(7.8 ± 1.5 mM). The results suggested that the actual WTOT, if in form of 

oxygen demand, should be higher than the actual VO2 during incremental 

paddling. In other words, the actual slope of the VO2-intensity linear equation 

could be steeper than that from the methodology of MAOD and could lead to 

an underestimate of oxygen demand and an underestimate of WANA for 

maximal exertions. Third, it has been reported that the modification of the 

incremental test by shortening the number of steps (from 8–10 steps to 4–6 

steps) and the duration of each step (from 8–10 min to 5 min) could lead to a 

flatter slope of the VO2-intensity linear equation with MAOD (BANGSBO, 

1998; BUCK & MCNAUGHTON, 1999), which could also lead to an 

underestimate of oxygen demand, and then an underestimate of WANA, for 

maximal exertions. Comparatively, the method of Pcr-La-O2 utilized in this 

study was implemented by Beneke et al. (2004; 2002), and it has been 

utilized in karate (BENEKE ET AL., 2004; BUSSWEILER & HARTMANN, 

2012), boxing (DAVIS ET AL., 2013), and other sports (BERTUZZI ET AL., 

2007). This study was the first time the method was used in kayaking, but the 
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WAER % in this study was similar to other reports with other methods of 

Pcr-La-O2 (BUGLIONE ET AL., 2011). Above all, the method of calculating 

energy contributions might be an influencing factor on WAER % in maximal 

kayaking, especially in shorter durations. 

The kayak ergometer has been demonstrated to accurately simulate the 

physiological demands of short-term, high-intensity kayaking (VAN 

SOMEREN ET AL., 2000). The physiological similarity between on ergometer 

and on water kayaking was also expanded in this study, where energy 

contributions were similar (p > 0.05, Table 3-2 and Figure 3-2). Investigations 

on energy contributions in kayaking were performed either on an ergometer 

(BISHOP, 2000; BYRNES & KEARNEY, 1997; NAKAGAKI ET AL., 2008) or 

on open water (BUGLIONE ET AL., 2011; ZAMPARO ET AL., 1999). With the 

findings from this study, the performing condition could be excluded from the 

possible influencing factors associated with WAER %. 

In terms of performance level, the adult kayakers produced higher levels of 

absolute energy, especially WAER and WTOT than junior kayakers did (Table 

4-2), which could be attributed to their anthropometric and training experience 

advantages as indicated in Table 3-1. However, WAER % was similar in these 

two groups of kayakers. Therefore, performance level could also be excluded 

from the possible influencing factors associated with WAER %. 

In summary, the methods utilized to calculate the energy contributions 

seemed to be the sole factor among the three studied possible factors 

associated with WAER %. However, it could still not explain the variation in 40 s 

and 120 s maximal kayaking (29-40 % (BYRNES & KEARNEY, 1997; 

NAKAGAKI ET AL., 2008) and 57-69 % (BISHOP, 2000; BYRNES & 

KEARNEY, 1997; NAKAGAKI ET AL., 2008; ZAMPARO ET AL., 1999)), 

because variation existed between relevant investigations with MAOD 

(BYRNES & KEARNEY, 1997; NAKAGAKI ET AL., 2008). It seemed that 

some other unstudied factors (e.g., motivation and muscle fiber type in 

upper-body muscles) might be associated with WAER %, which will need to be 

investigated in the future. 
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3.5 Conclusion 

In conclusion, the method utilized to calculate the energy contributions rather 

than paddling condition and performance level of paddlers might be the 

possible factor associated with WAER % in kayaking. Some other possible 

factors associated with WAER % in kayaking need to be further investigated in 

the future. 
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4 Energetic Profile of Maximal Kayaking on 

Ergometer 

 

Illustration of the research design - Chapter 4 
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4.1 Introduction 

Kayaking has been an Olympic event since its debut in 1936. Females 

compete in 200 m and 500 m, and males compete in 200 m and 1000 m, 

since the revisal by the ICF in 2009. The finishing time of the single boat in the 

London Olympic Games’ final A were on average 45.5 s for female 200 m, 

36.8 s for male 200 m, 113.2 s for female 500 m, and 210.1 s for male 1000 m 

(LI, 2012). The energetics for these distances vary from anaerobic dominance 

in 200 m to aerobic dominance in 1000 m (BYRNES & KEARNEY, 1997; 

NAKAGAKI ET AL., 2008; ZAMPARO ET AL., 1999; ZOUHAL ET AL., 2012) 

Understanding the energetic profiles of different genders and distances in 

kayaking can provide information in developing training strategies. 

Energetics of maximal kayaking had not received much attention until 1997 

(BYRNES & KEARNEY, 1997). Byrnes and Kearney utilized a kayak 

ergometer and demonstrated an underestimate of WAER % in kayaking found 

in some textbooks in the past (ASTRAND & RODAHL, 1970). However, the 

method used by Byrnes and Kearney (1997) as well as the method used by 

Nakagaki et al. (2008) and Zouhal et al. (2012) have been criticized to 

underestimate anaerobic energy contribution in high-intensity exercise 

(BANGSBO, 1992, 1998). Beneke et al. (2002) introduced another method to 

calculate energy production in exercise that was based on the fast component 

of oxygen debt and net blood lactate. This method has been used to 

understand the energetics in karate (BENEKE ET AL., 2004; BUSSWEILER & 

HARTMANN, 2012), boxing (DAVIS ET AL., 2013), and other sports 

(BERNARDI ET AL., 2007; BERTUZZI ET AL., 2007). 

Therefore, the objective of the study is to use the method introduced by 

Beneke et al. to further investigate the energetic profiles in maximal kayaking. 

The knowledge of energetic process in maximal kayaking would be expanded 

with the findings in this study. In addition, the method introduced by Beneke et 

al. could be verified by comparing the findings from this study with those from 

others. 
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4.2 Methods 

4.2.1 Subjects 

From a training center, 37 healthy junior kayakers (21 females and 16 males, 

Table 4-1) volunteered to participate in two maximal paddling tests (40 s and 

120 s for females, 40 s and 240 s for males) on different days on a kayaking 

ergometer (Dansprint, I Bergmann A/S, Hvidovre, Denmark). Completing the 

40 s test were14 females and 15 females completed the 120 s test; 15 males 

completed the 40 s test and 12 males completed the 240 s test. The maximal 

durations were designed to mimic the Olympic racing distances. Intensive 

training was not allowed the day before tests. Subjects had at least 24 h 

between the two tests. No food, except drink, was allowed two hours before 

tests. A typical diet with high carbohydrate was adhered to by the subjects 

before the tests. Written informed consent was obtained from the parents and 

coaches of the subjects. The study was conducted according to the 

corresponding ethics requirement. The altitude, temperature, and humidity for 

the tests were 11 m, 19 °C, and 35 %, respectively. 

Table 4-1: Anthropometric and physical characteristic of subjects 

 

Height Mass Age VO2peak
*
 Training experience 

[cm] [kg] [yrs] [l/min] [ml/min/kg] [months] 

40s-F 

(N = 14) 
173 ± 4 66 ± 4 14 ± 1 2.77 ± 0.32 42.6 ± 4.9 19 ± 10 

40s-M 

(N = 15) 
184 ± 6 75 ± 7 16 ± 1 4.01 ± 0.41 54.7 ± 6.3 13 ± 9 

120s-F 

(N = 15) 
172 ± 4 65 ± 4 14 ± 1 2.77 ± 0.32 42.6 ± 4.9 19 ± 9 

240s-M 

(N = 12) 
184 ± 6 74 ± 7 16 ± 1 4.01 ± 0.41 54.7 ± 6.3 13 ± 9 

* 
average value of last 30 s from 120 s maximal for females and 240 s maximal for males 

4.2.2 Procedures 

The fan resistance factor was set at 3. After setting up the ergometer, subjects 

performed a 10 min self-controlled warm-up and had a 5 min rest before the 
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maximal tests. A metabolic unit (MetaMax 3B, Cortex Biophysic, Leipzig, 

Germany) was used to measure breath-by-breath VO2 from the warm-up to 

10 min after the end of paddling. Prior to the test of each test day, pressure, 

gas, and volume calibration were strictly performed according to the 

handbook of the equipment using a 3 l syringe and a gas of known 

composition (O2: 15.00 %，CO2: 5.00 %). Capillary blood, 20 µL, was taken 

from the subjects’ right earlobe before the warm-up, immediately after the 

warm-up, before the maximal paddling, and at the 1st, 3rd, 5th, 7th, and 10th min 

of recovery. The blood samples were analyzed using a lactate analyzer 

(Biosen S_line, EKF Diagnostic, Barleben, Germany). A polar monitor 

(Polar Accurex Plus, Polar Electro Oy, Kempele, Finland) was utilized to 

measure the heart rate. Throughout the maximal trials, spoken 

encouragement was given by the coaches to motivate the subjects. The 

subjects paddled with a self-chosen strategy. 

4.2.3 Calculating the Energy Contributions 

Energy productions were calculated as three components, including 

anaerobic alactic (WPCR), anaerobic lactic (WBLC), as well as aerobic (WAER). 

The total energy production (WTOT) was calculated as the sum of these three 

components. WPCR was calculated as the energy corresponding to the fast 

component of oxygen debt in recovery using a double exponential equation 

(BENEKE ET AL., 2002); WBLC was calculated according to the net capillary 

blood lactate, which was the peak value during the recovery minus the value 

immediately prior to maximal paddling, with the assumption of an 

oxygen-lactate equivalent of 3.0 ml·kg-1·mmol-1·l and a 45 % of the body 

mass distribution of lactate (DI PRAMPERO, 1981). WAER was calculated 

from the accumulated VO2 during maximal paddling above a resting level, 

which was assumed to be 4.0 ml O2 kg-1
·min-1 for males and 3.5 ml O2 

kg-1
·min-1 for females (CIBA-GEIGY, 1985). A caloric equivalent of 

21.131J·ml-1 at respiratory exchange ratio >1.0 was utilized to convert the 

three components of VO2 into kilojoule (STEGMANN, 1977). The normalized 

energy production of each component was calculated as each component 

divided by the body mass (WPCRN, WBLCN, WAERN, and WTOTN,). The relative 

energy production of each component (WPCR %, WBLC %, and WAER %) was 

calculated as each component divided by WTOT. The power of each 
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component (EPCR, EBLC, and EAER) was calculated as the energy production 

divided by the corresponding durations. 

4.2.4 Statistical Analysis 

All data were presented with mean and standard deviations (M ± SD). One 

way ANOVAs were performed among four gender and distance conditions for 

different relative energy production, absolute energy production, and power. 

Bonferroni correction was used to control the family-wise type-I error. Fifteen 

ANOVAs were preformed, so a type-I error rate was set at 0.0033 for 

significant ANOVAs. Type-I error rates were set at 0.05 for significant post-hoc 

comparisons. Statistical analysis was performed using IBM SPSS Statistics 19 

(SPSS Statistics 19, IBM Corporation, New York, USA). 

4.3 Results 

The ANOVAs showed significant effects among four gender and distance 

conditions for different absolute relative energy production, absolute energy 

production, normalized energy production, and power (p < 0.001). Post-hoc 

analysis showed that WPCR % and WBLC % in 40 s-F and 40 s-M were greater 

than those in 120 s-F and 240 s-M (41.1 % vs. 21.0 % in females, 38.0 % vs. 

13 % in males). WAER % in 40 s-F and 40 s-M were less than those in 120 s-F 

and 240 s-M (31.1 % vs. 58.0 % in female, 32.0 % vs. 76.0%) (Figure 4-1). 

WPCR in 40 s-F was less than that in 40 s-M (31.0 kJ vs. 41.0 kJ). WBLC in 

40 s-F was less than that in 120 s-F (20.8 kJ vs. 34 kJ). WAER in 40 s-F and 40 

s-M were less than those in 120 s-F and 240 s-M (23.4 kJ vs. 92 kJ in females, 

35 kJ 275 kJ in males). WTOT in 40 s-F was less than that in 40 s-M (75.2 kJ vs. 

108.0 kJ). WTOT in 40 s-F and 40 s-M was less than those in 120 s-F and 240 

s-M (75.2 kJ vs. 160 kJ in females, 108 kJ vs. 362 kJ) (Figure 4-2). 

When normalized to body mass, WBLCN in 40 s-F was less than that in 40 s-M 

(0.32 kJ/kg vs. 0.43 kJ/kg). WBLCN in 40s-M was less than that in 240 s-M 

(0.43 kJ/kg vs. 0.54 kJ/kg). WAERN in 40 s-F and 40 s-M were less than those 

in 120 s-F and 240 s-M (0.36 kJ/kg vs. 1.43 kJ/kg in females, 0.47 kJ/kg vs. 

3.77 kJ/kg in males). WTOTN in 40 s-F and 40 s-M were less than those in 120 

s-F and 240 s-M (1.15 kJ/kg vs. 2.47 kJ/kg in females, 1.45 kJ/kg vs. 4.93 

kJ/kg). 
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Figure 4-1: Relative energy contributions from anaerobic alactic system (WPCR), anaerobic 
lactic system (WBLC) and aerobic system (WAER) in 40 s, 120 s and 240 s maximal 
kayaking; 

§ 
significant from 40 s-F; 

¤ 
significant from 40 s-M; raw data see 

Appendix 8 

 

Figure 4-2: Energy contributions from anaerobic alactic system (WPCR), anaerobic lactic 
system (WBLC), and aerobic system (WAER) in 40 s, 120 s, and 240 s maximal 
kayaking; 

§ 
significant from 40 s-F; 

¤ 
significant from 40 s-F; 

⊙ 
significant from 40 

s-M; raw data see Appendix 8 

EPCR and EBLC in 40 s-F were less than that in 40 s-M (0.77 kW vs. 1.03 kW, 

0.52 kW vs. 0.81 kW) but greater than those in 120 s-F (0.77 kW vs. 0.28 kW, 

0.52 kW vs. 0.28 kW). EPCR and EBLC in 40 s-M were greater than that in 240 

s-M (1.03 kW vs. 0.19 kW, 0.81 kW vs. 0.17 kW). EAER in 40 s-F was less than 

that in 120 s-F (0.59 kW vs. 0.77 kW). EAER in 40 s-M was less than that in 240 

s-M (0.87 kW vs. 1.15 kW). ETOT in 40 s-F were less than that in 40 s-M (1.88 

kW vs. 2.71 kW) but greater than that in 120 s-F (1.88 kW vs. 1.33 kW). ETOT 

in 40 s-M was greater than that in 240 s-M (2.71 kW vs. 1.51 kW) (Figure 4-3). 
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Figure 4-3: Powers from anaerobic alactic system (EPCR), anaerobic lactic system (EBLC), and 
aerobic system (EAER) in 40 s, 120 s and 240 s maximal kayaking; 

§ 
significant 

from 40 s-F; 
¤ 
significant from 40 s-F; 

⊙ 
significant from 40 s-M; raw data see 

Appendix 8 

Because the physiological and ergometric measurements were recorded 

breath by breath or stroke by stroke, the time-series data were obtained and 

presented in Figure 4-4. The power increased steeply from the start and 

reached its peak value at about 5 s and decreased slowly until the end for all 

the durations except for 240 s, in which there was an end spurt. The speed 

and stroke rate showed a similar process as power except for a later peak 

point (at about the 10 s). Comparatively, VO2 and heart rate experienced a 

fast component of increase to their 90 % of peak values during the first 

25–45 s and 15–35 s, respectively, and they continued to increase slowly until 

the end. 

4.4 Discussion 

The current study investigated the energetic profiles of simulated female 

200 m, female 500 m, male 200 m, and male 1000 m maximal paddling tests 

on a kayaking ergometer. We demonstrated specific energetic profiles for 

these four conditions (Figure 4-1–4). 
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Figure 4-4: Physiological and ergometric process of 40 s, 120 s, and 240 s maximal kayaking 

(top panel for 40 s in females and males, N = 29; middle panel for 120 s in 

females, N = 15; bottom panel for 240 s in males, N = 12. raw data see Appendix 
9, figure with SD see Appendix 10) 

First, the 500 m and 1000 m tests were aerobic dominant, with WAER % of 

57.8 ± 3.9 % and 76.2 ± 3.9 %. The 200 m was anaerobic dominant, with 

WAER % of 31.1 ± 3.4 % in females and 32.4 ± 4.6 % in males. The findings of 
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WAER % were consistent with those of other reports, which indicated the 

validity of the energy calculating method introduced by Beneke et al. Among 

the reported findings, the WAER % levels were 29–40 % in 40 s (BYRNES & 

KEARNEY, 1997; NAKAGAKI ET AL., 2008), 57–69 % in 120 s (BISHOP, 

2000; BISHOP ET AL., 2001, 2002; BISHOP ET AL., 2003; BYRNES & 

KEARNEY, 1997; NAKAGAKI ET AL., 2008), and 74–86 % in 240 s (BYRNES 

& KEARNEY, 1997; NAKAGAKI ET AL., 2008). However, the WAER % in this 

study was in the lower ranges compared to other similar investigations 

(BYRNES & KEARNEY, 1997; ZOUHAL ET AL., 2012). The relatively higher 

WAER % in other studies might result from an underestimate of anaerobic 

energy production, and thus an overestimate of WAER % with the method 

utilized (MAOD) (BANGSBO, 1992, 1998) (also see Chapter 2 and 3). 

However, Nakagaki et al. (2008) used the same method as Byrnes and 

Kearney (1997) (both MAOD) but reported a series of WAER % levels closer to 

the findings in this study. Therefore, MAOD might not be the most reliable 

method in calculating the anaerobic energy (DOHERTY & SMITH, 2001), or 

some other possible factors (e.g., motivation and muscle fiber composition, 

see Chapter 3) might also have influence the WAER % findings. On the 

contrary, Zamparo et al. (1999) demonstrated a WAER % of 41 % in 250 m 

(62 s), 60 % in 500 m (134 s), and 83 % in 1000 m (289 s) using a method 

based on the three pathways of energy contribution introduced by Wilkie 

(1980), similar to the method in this study. Given that the WAER % in maximal 

or maximal exercises is relevant to the duration (GASTIN, 2001), the WAER % 

levels in this study were in line with those from Zamparo et al. Additionally, the 

subjects in the present study were junior kayakers with a training experience 

of only 4 to 36 months. The limited experience might have had an influence on 

WAER %, but this possibility was excluded based on the study in Chapter 3. 

The pacing strategy was not required in this study, because similar WAER % 

was reported in 2 min maximal kayaking with two different pacing strategies 

(all-out start vs. even) (BISHOP ET AL., 2002). Actually, all of the paddlers in 

this study reached their peak power during their first 5 to 10 s (Figure 4-4), 

which appeared more to be an all-out start strategy. 

Second, the results indicated that the energetic profile depended on the 

durations of maximal exertions and the involved muscle groups. Paddlers 



Energetic Profile of Kayaking on Ergometer                                          49 

produced greater WAER % in longer durations. However, WPCR % results were 

similar between shorter and longer durations for both males and females. The 

similar WPCR % results were because of the determination of ATP-CP by 

muscle mass (20–25 mM per kilogram wet muscle (GREENHAFF ET AL., 

2004)), and fast depletion of ATP-CP during the first 5–10 s. As shown in 

Figure 4-4, the power, speed, and stroke rate peaked at 5–10 s. Although 

WBLC % results were also significantly greater in longer durations, the 

differences were relative small compared to those of WAER %. The subjects in 

this study were juniors trained mostly with long distances. It might have been 

difficult for them to exert their maximum capacity in short-duration exertion. 

Therefore, their peak blood lactate in 40 s was much less as compared to 

world-elite 200 m paddlers (7.9 ± 1.8 mM vs. 13-15 mM) (NIKONOROV, 

2012), who could produce as much blood lactate as in 500 m and 1000 m but 

in much shorter time. Actually, the amount of WBLC also depended on muscle 

mass (50 mM per kilogram wet muscle (GREENHAFF ET AL., 2004)). The 

difference between the two durations for both genders in this study did 

disappear as WBLC % results were relative to body mass. Given that both 

genders in this study performed 40 s maximal paddling, it was possible to 

investigate the influence of muscular volume on energetic profile in kayaking. 

Although males produced significantly more energy from all three pathways 

(Figure 4-2), the significance did not exist anymore when the energy 

contributions were relative to body mass. 

Third, the characteristic of power output in three energy pathways indicated 

different energetic demands in different durations. The longer duration 

generated a higher demand of aerobic power output, whereas the shorter 

duration needed a higher demand of anaerobic power output, conversely. The 

findings provided physiological insight into training in 200 m, 500 m, and 

1000 m. Training documentation from German national teams indicated an 

agreement between physiological functions and the training in practice. About 

85–88 % of training on water was performed with an intensity of ＜ 4 mM 

blood lactate throughout the four years’ Olympic preparation (ENGLERT & 

KIESSLER, 2009). A report on the Spanish national team in preparing for the 

world championship indicated a yearly water training volume of 4415 km, in 

which ＞  80 % was trained with the intensity of ＜  4 mM blood lactate 
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(GARCIA-PALLARES ET AL., 2010). However, it was found that the 200 m 

male finalists in the London Olympic Games were 2.0 kg heavier than the 

1000 m male finalists, on average, even though they were 2.0 cm shorter (LI, 

2012). As mentioned previously, a heavier body mass (mostly as muscle 

mass) could bring a higher capacity of anaerobic energy supply 

(GREENHAFF ET AL., 2004). 

Last, the physiological and energetic process could provide the interactions 

between the three energy systems in 200 m, 500 m, and 1000 m. The 

anaerobic alactic system determined the total energy production during the 

first 5–10 s, while the aerobic system had nearly not been used for all 

distances (see VO2 in Figure 4-4). At the same time, the anaerobic lactic 

system had not reach its maximal metabolism rate (GLADDEN, 2004; 

MADER, 2003). The power as well as speed and stroke rate reached their 

peak value. This phenomenon could also be found in simulated rowing races 

(HARTMANN ET AL., 1993). With regard to the aerobic system, its 

dominance in total energy supply started only from the 30–40 s, when the VO2 

reached its 90 % peak value (Figure 4-4). The vacancy between the 5–10 s 

and 30–40 s could only be filled by the anaerobic lactic system. This energetic 

profile could provide physiological support for developing the training 

philosophy in these three distances. 

4.5 Conclusion 

Energetic profiles in kayaking varied with paddling distances. At 500 m and 

1000 m distances, the aerobic system was dominant (with WAER % of 57.8 % 

and 76.2 %), whereas, at 200 m, the anaerobic system was dominant (with 

WAER % of 31.1-32.4 %). Muscular volume seemed to have an influence on 

absolute energy production. The anaerobic alactic system determined the 

performance during the first 5 to 10 s. Anaerobic lactic system probably 

played a dominant role during the period from the 5–10 s to 30–40 s. The 

aerobic system could dominate the energy contribution after 30–40 s. This 

energetic profile in kayaking could provide physiological support for 

developing the training philosophy in these three distances. Additionally, the 

method introduced by Beneke et al. seemed to be a valid method to calculate 

the energy contributions in maximal kayaking. 
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5 Energetics of Canoeing at Submaximal 

and Maximal Speeds 

 

Illustration of the research design - Chapter 5 
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5.1 Introduction 

Investigations on the energetics of canoeing started as early as the 1920 s 

(WOHLFEIL, 1928). Seliger et al. reported the energy expenditures in 1000 m 

paddling canoeing when subjects were sitting on a seat (SELIGER ET AL., 

1969). More recent investigations on the energetics of canoeing were 

reported in the 1990s (DAL MONTE ET AL., 1993; MISIGOJ-DURAKOVIC & 

HEIMER, 1992). The energy contributions of canoeing on an ergometer were 

investigated for the first time in 1997 (BYRNES & KEARNEY, 1997). It was 

found that the WAER % results were 36.5 %, 63.5 %, and 84.5 % for 200 m, 

500 m, and 1000 m, respectively (BYRNES & KEARNEY, 1997). 

The amount of energy above the resting level spent per unit of distance was 

defined as C (CERRETELLI & DI PRAMPERO, 1990). C has been widely 

investigated in running (ANTONUTTO ET AL., 1993; BRUECKNER ET AL., 

1991; DI PRAMPERO ET AL., 1986), swimming (ZAMPARO ET AL., 2011), 

gondola (CAPELLI ET AL., 1990), and kayaking (ANTONUTTO ET AL., 1999; 

BUGLIONE ET AL., 2011; PENDERGAST ET AL., 1989). Only a few 

investigators have evaluated C in canoeing (BUGLIONE ET AL., 2011). 

Differences in C have been found among a variety of locomotion types 

(CERRETELLI & DI PRAMPERO, 1990). Although kayaking and canoeing 

are upper-body dominant sports (SHEPHARD, 1987), the difference of C 

between them was still unknown. Therefore, the objective of this study is to 

investigate the energetics of canoeing on open water at submaximal and 

maximal speeds. We hypothesized that energy contributions and C in 

canoeing would be similar to those in kayaking. 

5.2 Methods 

5.2.1 Subjects 

Eight healthy male canoeists volunteered to participate in this study. All 

subjects were national medalists in national championships of adult or junior 

groups during the past three years. The anthropometric and physiological 

characteristics of the subjects are shown in Table 5-1. Subjects signed 

informed consent forms prior to participation. The study was conducted 

according to the corresponding ethics requirement. 
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5.2.2 Procedures 

Energy contributions during submaximal and maximal paddling were 

calculated based on the method implemented by Beneke et al. (2004; 2002). 

C of canoeing on open water was also calculated thereafter. The tests were 

performed on two separate days (08:00-12:00, and 14:00-18:00) at the 

beginning of subjects’ competitive season (three days of transitional training 

after the spring regatta). The tests were performed with individuals’ racing 

boats. Subjects were familiar with the experimental procedure. The tests were 

performed with absence of wind. The altitude, pressure, temperature, and 

humidity during the tests were 8 m, 1001–1006 mbar, 22–27 °C, and 72–78 %, 

respectively. 

Table 5-1: Anthropometric and physical characteristics of subjects 

Subject 

Age Height Weight VO2peak
*
 Training Experience 

[yrs] [cm] [kg] [l/min] [ml/min/kg] [yrs] 

1 27 177 83.6 4.5 54 10 

2 25 181 79.4 4.6 58 9 

3 21 183 83.9 5.2 62 8 

4 17 178 75.6 4.1 55 5 

5 19 178 74.3 4.2 56 6 

6 19 180 79.3 4.7 59 6 

7 19 183 77.0 5.0 65 4 

8 19 180 81.4 4.6 57 6 

Mean ± SD 21 ± 3 180 ± 2.3 79.3 ± 3.5 4.6 ± 0.4 58.3 ± 3.7 6.8 ± 2.1 

* 
VO2peak = peak VO2, averaged continuous 30 s in 4 min maximal paddling 

5.2.3 Paddling at Maximal Speed 

Subjects were not allowed to take any food except for drinks two hours prior to 

tests. A typical diet high in carbohydrates was adhered to by the subjects 

before the tests. The maximal test included a 10 min self-controlled warm-up, 

a 5 min rest, and was followed by a 4 min maximal paddling session on open 

water. Subjects used self-chosen pacing strategies to mimic the racing 
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condition. A portable spirometer (MetaMax 3B, Cortex Biophysic, Leipzig, 

Germany) was utilized for recorded the breath-by-breath gas from start of 

warm-up to 10 min after the end of maximal paddling. The pressure, gas, and 

volume were calibrated for the spirometer using a syringe of 3 l and a gas of 

known composition (O2, 15.00 %; CO2, 5.00 %). A heart monitor 

(Polar Accurex Plus, Polar Electro Oy, Kempele, Finland) was used 

throughout the test. 20 µL blood was taken from earlobe before the warm-up, 

immediately after the warm-up and before the maximal paddling, and at the 1st, 

3rd, 5th, 7th, and 10th min during the recovery. The blood samples were 

analyzed using a lactate analyzer (Biosen S_line, EKF Diagnostic, Barleben, 

Germany). Boat speed was monitored by a GPS (Forerunner 301, Garmin, 

Olathe, Kansas, USA) located on the boat. The spirometric data were sent 

telemetrically from the portable knapsack located on the back of paddlers to a 

personal computer transported by a car on the bank of 2000 m standard 

regatta course. The data of boat speed were downloaded to the computer 

after the tests. 

5.2.4 Paddling at Submaximal Speed 

The submaximal paddling was performed on the second day after the 

maximal paddling. The tests consisted of four 5 min paddling sessions with 

10 min rest in between. The four tests included 75 %, 80 %, 85 %, and 90 % 

of individual maximal speed, which was similar to the step test used by the 

German Canoe/Kayak Association (4 × 1000 m) (ENGLERT & KIESSLER, 

2009). The use of spirometer, heart rate monitor, blood taking, as well as boat 

speed was the same as in maximal paddling. However, the time of blood 

sampling was prior to the 1st step, and 1st, 3rd, 10th min between each two 

steps, as well as the 1st, 3rd, 5th, 7th, and 10th min during the recovery after the 

last step. Subjects were informed of their speeds for each step and required 

to strictly follow the designed speeds. The actual speeds for all the subjects 

during the step test were on average 75 %, 79 %, 83 %, and 88 % of maximal 

speed. 

5.2.5 Calculating the Energy Contributions 

The energy consumptions were calculated according Beneke et al. (2004; 

2002). The total consumed energy (WTOT, in kJ) included anaerobic alactic 
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(WPCR, in kJ), anaerobic lactic (WBLC, in kJ), and aerobic contribution (WAER, in 

kJ), as function: 

WTOT = WPCR + WBLC + WAER 

WPCR was estimated from the fast component of oxygen debt during the 

recovery (KNUTTGEN, 1970; MARGARIA ET AL., 1933a; ROBERTS & 

MORTON, 1978). WPCR was methodologically determined by two exponential 

equations (3 min fast component and 3 min slow component) (BENEKE ET 

AL., 2004; BENEKE ET AL., 2002); WBLC was estimated from the net blood 

lactate with the assumptions that an oxygen-lactate was equivalent 

3.0 ml·kg-1·mmol-1·l and a distribution space of lactate of approximately 45 % 

of the body mass (DI PRAMPERO, 1981); WAER was estimated from the time 

integral of VO2 during paddling based on a resting level of 4.0 ml O2 kg-1
·min-1 

(CIBA-GEIGY, 1985). Given the caloric equivalents of oxygen at difference 

respiratory quotients (R.Q.) (STEGMANN, 1977), each part of energy with a 

unit of oxygen could be calculated into kJ. All three parts of energy were 

considered for maximal paddling. The anaerobic lactic and aerobic share 

energy was considered for submaximal paddling, because anaerobic alactic 

energy could be ignored for submaximal paddling (ANTONUTTO ET AL., 

1999; ANTONUTTO ET AL., 1993; BENEKE & HUTLER, 2005). The absolute 

C of submaximal and maximal canoeing was then divided by the total 

paddling distance (in meter). 

5.2.6 Statistical Analyses 

All of the data in this study were described with mean ± SD. 

5.3 Results 

The energetic results of submaximal and maximal paddling are provided in 

Table 5-2. R.Q. was the average of all steps in submaximal paddling and 

maximal paddling. An individual caloric equivalent of oxygen was to calculate 

energy according to Stegemann (1977). When the R.Q. was ＞1.0 in maximal 

paddling, a caloric equivalent of 21.131 J·ml-1 was utilized. 
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Table 5-2: Energetic results of submaximal and maximal paddling (N = 8) 

 1
st
 Step 2

nd
 Step 3

rd
 Step 4

th
 Step Maximal 

Time [min] 5 5 5 5 4 

Speed [m/s] 2.99 ± 5.00 3.13 ± 0.09 3.28 ± 0.08 3.50 ± 0.14 3.97 ± 0.14 

Distance [m] 896 ± 16 927 ± 27 987 ± 25 1102 ± 42 954 ± 35 

Acc. VO2 [l] 12.5 ± 0.5 13.9 ± 0.8 15.6 ± 1.1 18.9 ± 1.9 16. 9 ± 1.3 

Net blood 

lactate 
[mM] 0.20 ± 0.19 0.25 ± 0.39 0.57 ± 0.44 3.33 ± 2.42 10.09 ± 1.53 

VO2PCR [l] / / / / 2.759 ± 0.545 

R.Q.  0.81 ± 0.02 0.86 ± 0.03 0.86 ± 0.03 0.94 ± 0.04 1.07 ± 0.05 

WPCR [kJ] / / / / 58.3 ± 13.3 

WBLC [kJ] 1.0 ± 0.9 1.3 ± 2.0 2.8 ± 2.1 16.6 ± 12.3 50.9 ± 9.0 

WAER [kJ] 216.0 ± 8.8 260.8 ± 37.7 281.4 ± 22.5 353.2 ± 37.4 326.9 ± 26.6 

WTOT [kJ] 216.9 ± 9.0 262.1 ± 38.4 284.2 ± 23.6 369.8 ± 46.8 436.1 ± 41.2 

WPCR [%] /    13.3 ± 1.9 

WBLC [%] 0.4 ± 0.4 0.5 ± 0.7 1.0 ± 0.7 4.3 ± 2.8 11.6 ± 1.2 

WAER [%] 99.6 ± 0.4 99.5 ± 0.7 99 ± 0.7 95.7 ± 2.8 75.1 ± 2.8 

C [kJ/m] 0.24 ± 0.01 0.28 ± 0.04 0.29 ± 0.02 0.35 ± 0.03 0.46 ± 0.03 

Acc. VO2 = accumulated VO2 during paddling; net blood lactate = peak blood lactate above 
pre-paddling level; VO2PCR = fast component of oxygen debt above rest level; R.Q. = 
respiratory quotient; WPCR = anaerobic alactic energy; WBLC = anaerobic lactic energy; WAER = 
aerobic energy; WTOT = total energy; C = energy cost 

The VO2 in last 2 min of each step was averaged during submaximal paddling, 

and it represented the steady state VO2 for each step. The VO2 as a function 

of speed is described in Figure 5-1. The C in submaximal and maximal 

paddling was provided as a function of speed (Figure 5-2), with a function of y 

= 0.0242 * x2.1225 (R2 = 0.8815). 

 



Energetics of Canoeing at Submaximal and Maximal Speeds                            57 

y = 0.1555x
2.6014

R
2
 = 0.8515

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 1.0 2.0 3.0 4.0 5.0

Speed (m/s)

V
O

2
 (
l/
m

in
)

 

Figure 5-1: VO2 as a function of speed (data from all of the participants in submaximal 
paddling, N = 32, raw data see Appendix 11) 
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Figure 5-2: C as a function of speed (data from submaximal and maximal paddling, N = 40, 

raw data see Appendix 11) 

5.4 Discussion 

Studies on energetics in canoeing are few compared to those in kayaking. In 

the current study, we found that the relative energy contributions from three 

pathways in 4 min maximal paddling were 13.2 ± 1.9 % (WPCR), 11.5 ± 1.2 % 

(WBLC), and 75.3 ± 2.8 % (WAER). The WAER % was in the lower range of 

previously reported results in kayaking and canoeing with the same duration 

(ANTONUTTO ET AL., 1999; BYRNES & KEARNEY, 1997; NAKAGAKI ET 
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AL., 2008). Byrnes and Kearney investigated American national kayakers and 

canoeists on an ergometer and demonstrated a range of 81–92 % for 

4 female kayakers and a range of 81–88 % for 2 canoeists (BYRNES & 

KEARNEY, 1997). Nakagaki et al. reported a 74 % in 8 university males in 

kayaking on an ergometer (NAKAGAKI ET AL., 2008). The method of 

calculating energy used by Byrnes and Kearney (MAOD, as introduced by 

Medbo et al. (1988)) could lead to an overestimate of WAER % when compared 

with the method used in the current study. The overestimation was supported 

by Bangsbo (1998). Additionally, using a similar method as in the current 

study, Zamparo et al. (1999) found a WAER % of 83 % in 4 female and one 

male kayakers with middle to high level paddling on water for a duration of 

289 s. It was postulated that the WAER % in 240 s could be lower than 83 % if 

the subjects in Zamparo et al.’s study paddled 240 s instead of 289 s, 

because the WAER % increased with duration of maximal exercise (GASTIN, 

2001). Therefore, the lower level of WAER % in this study could also be 

explained by the methods of calculating energy. Additionally, the limited 

number of subjects in Byrnes and Kearney’s study might have an influence on 

their results. A greater aerobic power was found in this study (18.4 watt·kg-1) 

than the results reported by Nakagaki et al. (16.6 watt·kg-1) (2008) with no 

difference in anaerobic power (both 5.7 watt·kg-1).,The WAER % results were 

close (75.3 % vs. 74.0 %) in both investigations, but an overestimate of 

WAER % might exist in the study of Nakagaki et al. (2008) as mentioned 

previously. 

An exponent increase of VO2 as a function of speed was found in this study 

(Figure 5-1), which was in line with other sports (NOZAKI ET AL., 1993; 

PUGH, 1974; SECHER, 1992). As described in Table 5-1, the energy supply 

during the submaximal paddling was dominated by the aerobic pathway 

(＞ 99 %), which made it reasonable to find a net blood lactate of ＜ 1 mM 

after each of the first three steps. In other words, the increase of speed up to 

3.3 ± 0.08 m/s (83 % of average speed in 4 min maximal paddling) could be 

maintained aerobically. The upper range of speed here was higher than that 

in paddling with slalom boats (2.2 m/s), which resulted probably from the 

higher efficiency of sprint canoe boats (PENDERGAST ET AL., 1989). The 

findings supported the design of step test used in the German Canoe/Kayak 
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Association, in which the 4 mM was supposed to appear between 80 % and 

85 % of the average speed in 1000 m maximal paddling (KAHL, 2005). 
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Figure 5-3: Comparison of C in different locomotion; data from front crawl (CAPELLI ET AL., 
1998), gondola (CAPELLI ET AL., 1990), kayaking (ZAMPARO ET AL., 1999), 
rowing (DI PRAMPERO ET AL., 1971), and canoeing (own data from this study), 

raw data see Appendix 12 

The C of canoeing in this study increased with the increase of speed as 

demonstrated by a function with an exponent of 2.1225 (Figure 5-2). The 

exponent was among the previous reported exponents ranging from 1.38 to 

2.26 (ALIVERTI ET AL., 2009; ANTONUTTO ET AL., 1999; CAPELLI ET AL., 

1990; CAPELLI ET AL., 1998), but this was the first time it was applied to 

sprint canoeing. Buglione et al. attempted to draw the relationship between C 

and speed for canoeing, but a lack of steps limited their ability to quantify the 

relationship (BUGLIONE ET AL., 2011). When comparing with kayaking, we 

found that the C of canoeing was similar to the findings by Zamparo et al. 

(1999), who reported an exponent 2.26 in kayaking (Figure 5-3). When 

compared with rowing, the yearly training volume on water was much lower in 

canoeing and kayaking (3000–4200 km) (GARCIA-PALLARES ET AL., 2009) 

than in rowing (5827–7500 km) (GARCIA-PALLARES ET AL., 2009; 

HARTMANN & MADER, 2005). The efficiency was also reported lower in 

canoeing and kayaking (13–17 %) than in rowing (20 %) (BUNC & HELLER, 

1994; HOFMIJSTER ET AL., 2009). Although there was no cross-sectional 

comparison of C between canoeing and kayaking, the findings in the current 

study demonstrated a similar C between canoeing and kayaking. 
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5.5 Conclusion 

The relative energy contributions on open water canoeing were 75.3 ± 2.8 % 

of aerobic, 11.5 ± 1.9 % of anaerobic lactic, and 13.2 ± 1.9 % of anaerobic 

alactic at maximal speed of 4 min, which was similar to those reported in 

kayaking. The C of canoeing seemed also to be similar to that in kayaking. A 

training program could be designed similarly for kayaking and canoeing with 

regard to energetic profile. 
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6 Aerobic Energy Contribution in Selected 

Movement Patterns 

 

Illustration of the research design - Chapter 6 
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6.1 Introduction 

Investigations on aerobic energy contribution in maximal exertions have been 

documented as early as 1970 in the textbook of Astrand and Rodahl, where 

the aerobic and anaerobic energy contributions in exercises involving large 

muscles were provided as a table (ASTRAND & RODAHL, 1970). As Astrand 

and Rodahl’s table (1970) became widespread, aerobic energy contribution 

was studied independently in a variety of movement patterns, such as rowing 

(HARTMANN, 1987; MADER & HOLLMANN, 1977), cycling (GASTIN, P.B. & 

LAWSON, D.L., 1994; MEDBO & TABATA, 1993), running (DUFFIELD ET AL., 

2005b; SPENCER & GASTIN, 2001), kayaking (ABENAVOLI ET AL., 2001; 

BISHOP, 2000), etc. However, an underestimate of WAER% in Astrand and 

Rodahl’s table was consistently found by many studies (GASTIN, 2001) (and 

see Chapter 2 and 3). An exponential correlation between WAER % and 

duration in maximal exercises was found by summarizing the literature 

(GASTIN, 2001) (also see Chapter 2). 

However, the variations of WAER % in different studies could not be ignored. 

For example, the WAER % varied from 50.6 % (116 s) (HETTINGA ET AL., 

2007) to 70.3 % (120 s) (BISHOP, 2000) in approximate 120 s maximal 

exercises among different studies. The variations were also observed in other 

durations of maximal effort (GASTIN, 2001) (also see Chapter 2). Some other 

factors besides the duration might also affect WAER %. The method used in 

calculating the energy contribution could be one possible factor (see 

Chapter 3). The method of MAOD introduced by Medbo et al. (1988) could 

result in an overestimate of WAER % (BANGSBO, 1992, 1998; BANGSBO ET 

AL., 1990). Another possible factor that might affect energy contribution is the 

movement pattern used during maximal exertion. MLSS varies according to 

the muscular mass involved in exercises (BENEKE, 2003b). However, it was 

still unknown whether the movement pattern could influence WAER % in 

maximal exercises. 

The objective of this study is to examine whether movement patterns had 

influence on WAER % in exercises of maximal effort. It was hypothesized that 

movement pattern might influence the WAER % during maximal exertion with 

the same duration. 
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6.2 Methods 

6.2.1 Subjects 

Three groups of participants volunteered to perform one or three maximal 

exertions in this study (Table 6-1). Group 1 (G1, N = 9, males) and group 2 

(G2, N = 8, males) were from a kayaking and canoeing team of national level, 

respectively. Group 3 (G3, N = 24, 7 females and 17 males) included amateur 

long-distance runners, cyclists, and triathletes. Most of participants in G3 

trained 3–6 h per week. The study was conducted according to the 

corresponding ethic requirement. Subjects signed an informed consent form 

prior to participation. 

Table 6-1: Characteristics of three groups of participants 

 

Height Mass Age VO2peak
*
 Training Experience 

[cm] [kg] [yrs] [l/min] [ml/min/kg] [yrs] 

G1 189 ± 3
†
 85 ± 6

†
 21 ± 3 4.614 ± 0.434

†
 54.6 ± 5.8 5.3 ± 2.0 

G2 180 ± 2 79 ± 4
†
 21 ± 3 4.616 ± 0.371

†
 58.2 ± 3.8 6.8 ± 2.1 

G3 177 ± 10 73 ± 11 33 ± 9 4.115 ± 0.735
‡
 56.1 ± 8.0

‡
 11.4 ± 9.5 

* 
VO2peak = peak VO2; peak averaged 30 s VO2 in 4 min maximal exercises; 

†
 significant from 

G3 (p ＜ 0.05); 
‡
 significant from running 

6.2.2 Procedures 

G1 and G2 performed a maximal kayaking and a maximal canoeing session 

on water with racing boats on a 2000 m racing course, respectively. G3 

performed three maximal exercises, including running on a 400 m round 

athletics field, cycling on an electromagnetic braked cycle ergometer 

(Lode Excalibur Sport, Lode., BV, Groningen, The Netherlands), as well as 

arm cranking with a stationary arm crank ergometer (Ergoline 800SH, Pilger 

Medizin-Elektronik, Ergoline, Bitz, Germany). The movement frequency was 

kept at approximate 90 rpm and 70 rpm for cycling and arm cranking, 

respectively. Because the finishing time for 1000 m kayaking and canoeing is 

approximate 4 min and WAER % is dependent on the duration of maximal 

exercises (see Chapter 2), the duration of maximal exercises in this study was 

fixed at 4 min for all the three groups. Subjects performed 10 min warm-up 
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with self-chosen intensity and a 5 min passive rest, followed by 4 min maximal 

exercises with spoken encouragement. 

Subjects were not allowed to perform intensive training one day before the 

testing or take food two hours before testing. A typical diet high in 

carbohydrate was adhered to by the subjects before the tests. At least a 24 h 

interval was given to G3 between each of the two tests. All of the testing was 

finished in at most one month. A portable spirometer (MetaMax 3B, Cortex 

Biophysic, Leipzig, Germany) was calibrated before each testing day and 

utilized to measure oxygen intake continuously. From the subjects’ earlobes, 

20 µL capillary blood was taken before the warm-up, immediately after the 

warm-up, before the maximal exercises during the passive rest, and at 1st, 3rd, 

5th, 7th, and 10th min during the recovery after the maximal trials. The analysis 

of blood lactate was performed using a lactate analyzer (Biosen S_line, EKF 

Diagnostic, Barleben, Germany). A heart rate monitor (Polar Accurex Plus, 

Polar Electro Oy, Kempele, Finland) was utilized. The temperature, air 

pressure, and humidity were 15–25 °C, 995–1010 mbar, 30–60 %, 

respectively, for all the groups. 

6.2.3 Calculating the Energy Contributions 

The methodology implemented by Beneke et al. (2004; 2002) was utilized in 

calculating energy contribution. Anaerobic alactic energy (WPCR) was 

calculated from the fast component of oxygen debt after maximal exertions 

(KNUTTGEN, 1970; MARGARIA ET AL., 1933a; ROBERTS & MORTON, 

1978). The anaerobic lactic energy (WBLC) was calculated from net blood 

lactate in maximal exercises, with an oxygen-lactate equivalent of 

3.0 ml·kg-1·mmol-1·l (DI PRAMPERO, 1981). The aerobic energy was 

calculated from the actual accumulated VO2 (WAER) above rest level, which 

was fixed at 4.0-4.5 ml·kg-1·min-1 for different postures of exercises 

(CIBA-GEIGY, 1985). The energy contributions of these three components 

could be calculated into kilojoule with a caloric equivalent of 21.131 J·ml-1 (DI 

PRAMPERO, 1981). Therefore, WTOT = WPCR + WBLC + WAER, and 

WAER % = 100 × (WAER/WTOT). The normalized energy contributions (WPCRN, 

WBLCN, WAERN, and WTOTN) were calculated as the absolute energy 

contributed divided by body mass. 
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6.2.4 VO2 Kinetics 

The breath-by-breath gas data were interpolated to second-by-second data 

before they were aligned to the start of each maximal exercise. Nonlinear 

regression techniques were used to fit the VO2 data after the onset of 

exercise with an exponential function. A mathematical model of three 

exponential components were utilized (equation 1) (BARSTOW ET AL., 

1996): 

 

where VO2(b) is the rest baseline value; A0, A1, and A2 are the asymptotic 

amplitudes for the exponential terms; τ0, τ1, and τ2 are the time constants; and 

TD1 and TD2 are the time delays. The phase 1 term was terminated at the 

start of phase 2 (i.e., at TD1) and assigned the value for that time ( ) 

 

6.2.5 Statistical Analysis 

One-way ANOVAs were performed for WPCR, WBLC, WAER, WTOT, WPCRN, 

WBLCN, WAERN, WTOTN, τ1, and WAER % among five movement pattern 

conditions. Tukey’s HSD post-hoc analysis was used when a significant 

condition effect was found. Pearson correlation test was performed between 

τ1 and WAER %. Bonferroni correction was used to control the family-wise 

type-I error for multiple ANOVAs. Ten ANOVAs were performed, so a type-I 

error rate was set at 0.005 for significant ANOVAs. Type-I error rates were set 

at 0.05 for significant post-hoc comparisons and the Pearson correlation test. 

All statistical analysis was performed using IBM SPSS Statistics 19 (SPSS 

Statistics 19, IBM Corporation, New York, USA). All data were provided with M 

and SD. 

6.3 Results 

ANOVAs showed significant condition effects for WPCR, WAER, WTOT, WPCR N, 

WAERN, WTOTN, τ1, and WAER % (Table 6-2). Post-hoc analysis showed that 

WPCR in kayaking and canoeing were significantly greater than those in 
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running, cycling, and arm cranking. WPCR in running and cycling were 

significantly greater than that in arm cranking. WAER in kayaking, canoeing, 

running, and cycling were significantly greater than that in arm cranking. WAER 

Table 6-2: Energy contributions of the five studied movement patterns from three groups 

 

G1 G2 G3 

ANOVA P 
Values 

Kayaking Canoeing Running Cycling Arm Cranking 

M M M M M 

WPCR [kJ] 60.4 ± 14.6 58.3 ± 11.5 41.0 ± 12.6 38.3 ± 10.5 26.1 ± 7.6 < 0.001 

WBLC [kJ] 49.4 ± 8.1 50.9 ± 9.0 42.1 ± 14.5 52.9 ± 18.4 41.9 ± 14.0 0.114 

WAER [kJ] 332.2 ± 37.0 330.3 ± 26.7 275.2 ± 53.3 279.0 ± 61.3 151.0 ± 41.3 < 0.001 

WTOT [kJ] 442.0 ± 36.0 439.5 ± 41.3 358.4 ± 65.5 370.3 ± 79.4 219.0 ± 59.2 < 0.001 

WPCRN [kJ/kg] 0.72 ± 0.21 0.73 ± 0.13 0.56 ± 0.16 0.52 ± 0.15 0.34 ± 0.08 < 0.001 

WBLCN [kJ/kg] 0.58 ± 0.09 0.64 ± 0.10 0.57 ± 0.18 0.71 ± 0.19 0.54 ± 0.13 0.026 

WAERN [kJ/kg] 3.93 ± 0.46 4.16 ± 0.28 3.74 ± 0.56 3.74 ± 0.56 3.78 ± 0.70 < 0.001 

WTOTN [kJ/kg] 5.23 ± 0.54 5.54 ± 0.39 4.88 ± 0.67 5.01 ± 0.84 2.82 ± 0.55 < 0.001 

τ1 [s] 16.65 ± 7.03 17.85 ± 2.44 16.19 ± 3.69 14.53 ± 4.84 24.08 ± 7.34 < 0.001 

WAER [%] 75.60 ± 3.87 75.28 ± 3.87 76.75 ± 4.40 75.24 ± 3.31 68.92 ± 3.47 < 0.001 

G1 = group 1; G2 = group 2; G3 = group 3; WPCR = anaerobic alactic energy contribution; 
WBLC = anaerobic lactic energy contribution; WAER = aerobic energy contribution; WTOT = total 
energy contribution; WPCRN = normalized anaerobic alactic energy contribution; WBLCN = 
normalized anaerobic lactic energy contribution; WAERN = normalized aerobic energy 
contribution; WTOTN = normalized total energy contribution; τ1 = time constant 

in kayaking was significantly greater than that in running. WTOT in kayaking, 

canoeing, running, and cycling were significantly greater than that in arm 

cranking. WTOT in kayaking and canoeing were significantly greater than that 

in running. WPCRN in kayaking, canoeing, running, and cycling were 

significantly greater than that in arm cranking. WPCRN in kayaking and 

canoeing were significantly greater than those in cycling. WAERN in kayaking, 

canoeing, running, and cycling were significantly greater than that in arm 

cranking. WTOTN in kayaking, canoeing, running, and cycling were 

significantly greater than that in arm cranking. τ1 in kayaking, running, and 

cycling were significantly smaller than that in arm cranking. WAER % in 
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kayaking, canoeing, running, and cycling were significantly greater than that 

in arm cranking. τ1 had a significant and negative correlation with WAER% (r = 

-0.298, p = 0.014) (Figure 6-1). The time course of relative VO2 in all the 

studied movements was demonstrated in Figure 6-2. 
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Figure 6-1: Relationship between WAER % and time constant (τ1) (r = -0.298, p = 0.014)), raw 

data see Appendix 13 

6.4 Discussion 

The purpose of this study was to examine whether movement patterns could 

influence on WAER % in exercises with maximal effort. Accordingly, three 

groups of participants were recruited to perform five movement patterns 

(kayaking, canoeing, running, cycling, and arm cranking) with maximal effort. 

Among the five movement patterns, kayaking, canoeing, and arm cranking 

were upper-body dominant, whereas running and cycling were lower-body 

dominant. Among the three groups, G1 and G2 were highly trained athletes, 

whereas G3 were amateur-level athletes. 
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Figure 6-2: Averaged VO2 kinetics of the five studied maximal exercises (G1 = group 1; G2 = 
group 2; G3 = group 3), raw data see Appendix 14 

For G3, arm cranking produced significantly lower WPCR, WAER, and WTOT, 

WPCR N, WAERN, WTOTN, but not WBLC, than running and cycling (Table 6-2), 

which was caused by slower VO2 kinetics and a lower volume of involved 

muscle mass. The participants in G3 were from running, cycling, and triathlon, 

in which most of the training is focused on the lower body. However, their 

upper body was relatively untrained in G3. Although our subjects did not 

undergo muscle biopsy, it was well documented that the percentage of slow 

twitch fiber was significantly lower in the upper-body muscles compared to 

those of the lower-body muscles in upper-body untrained subjects 

(JOHNSON, 1973; SALTIN ET AL., 1977), especially in lower-body 

endurance trained athletes (TESCH & KARLSSON, 1985). Therefore, it was 

speculated that the participants in G3 were characterized by a high 

percentage of slow twitch fiber in lower-body muscles, and a high percentage 

of fast twitch fiber in upper-body muscles. Because of a higher level of fast 

twitch fiber, the fast component time constant of VO2 kinetics was longer in 

upper-body exercises compared to lower-body exercises in upper-body 

untrained subjects (JENSEN-URSTAD ET AL., 1993; KOGA ET AL., 1996; 

KOPPO ET AL., 2002). The findings in this study are in line with these reports 

with τ1 significantly longer in arm cranking than in running and cycling (Table 

6-2, Figure 6-2). The slow VO2 kinetics in arm cranking at the start of exercise 

led to higher demand of energy supply from the anaerobic metabolic pathway 
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(JENSEN-URSTAD ET AL., 1993). Additionally, because the involvement of 

muscles in arm cranking is much less than in running and cycling (BENEKE, 

2003b), as well as the dependence of anaerobic alactic capacity on muscle 

mass (GREENHAFF ET AL., 2004), a significantly lower supply of WPCR in 

arm cranking was also expected. In summary, a significantly lower WPCR and 

WAER led to a significantly lower WTOT (Table 6-2). However, it was the 

significantly slower VO2 kinetics that resulted in a significantly lower WAER % in 

arm cranking, which was probably caused by the high portion of fast twitch 

fiber in the upper-body muscles of the participants in G3. 

Since it was found that the VO2 kinetics could be improved with training 

(CERRETELLI ET AL., 1979), two upper-body highly trained groups (G1 and 

G2) were also recruited in this study. The findings indicated the training level 

of upper body did have an influence on VO2 kinetics, energy contributions, 

and WAER %. As shown in Table 6-1, participants in G1 and G2 were taller and 

they had a heavier body mass as well as a higher level of peak VO2, even 

though the peak VO2 of G1 and G2 was from kayaking or canoeing, as 

compared to that from running for G3. These physical and physiological 

advantages of G1 and G2 led them to a significantly higher level of energy 

contributions, except WBLC (Table 6-2). Notably, the highly trained G1 and G2 

had similar VO2 kinetics as G3 in running and cycling, which were significantly 

faster than G3 in arm cranking (Figure 6-2). The findings of VO2 kinetics here 

were in agreement with others. Cerretilli et al. (1979) demonstrated that 

kayakers had faster VO2 kinetics than sedentary subjects, and that the faster 

oxygen kinetics were accompanied with a lower level of blood lactate 

(CERRETELLI ET AL., 1979). Findings from rowing indicated that elite rowers 

had faster VO2 kinetics compared to club level rowers (INGHAM ET AL., 

2007). The same findings were also reported in cycling (KOPPO ET AL., 

2004). The faster oxygen kinetics of trained muscles, as mentioned above, 

probably resulted from a higher portion of slow twitch fiber (BARSTOW ET 

AL., 1996; PRINGLE ET AL., 2003). Compared to a higher portion of fast 

twitch fiber in upper-body muscles in upper-body untrained subjects 

(JOHNSON, 1973; SALTIN ET AL., 1977), heavily trained kayakers were 

reported to be of a higher portion of slow twitch fiber in the upper-body 

muscles (TESCH & KARLSSON, 1985). Consequently, probably resulting 
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from a higher portion of slow twitch fiber in the upper-body muscles, G1 and 

G2 were characterized by faster VO2 kinetics than G3 showed in arm cranking, 

which might be the primary cause of a higher WAER % in G1 and G2 than in G3 

in arm cranking. 

Taking the studied five movement patterns as a whole, it was postulated that 

WAER% would be similar in maximal exercises involving muscles of 

comparable training level (e.g., upper-body muscles in kayakers and 

canoeists, and lower-body muscles in runners and cyclists) or comparable 

muscle fiber composition, regardless of movement patterns. In other words, 

there might be a positive relationship between WAER % and the percentage of 

slow twitch fiber in the involved muscles during a given duration of maximal 

exertion, by means of the time constant of VO2 kinetics (τ1). This could explain, 

at least partly, the variation of WAER % among different investigations. 

6.5 Conclusion 

WAER % during maximal exercise seemed to be independent of movement 

patterns, given similar VO2 kinetics during the maximal exertion, as well as 

certain duration of maximal exertion (e.g., 4 min as in this study). Involved 

muscle volume had an influence on absolute energy contribution, but not 

WAER %. It was primarily the VO2 kinetics, together with the duration, that 

determined the WAER % in maximal exercises. An exponential relationship 

between WAER% and duration in maximal exercises was found previously by 

summarizing the literature on a variety of movement patterns (GASTIN, 2001) 

(also see Chapter 2); this study provided further support for that finding by 

excluding the influence from movement patterns. 
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7 Maximal Lactate Steady State in Kayaking 

 

Illustration of the research design - Chapter 7 
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7.1 Introduction 

The response of blood lactate concentration to exercise is the result of 

complex interrelationships between the formation, distribution, and utilization 

of lactate in various tissues and compartments (MADER & HECK, 1986). The 

oxygen consumption during exercise above which aerobic energy production 

is supplemented by anaerobic mechanisms, and which results in a significant 

increase in lactate, is termed the anaerobic threshold (WASSERMAN, 1984). 

MLSS corresponds to the highest workload that can be maintained over time 

without continuous blood lactate accumulation (BENEKE, 1995; HECK ET AL., 

1985). Direct assessment of MLSS requires multiple submaximal constant 

workload tests across several days, which makes it a time-consuming 

process (HECK, 1990b). Therefore, investigators tried to find an alternative 

for the traditional approach (BILLAT ET AL., 1994; HECK ET AL., 1985; 

MADER ET AL., 1976). One approach was to estimate an anaerobic 

threshold with a fixed lactate value of 4 mM (LT4), originally defined by Mader 

et al. (1976). The approach was used in the training of kayaking in Germany 

(CAPOUSEK, 2009; KAHL, 2005). 

In the last decades, MLSS has been extensively studied in different types of 

locomotion, such as running (HECK ET AL., 1985), cycling (BENEKE & VON 

DUVILLARD, 1996), rowing (BENEKE & VON DUVILLARD, 1996), swimming 

(DEKERLE ET AL., 2005), and speed skating (BENEKE & VON DUVILLARD, 

1996). However, a range of 2–7 mM has been found for blood lactate values 

at MLSS among different types of locomotion; for example, 3.1 mM in rowing, 

5.4 mM in cycling, and 6.6 mM in speed skating (BENEKE & VON 

DUVILLARD, 1996) The differences could be associated with the different 

sport-specific muscles (BENEKE & VON DUVILLARD, 1996). Kayaking is a 

sport activity characterized by great demands on upper-body performance 

(TESCH, 1983). The use of LT4 was originally developed in running, because 

the average MLSS was found to be 4.02 mM (range 3.05 to 5.52 mM) 

(MADER ET AL., 1976). However, the locomotion of running involves mainly 

lower extremity muscles. Upper-body and lower-body muscles were 

characterized with different muscle fiber composition (JOHNSON, 1973), 

which could result in differences in lactate production and in VO2 kinetics 
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(HECK ET AL., 1994; KOPPO ET AL., 2002). Consequently, using LT4 in 

kayaking might lead to significant errors. However, no study had investigated 

MLSS in kayaking. Therefore, the purpose of the study is to measure the 

MLSS and workload at MLSS in kayaking. It was hypothesized that MLSS in 

kayaking would be different from 4mM and the corresponding workload at 

MLSS would be different from the calculated workload using a fixed blood 

lactate value of 4 mM. 

7.2 Methods 

7.2.1 Subjects 

Eight junior kayakers (four males and four females, age 15.1 ± 1.2 yrs; height 

179.9 ± 7.3 cm; body mass 72.3 ± 4.9 kg) volunteered to participate in this 

study. The participants had an average of 2 year’s (1.5-2.4 yrs) training 

experience in kayaking, with a weekly training volume of approximate 14 h. 

The test was performed in January. No subject had received pharmacological 

or dietetic treatment in the prior six months. The detailed procedure was 

informed to the participants and their parents. The participants and their 

parents signed consent forms before the testing. The study was conducted 

according to the corresponding ethics requirement. 

7.2.2 Procedures 

Subjects participated in an incremental workload test and 2–5 submaximal 

constant workload tests at similar times of the day on separate days. The 

tests were performed on a kayaking ergometer (Dansprint, I Bergmann A/S, 

Hvidovre, Denmark), with a fan resistance factor of 3. Strenuous activity was 

not allowed 24 h before each test, and a break of at least 24 h was given 

between the two trials. No food, but drink, was permitted two hours before the 

test. A typical diet high in carbohydrates was adhered to by the subjects 

before the tests. 

The initial load for the incremental test was 55–85 watts according to 

individual performance as found during training. The test consisted of 4 to 

6 steps of 5 min, with an incremental step of 15 watts and a break of 1 min 

after each step for blood sampling (BISHOP, 2000). The incremental test was 

conducted until that the participants could not paddle with the designed 
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workload. Spoken encouragement was given during the incremental test to 

ensure a high motivation. 

All constant workload tests lasted 30 min, with a break of 30 s after each 

5 min step for blood sampling. The first constant test was performed with a 

workload corresponding to individual LT4, which was linear-interpolated from 

the incremental workload test. The workload in the following trials was 

5–15 watts more or less, depending on the lactate change in the last trial. The 

maximal workload with an increase of blood lactate less than 1 mM during the 

last 20 min was determined as the MLSS workload, whereas the average 

blood lactate value during the last 20 min under this workload was determined 

as the blood lactate value at MLSS (BENEKE, 1995; HECK ET AL., 1985). 

From each subject, 20 µL blood was taken from the earlobe before the test 

and after each step in the incremental test, as well as before the test and after 

each 5 min in the constant workload test. The blood samples were analyzed 

with a lactate analyzer (Biosen S_line, EKF Diagnostic, Barleben, Germany). 

7.2.3 Statistical Analysis 

Two subjects were unable to complete 30 min constant test with a workload 

above MLSS. Therefore, six subjects had the blood lactate data at workload 

above MLSS. The workload at MLSS was compared to the workload above 

MLSS using a two-tailed paired t-test (N = 6). Blood lactate values between 

workload at and above MLSS at different 0-30 min time points were compared 

using a two-tailed paired t-test (N = 6). The relationship between the blood 

lactate value at MLSS and the workload at MLSS was examined using 

Pearson correlation (N = 8). The measured workload at MLSS and the 

calculated workload using a fixed lactate value of 5.4 mM, 5.0 mM, or 4 mM 

were compared using repeated measure ANOVA, followed by pair-wise 

comparisons (N = 8). P values were set at 0.05 for statistical significance. The 

Holm’s step-down procedure was used to adjust the type-I error rate of each 

pair-wise comparison to keep the overall type-I error rate of ANOVA at 0.05. 

Statistical analysis was performed using IBM SPSS Statistics 19 (SPSS 

Statistics 19, IBM Corporation, New York, USA). 
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7.3 Results 

The blood lactate value at MLSS was 5.4 ± 0.7 mM in kayaking. The workload 

at MLSS was 112 ± 22 watts, whereas the workload above MLSS was 120 ± 

21 watts (p = 0.024, Figure 7-1). The blood lactate level at workload above 

MLSS was greater than that at the MLSS workload at 10-30 min time points (p 

< 0.05, Figure 7-1). The blood lactate value at MLSS was not significantly 

correlated with workload at MLSS (p = 0.55, r = -0.25, Figure 7-2). ANOVA 

showed significant differences among measured workloads at MLSS and 

calculated workload using a fixed lactate level (p = 0.003). Pair-wise 

comparisons showed that the measured MLSS workloads were significantly 

greater than the calculated workload using a lactate value of 4 mM 

(104 ± 18 watts, p = 0.016). However, the measured workload at MLSS was 

not significantly different from the calculated workload using a lactate value of 

5.4 mM (115 ± 19 watts, p = 0.16) or 5.0 mM (113 ± 19 watts, p = 0.78). In 

addition, the calculated workloads using a lactate value of 5.4 mM and 

5.0 mM were greater than the calculated workloads using a lactate value of 

4.0 mM (p < 0.001) (Figure 7-3). 

 

Figure 7-1: Blood lactate concentration at and above MLSS workload (P-MLSS) (N = 8 for 
MLSS workload; N = 6 for workload higher than P-MLSS); 

※ 
significant correlation 

between blood lactate at and above MLSS workload (P ＜ 0.05), raw data see 

Appendix 15 



Maximal Lactate Steady State in Kayaking                                         76 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

60 80 100 120 140 160

P-MLSS (watt)

M
L

S
S

 (
m

M
)

 

Figure 7-2: Correlation between MLSS and MLSS workload (N = 8), raw data see Appendix 
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Figure 7-3: Workload at MLSS and different lactate threshold; LT4, LT5, LT5.4 = lactate 

threshold with fixed value of 4, 5, and 5.4); 
§ 
= significant from MLSS (P ＜ 0.05); 

# 
= significant from LT4 (P ＜ 0.05 ) (N = 8), raw data see Appendix 17 

7.4 Discussion 

The primary finding in this study was a blood lactate value of 5.4 mM at MLSS 

in kayaking. The findings could expand the knowledge of MLSS in different 

locomotion. A review of literature indicated that the blood lactate values at 

MLSS were on average 3.05 mM (range 2.7 mM to 3.7 mM) in rowing 

(BENEKE ET AL., 2001), 4.92 mM (range 3.2 mM to 6.7 mM) in cycling 

(BENEKE ET AL., 2009), 3.25 mM (range 3.2 mM to 3.3 mM) in swimming 

(DEKERLE ET AL., 2005), 6.6 mM in speed skating (BENEKE & VON 

DUVILLARD, 1996), 3.4 mM (range 2.1 mM to 4.6 mM) in running (HECK ET 

AL., 1985), and 5.83 mM in arm cranking (HECK ET AL., 1994). As concluded 
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by Beneke et al. (2001; 1996), MLSS was associated with the motor pattern of 

locomotion, but not likely with gender (BENEKE ET AL., 2009), age (BENEKE 

ET AL., 2009; BENEKE ET AL., 1996), or performance (BENEKE ET AL., 

2000). Therefore, even though the subjects in this study were junior kayakers 

of both genders with lower performance, the findings of MLSS from them 

could still represent the motor pattern of kayaking. 

MLSS represents the highest point of equilibrium between the production and 

removal of lactate. If the rate of lactate removal is higher than the rate of 

production, lactate will accumulate, and the corresponding workload is above 

the MLSS workload (BILLAT ET AL., 2003; HECK ET AL., 1985). Previous 

investigators showed that the production and removal of lactate depended on 

exercise intensity and involved muscle mass (BENEKE ET AL., 2001), which 

is related to the consumption of lactate according to the lactate shuttle theory 

(BROOKS, 1991). In terms of different locomotion, the workloads at MLSS 

were found to be 70–80 % of the corresponding maximal workloads, 

regardless of types of locomotion (BENEKE & VON DUVILLARD, 1996). 

Similar exercise intensity (82 %) was also found in this study. However, the 

relatively less-active muscle mass involved in kayaking allowed a relatively 

greater inactive or moderate-exercise muscle mass, which could play a role 

as lactate consumer (GLADDEN, 2000). Accordingly, the locomotion of 

kayaking could provide a higher level of lactate removal capacity compared to 

other locomotion types, such as rowing and running. Therefore, a relatively 

high level of lactate equilibrium (5.4 mM) becomes possible. Additionally, an 

even higher MLSS in arm cranking (5.83 mM) also makes sense because 

even less muscle mass is involved in this locomotion. However, the highest 

MLSS, which is found in speed skating (6.6 mM), is not clearly understood 

(BENEKE & VON DUVILLARD, 1996), although evidence of restricted muscle 

blood flow was found during speed skating (FOSTER ET AL., 1999). 

Kayaking is primarily an upper-body exercise (UBE). The specific 

physiological responses of this kind of exercise should also be considered 

when MLSS is concerned (PENDERGAST, 1989; PENDERGAST ET AL., 

1979). Upper-body muscles are characterized with a higher percentage of fast 

twitch fiber (JOHNSON, 1973), which might result in more lactate production 

and a longer fast component time constant of VO2 kinetics than lower-body 
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muscles have during exercises (HECK ET AL., 1994; KOPPO ET AL., 2002). 

Hence, with regard to MLSS, the physiological response caused by a higher 

fast twitch fiber in the upper-body muscles might have an influence on the 

lactate production in kayaking. 

Originally, MLSS in running provided solid support for a fixed lactate value of 

4 mM in anaerobic threshold (HECK ET AL., 1985; MADER ET AL., 1976). 

However, attention should be paid when extending these findings from 

running to other locomotion types, such as kayaking. The current study 

showed that the MLSS in kayaking was 5.4 mM rather than 4mM. The 

workload interpolated according to 4 mM was lower than the actual workload 

at MLSS in kayaking (Figure 8-3). When the training intensity was designed 

for different sports based on LT4, an intensity of extensive endurance ((i.e. 

2-4 mM) in one sport with a higher MLSS (i.e., 5.4 mM as in kayaking) might 

be an intensity of intensive endurance in the other sport with a lower MLSS 

(i.e., 3.05 mM as in rowing) (CAPOUSEK, 2009; HARTMANN ET AL., 1989). 

Actually, the elite kayakers spent 85–88 % of their water training with an 

intensity of 2–4 mM (CAPOUSEK, 2009; ENGLERT & KIESSLER, 2009), 

whereas the rowers spent 70–90 % of their water training with an intensity of 

＜ 2 mM, rather than 2–4 mM, where the percentage was only 5–22 % 

(HARTMANN ET AL., 1989). Therefore, it is recommended that a fixed lactate 

value of 5 mM, instead of 4 mM, should be utilized in diagnostics in kayaking, 

and that dividing the training zones of intensity should be based on LT5. 

The incremental workload test utilized in this study was with 5 min duration for 

each step, and with a 1 min interval break. However, the protocol of the 

incremental test did have an influence on the threshold workload with a fixed 

lactate value. It has been found that the workload at LT4 decreased with a 

longer duration (3 min vs. 5 min vs. 7 min) of each step, and a shorter 

interruption between each two steps (1.5 min vs. 1.0 min vs. 0.5 min) in the 

incremental test (HECK ET AL., 1985). These findings were also supported by 

cases of rowing and kayaking in training practice. An increment duration of 

8 min was preferred instead of 3 min in rowing, because the workload at LT4 

from the 3 min incremental test was found to be too high for constant 

submaximal rowing, an 8 min incremental test, but still with LT4, was 

preferred in rowing (HARTMANN ET AL., 1988a). Comparatively, an 
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interruption of approximately 10 min was preferred instead of 1 min in 

kayaking, because the workload at LT4 from such incremental test with 1 min 

interruption was found to be too low for constant submaximal kayaking 

(ENGLERT & KIESSLER, 2009). Therefore, when a fixed blood lactate value 

was utilized to calculate the workload at MLSS, the protocol of the incremental 

test should be taken into account. 

7.5 Conclusion 

In conclusion, the blood lactate value of MLSS was found to be 5.4 mM in 

kayaking, which could expand the knowledge of MLSS in different types of 

locomotion. The MLSS in kayaking might be attributed to the involved muscle 

mass in this locomotion, which could result in a certain level of lactate removal, 

and could allow a certain level of equilibrium between lactate production and 

removal. LT5, instead of LT4, was recommended for diagnostics in kayaking, 

given an incremental test as used in this study. 
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8 General Summary 

This study reviewed first the development of race result in canoe sprint during 

the past decades. The race results of MK1-1000 and WK1-500 have 

increased 32.5 % and 42.1 %, respectively, a corresponding 5.0 % and 6.5 % 

increase in each decade. The development of race results in canoe sprint 

during the past decades resulted from the contributions of various aspects. 

The recruitment of taller and stronger athletes improved the physiological 

capacity of paddlers. Direct investigation on energy contribution in canoe 

sprint enhanced the emphasis on aerobic capacity and aerobic endurance 

training. Advancement of equipment design improved the efficiency of 

paddling. Physiological and biomechanical diagnostics in canoe sprint led to a 

more scientific way of training. Additionally, other aspects might also have 

contributed to the development of race results during the past decades. For 

example, the establishment of national team after World War II provided the 

possibility of systematic training, and the use of drugs in the last century 

accelerated the development of race results in that period. 

Recent investigations on energetics in high-intensity exercises demonstrated 

an underestimate of WAER % in the table provided by some textbooks since 

the 1960s. An exponential correlation between WAER % and the duration of 

high-intensity exercises was concluded from summarizing most of the 

relevant reports, including reports with different methods of energy calculation. 

However, when reports with the MAOD and Pcr-La-O2 methods were 

summarized separately, a greater overestimate of WAER % from MAOD was 

found compared to those from Pcr-La-O2, which was in line with the critical 

reports on MAOD. Because of the lack of investigation of the validity of the 

comparisons between MAOD and Pcr-La-O2, it is still not clear which method 

can generate more accurate results and which method is more reliable. 

With regard to kayaking, a range of variation in WAER % was observed. Many 

factors might contribute to the variation of WAER % in kayaking. Therefore, the 

methods utilized to calculate the energy contributions, different paddling 

conditions, and the level of performance were investigated in kayaking. The 

findings indicated that the method utilized to calculate the energy 

contributions in kayaking, rather than paddling condition and performance 
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level of paddlers, might be the possible factor associated with WAER %. Some 

other possible factors associated with WAER % still need to be further 

investigated in the future. 

After verifying the dependence of WAER % on the method of energy calculation, 

but not on paddling condition and performance level of paddlers, energy 

contributions of kayaking were investigated for the three racing distances on a 

kayak ergometer with junior paddlers. Energetic profiles in kayaking varied 

with paddling distances. At 500 m and 1000 m the aerobic system was 

dominant (with WAER % of 57.8 % and 76.2 %), whereas at 200 m the 

anaerobic system was dominant (with WAER % of 31.1-32.4 %). Muscular 

volume seemed to have an influence on absolute energy productions. The 

anaerobic alactic system determined the performance during the first 5 to 10 s. 

The anaerobic lactic system probably played a dominant role during the 

period from the 5th-10th s to 30th-40th s. The aerobic system could dominate the 

energy contribution after 30–40 s. This energetic profile in kayaking could 

provide physiological support for developing the training philosophy in these 

three distances. Additionally, the method introduced by Beneke et al. seemed 

to be a valid method to calculate the energy contributions in maximal 

kayaking. 

Energy contributions in canoeing were similar to those in kayaking. The 

relative energy contributions on open water canoeing were 75.3 ± 2.8 % of 

aerobic, 11.5 ± 1.9 % of anaerobic lactic, and 13.2 ± 1.9 % of anaerobic 

alactic at maximal speed of simulated 1000 m. Further, the C of canoeing 

seemed also to be similar to the reported findings in kayaking, with a function 

of y = 0.0242 * x2.1225. Training programs could be designed similarly for 

kayaking and canoeing with regard to energetic profile. 

In order to extend the findings on energetics in canoe sprint to other exercises, 

energy contributions in kayaking, canoeing, running, cycling, as well as arm 

cranking were compared with the same duration. Results indicated that 

WAER % during maximal exercises with the same duration seemed to be 

independent of movement patterns, given similar VO2 kinetics during the 

maximal exertion. The exponential relationship between WAER % and duration 

in maximal exercises could be supported by excluding the influence from 
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movement patterns. 

Additionally, MLSS in kayaking was investigated. The blood lactate value of 

MLSS was found to be 5.4 mM in kayaking, which could expand the 

knowledge of MLSS in different locomotion. The MLSS in kayaking might be 

attributed to the involved muscle mass in this locomotion, which could result in 

a certain level of lactate removal, and allow a certain level of equilibrium 

between lactate production and removal. LT5, instead of LT4, was 

recommended for diagnostics in kayaking, given an incremental test as used 

in this study.
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Appendix 1: Race Results for MK1-1000 and WK1-500 

MK1-1000 

Year Time Year Time Year Time Year Time 

1948 04:33.2 1964 03:57.1 1980 03:48.8 1996  

1949  1965  1981 03:45.1 1997  

1950 04:18.1 1966 03:59.3 1982 03:55.5 1998  

1951  1967 03:54.7 1983 04:00.6 1999  

1952 04:07.9 1968 04:02.6 1984 03:45.7 2000 03:33.3 

1953  1969 04:02.5 1985 03:40.2 2001 03:34.8 

1954 04:23.5 1970 03:41.1 1986 03:37.6 2002 03:27.6 

1955  1971 03:46.6 1987 03:53.5 2003 03:28.9 

1956 04:12.8 1972 03:48.1 1988 03:55.3 2004 03:25.9 

1957  1973 03:51.7 1989 03:38.9 2005 03:29.2 

1958 03:51.4 1974 04:03.2 1990 03:33.2 2006 03:39.4 

1959  1975 03:43.5 1991 03:35.2 2007 03:40.1 

1960 03:53.0 1976 03:48.2 1992 03:37.3 2008 03:26.3 

1961  1977 03:53.9 1993 03:42.5 2009 03:29.4 

1962  1978 03:49.4 1994  2010 03:29.5 

1963 03:56.3 1979 03:58.6 1995  2011 03:36.2 

WK1-500 

Year Time Year Time Year Time Year Time 

1948 02:31.9 1964 02:12.9 1980 01:58.0 1996 01:47.7 

1949  1965  1981  1997  

1950  1966  1982  1998  

1951  1967  1983  1999  

1952 02:18.4 1968 02:11.1 1984 01:58.7 2000 02:13.8 

1953  1969  1985  2001 01:53.6 

1954  1970  1986  2002 01:52.1 

1955  1971  1987  2003 01:49.0 

1956 02:18.9 1972 02:03.2 1988 01:55.2 2004 01:47.7 

1957  1973  1989  2005 01:50.4 

1958 02:02.1 1974  1990  2006 01:52.3 

1959  1975  1991  2007 01:48.7 

1960 02:08.1 1976 02:01.1 1992 01:51.6 2008 01:50.7 

1961  1977  1993  2009 01:51.5 

1962  1978  1994  2010 01:50.5 

1963  1979  1995  2011 01:47.1 
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Appendix 2: Height and Body Mass of Male Paddlers in Several Olympic 
Games 

 1964 1972 1976 1980 2000 2012 

Height [m] 1.79 1.77 1.80 1.82 1.84 1.85 

Weight [kg] 76.0 75.0 78.0 80.8 85.2 88.0 

(ACKLAND ET AL., 2003;COX, 1992; LI, 2012; SHEPHARD, 1987) 
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Appendix 3: Body Mass and VO2peak from Several National Paddlers 

Authors Year Country 
Mass VO2max-Kayak Ergometer 

[kg] [l/min] 

FRY & MORTON 1991 AUS 81.1 4.78 

BISHOP & PALMER 2003 AUS 80.4 4.07 

VAN SOMEREN ET AL. 2003 GBR 84.5 4.45 

KROFF 2005 RSA 78.6 4.4 

BONETTI ET AL. 2006 NZL 81.2 4 

FORBES & CHILIBECK 2007 CAN 76.3 3.64 

GARCIA-PALLARES ET AL. 2010 ESP 86.2 5.59 

BISHOP 2000 AUS 70.4 3.15 

FORBES & CHILIBECK 2007 CAN 61.6 2.86 
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Appendix 4: Yearly Training Volumes in Hour from Literatures 

Year 77/78 78/79 79/80 80s 89/90 94/95 03/04 04/05 05/06 06/07 07/08 

Total 1255 1360 1440 1100 900 630 787.5 675 585 765 801 

Specific 540 780 850 / 540 360 459 405 405 549 544.5 

(77/78, 78/79, 79/80 (LENZ, 1994); 80 s (ISSURIN, 2008); 89/90, 94/95 (KAHL, 1997); 

03/04 (FISCHER, 2006); 04/05 (CAPOUSEK, 2009); 05/06, 06/07, 07/08 (ENGLERT & 

KIESSLER, 2009) ) 
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Appendix 5: WAER % of Maximal Exercises in Literatures 

Literature Sport Event Duration WAER% Method 

(BANGSBO ET AL., 1993) run (treadmill) 4.05 83.1 MAOD 

(BANGSBO ET AL., 1993) run (treadmill) 6.00 83.9 MAOD 

(BISHOP ET AL., 2001) kayak (ergometer) 2.00 65.7 MAOD 

(BISHOP ET AL., 2001) kayak (ergometer) 2.00 65.8 MAOD 

(BISHOP ET AL., 2001) kayak (ergometer) 2.00 68.1 MAOD 

(GASTIN ET AL., 1995) cycle (ergometer) 1.50 57.0 MAOD 

(GASTIN ET AL., 1995) cycle (ergometer) 3.47 74.0 MAOD 

(GASTIN, P. & LAWSON, D., 
1994) 

cycle (ergometer) 0.75 38.0 MAOD 

(GASTIN, P. & LAWSON, D., 
1994) 

cycle (ergometer) 1.00 45.0 MAOD 

(GASTIN ET AL., 1995) cycle (ergometer) 1.03 51.0 MAOD 

(GASTIN, P. & LAWSON, D., 
1994) 

cycle (ergometer) 1.50 58.0 MAOD 

(GASTIN ET AL., 1995) cycle (ergometer) 1.57 59.0 MAOD 

(GASTIN ET AL., 1995) cycle (ergometer) 3.10 76.0 MAOD 

(WITHERS ET AL., 1993) cycle (ergometer) 0.75 40.0 MAOD 

(WITHERS ET AL., 1993) cycle (ergometer) 1.00 47.0 MAOD 

(WITHERS ET AL., 1993) cycle (ergometer) 1.25 54.0 MAOD 

(WITHERS ET AL., 1993) cycle (ergometer) 1.50 60.0 MAOD 

(BANGSBO ET AL., 1993) run (treadmill) 3.42 77.9 MAOD 

(FAINA ET AL., 1997) run (field) 3.75 83.6 MAOD 

(FRIEDMANN ET AL., 2001) run (treadmill) 2.23 59.8 MAOD 

(FRIEDMANN ET AL., 2001) run (treadmill) 2.60 62.9 MAOD 

(NUMMELA & RUSKO, 1995) run (treadmill) 0.82 45.6 MAOD 

(GASTIN, P.B. & LAWSON, 
D.L., 1994) 

cycle (ergometer) 1.50 58.0 MAOD 

(BISHOP ET AL., 2002) kayak (ergometer) 2.00 62.3 MAOD 

(BISHOP ET AL., 2002) kayak (ergometer) 2.00 60.9 MAOD 

(DUFFIELD ET AL., 2004) run (field) 0.22 25.0 MAOD 

(DUFFIELD ET AL., 2005b) run (field) 5.30 86.0 MAOD 

(DUFFIELD ET AL., 2004) run (field) 0.45 33.2 MAOD 

(DUFFIELD ET AL., 2005b) run (field) 11.60 94.0 MAOD 

(DUFFIELD ET AL., 2005a) run (field) 1.00 44.5 MAOD 

(DUFFIELD ET AL., 2005a) run (field) 2.50 70.1 MAOD 

(MINAHAN ET AL., 2007) cycle (ergometer) 2.78 69.3 MAOD 

(PRIPSTEIN ET AL., 1999) row (ergometer) 7.50 87.7 MAOD 

(AISBETT ET AL., 2003) cycle (ergometer) 6.00 87.9 MAOD 

(AISBETT ET AL., 2003) cycle (ergometer) 6.00 88.6 MAOD 

(AISBETT ET AL., 2003) cycle (ergometer) 6.00 88.0 MAOD 

(BELL ET AL., 2001) cycle (field) 1.85 61.5 MAOD 

(BISHOP, 2000) kayak (ergometer) 2.00 70.3 MAOD 

(SPENCER & GASTIN, 2001) run (treadmill) 0.37 29.0 MAOD 
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(SPENCER & GASTIN, 2001) run (treadmill) 0.82 43.0 MAOD 

(SPENCER & GASTIN, 2001) run (treadmill) 1.88 66.0 MAOD 

(SPENCER & GASTIN, 2001) run (treadmill) 3.92 84.0 MAOD 

(RAVIER ET AL., 2006) run (treadmill) 2.20 61.7 MAOD 

Own data kayak (ergometer) 0.67 36.1 MAOD 

Own data kayak (ergometer) 4.00 60.9 MAOD 

(FAINA ET AL., 1997) arm crank (ergometer) 5.93 88.5 MAOD 

(CALBET ET AL., 1997) cycle (ergometer) 0.50 22.9 MAOD 

(CALBET ET AL., 1997) cycle (ergometer) 0.75 30.9 MAOD 

(CALBET ET AL., 1997) cycle (ergometer) 2.50 58.5 MAOD 

(DUFFIELD ET AL., 2004) run (field) 0.19 20.6 MAOD 

(DUFFIELD ET AL., 2005b) run (field) 4.40 77.0 MAOD 

(DUFFIELD ET AL., 2004) run (field) 0.40 28.4 MAOD 

(DUFFIELD ET AL., 2005b) run (field) 9.60 86.0 MAOD 

(DUFFIELD ET AL., 2005a) run (field) 0.90 41.3 MAOD 

(NUMMELA & RUSKO, 1995) run (treadmill) 0.83 37.1 MAOD 

(DUFFIELD ET AL., 2005a) run (field) 2.10 60.3 MAOD 

(MINAHAN ET AL., 2007) cycle (ergometer) 2.92 70.0 MAOD 

(WITHERS ET AL., 1991) cycle (ergometer) 0.50 28.0 MAOD 

(WITHERS ET AL., 1991) cycle (ergometer) 1.00 49.0 MAOD 

(WITHERS ET AL., 1991) cycle (ergometer) 1.50 61.0 MAOD 

(MEDBO & TABATA, 1989) cycle (ergometer) 0.60 30.0 MAOD 

(MEDBO & TABATA, 1989) cycle (ergometer) 1.25 47.0 MAOD 

(MEDBO & TABATA, 1989) cycle (ergometer) 2.60 65.0 MAOD 

(BISHOP ET AL., 2003) kayak (ergometer) 2.00 59.1 MAOD 

(BISHOP ET AL., 2003) kayak (ergometer) 2.00 60.3 MAOD 

(CRAIG ET AL., 1995) cycle (ergometer) 1.17 55.3 MAOD 

(CRAIG ET AL., 1995) cycle (ergometer) 1.17 50.2 MAOD 

(GARDNER ET AL., 2003) cycle (ergometer) 1.88 61.8 MAOD 

(BANGSBO ET AL., 1993) run (treadmill) 3.01 77.9 MAOD 

(REIS ET AL., 2010) swim (crawl) 1.41 72.7 MAOD 

(REIS ET AL., 2010) Swim (crawl) 2.95 85.7 MAOD 

(RAVIER ET AL., 2006) run (treadmill) 1.94 58.0 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 0.67 40.0 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 2.00 69.0 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 4.00 86.0 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 0.67 36.5 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 2.00 63.5 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 3.67 84.5 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 0.67 37.0 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 2.00 62.0 MAOD 

(BYRNES & KEARNEY, 1997) kayak (ergometer) 3.67 82.0 MAOD 

(GASTIN, P.B. & LAWSON, 
D.L., 1994) 

cycle (ergometer) 1.50 53.0 MAOD 

(FAINA ET AL., 1997) swim (flume) 5.03 83.2 MAOD 

(BANGSBO ET AL., 1993) run (treadmill) 2.98 74.3 MAOD 

(GASTIN, P.B. & LAWSON, cycle (ergometer) 1.50 56.0 MAOD 
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D.L., 1994) 

(NAKAGAKI ET AL., 2008) kayak (ergometer) 0.33 11.8 MAOD 

(NAKAGAKI ET AL., 2008) kayak (ergometer) 0.67 29.0 MAOD 

(NAKAGAKI ET AL., 2008) kayak (ergometer) 2.00 57.0 MAOD 

(NAKAGAKI ET AL., 2008) kayak (ergometer) 4.00 74.0 MAOD 

(NAKAGAKI ET AL., 2008) kayak (ergometer) 10.00 91.7 MAOD 

(HETTINGA ET AL., 2007) cycle (ergometer) 1.94 50.6 MAOD 

(HETTINGA ET AL., 2007) cycle (ergometer) 1.95 50.8 MAOD 

(HETTINGA ET AL., 2007) cycle (ergometer) 1.97 51.3 MAOD 

(CRAIG & MORGAN, 1998) run (treadmill) 1.90 61.2 MAOD 

(CRAIG & MORGAN, 1998) run (treadmill) 2.40 73.1 MAOD 

(GARDNER ET AL., 2003) cycle (ergometer) 2.00 69.2 MAOD 

(CRAIG ET AL., 1995) cycle (ergometer) 2.00 67.3 MAOD 

(CRAIG ET AL., 1995) cycle (ergometer) 2.00 63.5 MAOD 

(CRAIG ET AL., 1995) cycle (ergometer) 5.00 84.9 MAOD 

(CRAIG ET AL., 1995) cycle (ergometer) 5.00 85.8 MAOD 

(RODRIGUES & MADER, 2011) swim (?) 0.80 41.0 Pcr-La-O2 

(RODRIGUES & MADER, 2011) swim (?) 14.8 86.0 Pcr-La-O2 

(RODRIGUES & MADER, 2011) swim (?) 1.75 58.0 Pcr-La-O2 

(RODRIGUES & MADER, 2011) swim (?) 3.75 73.0 Pcr-La-O2 

(HERMSDORF ET AL., 2011) figure skating 3.77 74.1 Pcr-La-O2 

(RODRIGUES & MADER, 2011) swim (?) 0.40 4.0 Pcr-La-O2 

(RODRIGUES & MADER, 2011) swim (?) 7.80 82.0 Pcr-La-O2 

(SERRESSE ET AL., 1988) cycle (ergometer) 0.17 3.0 Pcr-La-O2 

(SERRESSE ET AL., 1988) cycle (ergometer) 0.50 28.0 Pcr-La-O2 

(SERRESSE ET AL., 1988) cycle (ergometer) 1.50 46.0 Pcr-La-O2 

(HARTMANN, 1987) row (Gjessing ergometer) 2.00 63.9 Pcr-La-O2 

(HARTMANN, 1987) row (Gjessing ergometer) 4.00 76.6 Pcr-La-O2 

(HARTMANN, 1987) row (Gjessing ergometer) 6.00 82.4 Pcr-La-O2 

(CAPELLI ET AL., 1998) swim (field) 0.44 19.4 Pcr-La-O2 

(CAPELLI ET AL., 1998) swim (field) 0.96 37.7 Pcr-La-O2 

(CAPELLI ET AL., 1998) swim (field) 2.10 63.0 Pcr-La-O2 

(DUFFIELD ET AL., 2004) run (field) 0.22 10.9 Pcr-La-O2 

(DUFFIELD ET AL., 2005b) run (field) 5.30 82.0 Pcr-La-O2 

(DUFFIELD ET AL., 2004) run (field) 0.45 22.0 Pcr-La-O2 

(DUFFIELD ET AL., 2005b) run (field) 11.6 92.0 Pcr-La-O2 

(DUFFIELD ET AL., 2005a) run (field) 1.00 37.0 Pcr-La-O2 

(DUFFIELD ET AL., 2005a) run (field) 2.50 68.6 Pcr-La-O2 

(DORIA ET AL., 2009) kata 2.60 58.5 Pcr-La-O2 

(DORIA ET AL., 2009) kata 3.00 61.4 Pcr-La-O2 

(SMITH & HILL, 1991) cycle (ergometer) 0.50 16.0 Pcr-La-O2 

(HARTMANN, 1987) row (Gjessing ergometer) 6.00 81.9 Pcr-La-O2 

Own data kayak (ergometer) 0.67 31.1 Pcr-La-O2 

Own data kayak (ergometer) 2.00 57.8 Pcr-La-O2 



Appendix                                                                  101 

Own data kayak (ergometer) 0.67 32.4 Pcr-La-O2 

Own data kayak (ergometer) 4.00 76.2 Pcr-La-O2 

(HARTMANN, 1987) row (Gjessing ergometer) 2.00 61.5 Pcr-La-O2 

(HARTMANN, 1987) row (Gjessing ergometer) 4.00 75.2 Pcr-La-O2 

(HARTMANN, 1987) row (Gjessing ergometer) 6.00 83.5 Pcr-La-O2 

(DUFFIELD ET AL., 2004) run (field) 0.19 8.9 Pcr-La-O2 

(DUFFIELD ET AL., 2005b) run (field) 4.40 81.0 Pcr-La-O2 

(DUFFIELD ET AL., 2004) run (field) 0.40 20.7 Pcr-La-O2 

(DUFFIELD ET AL., 2005b) run (field) 9.60 93.0 Pcr-La-O2 

(DUFFIELD ET AL., 2005a) run (field) 0.90 35.2 Pcr-La-O2 

(DUFFIELD ET AL., 2005a) run (field) 2.10 63.4 Pcr-La-O2 

(DE CAMPOS MELLO ET AL., 
2009) 

row (water) 8.58 87.0 Pcr-La-O2 

(DORIA ET AL., 2009) kata 2.30 50.2 Pcr-La-O2 

(DORIA ET AL., 2009) kata 4.00 74.0 Pcr-La-O2 

(BUSSWEILER & HARTMANN, 
2012) 

karate 0.53 19.0 Pcr-La-O2 

(ZAMPARO ET AL., 2009) kayak (water) 1.03 40.5 Pcr-La-O2 

(ZAMPARO ET AL., 2009) kayak (water) 2.25 60.4 Pcr-La-O2 

(ZAMPARO ET AL., 2009) kayak (water) 4.82 83.3 Pcr-La-O2 

(ZAMPARO ET AL., 2009) kayak (water) 9.47 89.5 Pcr-La-O2 

(ZAMPARO ET AL., 1999) canoe slalom (water) 1.43 45.2 Pcr-La-O2 

(BENEKE ET AL., 2004) kata and kumite 4.35 77.8 Pcr-La-O2 

Own data canoe (water) 0.67 31.3 Pcr-La-O2 

Own data kayak (ergometer) 4.00 76.5 Pcr-La-O2 

Own data kayak (water) 4.00 75.0 Pcr-La-O2 

Own data canoe (water) 4.00 75.3 Pcr-La-O2 

Own data run (field) 4.00 76.7 Pcr-La-O2 

Own data run (treadmill) 4.00 75.8 Pcr-La-O2 

Own data cycle (ergometer) 4.00 75.2 Pcr-La-O2 

Own data arm crank (ergometer) 4.00 68.9 Pcr-La-O2 

(HILL, 1999) run (treadmill) 1.02 38.0 Pcr-La-O2 

(HILL, 1999) run (treadmill) 2.43 67.0 Pcr-La-O2 

(HILL, 1999) run (treadmill) 5.15 83.0 Pcr-La-O2 

(HILL, 1999) run (treadmill) 0.82 37.0 Pcr-La-O2 

(HILL, 1999) run (treadmill) 2.00 61.0 Pcr-La-O2 

(HILL, 1999) run (treadmill) 4.10 80.0 Pcr-La-O2 

(GUIDETTI ET AL., 2000) rhythmic gymnastics 1.50 49.0 Pcr-La-O2 

(ZAMPARO ET AL., 2006) canoe slalom (water) 1.47 47.0 Pcr-La-O2 

(DE CAMPOS MELLO ET AL., 
2009) 

row (ergometer with slide) 6.63 84.0 Pcr-La-O2 

(DE CAMPOS MELLO ET AL., 
2009) 

row (ergometer without 
slide) 

6.70 84.0 Pcr-La-O2 
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Appendix 6: WAER % of Maximal Exercises based on Data from MAOD, 
Pcr-La-O2 and Total 

Duration MAOD Pcr-La-O2 Total 

[min] % % % 

0.5 32.2 25.2 29.5 

1 47.3 41.1 44.9 

2 62.5 57.1 60.4 

3 71.4 66.4 69.4 

4 77.7 73.0 75.8 

5 82.6 78.1 80.8 

6 86.6 82.3 84.8 

7 90.0 85.9 88.3 

8 92.9 88.9 91.2 

9 95.5 91.6 93.8 

10 97.8 94.1 96.2 
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Appendix 7: WAER % of Maximal Paddling in Chapter 3 

 WAER % 

Study 1 

JF-40 s 
MAOD M 36.1 

Pcr-La-O2 M 30.6 

JF-2 min 
MAOD M 60.7 

Pcr-La-O2 M 57.5 

Study 2 AM-4 min 
W M 75.0 

E M 76.5 

Study 2 
AM-4 min E M 76.5 

JM-4 min E M 76.2 

Study 1 

JF-40 s 
MAOD SD 3.7 

Pcr-La-O2 SD 3.5 

JF-2 min 
MAOD SD 12.2 

Pcr-La-O2 SD 4.5 

Study 2 AM-4 min 
W SD 4.0 

E SD 4.0 

Study 2 
AM-4 min E SD 4.0 

JM-4 min E SD 3.9 
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Appendix 8: Energetic Profile of Kayaking in Chapter 4 

  WPCR WBLC WAER WPCR WBLC WAER EPCR EBLA EAER 

  kJ kJ kJ % % % kw kw kw 

40 s-F M 31 21 23 41.1 27.8 31.1 0.77 0.52 0.59 

40 s-M M 41 33 35 37.8 29.8 32.4 1.03 0.81 0.87 

120 s-F M 33 34 92 20.9 21.3 57.8 0.28 0.28 0.77 

240 s-M M 46 40 275 12.7 11.2 76.2 0.19 0.17 1.15 

40s-F SD 6 4 4 6.8 5.0 3.4 0.16 0.11 0.10 

40s-M SD 9 11 6 6.1 7.9 4.6 0.24 0.27 0.16 

120s-F SD 6 6 11 3.1 3.2 3.9 0.05 0.05 0.09 

240s-M SD 13 8 35 3.2 1.9 3.9 0.05 0.03 0.15 



Appendix                                                                  105 

Appendix 9: Physiological and Ergometric Process of 40s, 120s, and 240s Maximal Kayaking (Data) 
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Appendix 10: Physiological and Ergometric Process of 40s, 120s, and 
240s Maximal Kayaking (Figure in M ± SD) 
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Appendix 11: VO2 and C at Different Speed in Step Test and Maximal Test 

 
Speed VO2 C 

m/s l/min kJ/m 

Step1 

2.9 2.697 0.25 

2.9 2.378 0.24 

3.0 2.826 0.26 

3.0 2.529 0.25 

3.1 2.607 0.24 

3.0 2.861 0.25 

3.0 2.562 0.23 

3.0 2.895 0.25 

Step2 

3.1 3.2 0.30 

3.1 2.9 0.26 

3.0 2.9 0.28 

3.1 2.8 0.25 

3.3 2.8 0.23 

3.1 3.2 0.28 

3.2 3.0 0.26 

3.1 3.0 0.29 

Step3 

3.3 3.6 0.31 

3.3 3.6 0.31 

3.3 3.4 0.29 

3.2 3.4 0.30 

3.2 2.8 0.24 

3.4 3.6 0.30 

3.3 3.4 0.29 

3.4 3.6 0.30 

Step4 

3.7 4.6 0.39 

3.3 3.5 0.33 

3.7 4.9 0.39 

3.4 3.9 0.32 

3.5 4.2 0.37 

3.6 4.2 0.35 

3.3 3.6 0.32 

3.5 4.2 0.37 

Max 

4.0  0.44 

3.9  0.48 

4.1  0.52 

3.7  0.45 

3.8  0.41 

4.1  0.46 

4.0  0.48 

4.1  0.45 
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Appendix 12: C in Different Locomotion 

 
Speed [m/s] 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Kayaking 0 0.00 0.02 0.05 0.10 0.16 0.24 0.34 0.46 0.60 

Front Crawl 0 0.24 0.63 1.10 1.63 2.22     

Gondala 0 0.05 0.16 0.31 0.49 0.72 0.97    

Rowing 0 0.00 0.02 0.04 0.07 0.12 0.18 0.25 0.34 0.44 

Canoeing  0.006 0.02 0.06 0.11 0.17 0.25 0.35 0.46 0.59 

Data from front crawl (CAPELLI ET AL., 1998), gondola (CAPELLI ET AL., 1990), kayaking 

(ZAMPARO ET AL., 1999), rowing (DI PRAMPERO ET AL., 1971), and canoeing (own data 

from this study) 
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Appendix 13: WAER % and Time Constant from Chapter 6 

T [s] WAER % T [s] WAER % 

24.1 76.2 17.7 73.0 

12 81.5 16.7 79.4 

9.2 74.1 16.7 79.5 

13.5 77.6 17.8 75.4 

9.5 77.4 11.5 80.6 

28.3 69.1 11.6 68.4 

15.9 77.2 17.5 75.1 

20.7 71.7 19.9 69.6 

20.7 74.6 27.4 67.6 

21 74.5 15.9 68.6 

16.8 71.3 23.5 66.5 

13.3 71.9 14.7 61.9 

18.7 79.8 22.5 69.3 

17 76.6 34.7 66.1 

17.3 77.3 30.4 74.0 

18 76.1 17.2 69.3 

18.9 83.0 29.8 68.5 

19.1 80.4 35.5 70.7 

16.2 78.4 15 74.0 

19.7 73.5 10.4 76.4 

20.4 78.2 16 77.1 

21.1 78.7 11 76.0 

14.9 77.2 13.1 69.3 

19.5 72.0   

12.1 83.8   

12.5 65.2   

10.6 78.3   

14.1 74.4   

10.5 70.9   

12 77.6   

18.3 78.8   

13.7 78.7   

13.6 77.6   

17.1 75.4   

22.6 72.1   

16.9 80.7   

17.2 81.0   

8.9 71.4   

27.7 74.4   

22 74.6   

10.6 75.9   

10.6 74.3   

14.7 75.2   

14.8 74.4   

6.5 74.4   
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Appendix 14: VO2 of Five Studies Maximal Exercises 
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Appendix 15: Blood Lactate Concentration at and above MLSS Workload 

 
Blood lactate [mM] 

0 5 10 15 20 25 30 

MLSS 
M 1.35 4.42 5.27 5.47 5.52 5.29 5.44 

SD 0.27 0.65 0.72 0.80 0.76 0.71 0.71 

>MLSS 
M 1.44 5.45 6.72 7.29 7.70 8.05 8.59 

SD 0.32 1.67 1.98 1.92 1.34 1.49 1.46 
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Appendix 16: MLSS and MLSS workload 

P-MLSS MLSS 

Watts mM 

99 5.49 

104 4.88 

101 4.75 

76 6.33 

149 5.54 

124 4.77 

130 5.04 

115 6.64 
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Appendix 17: Workload at MLSS and Different Lactate Threshold 

 
MLSS LT4 LT5 LT5.4 

Watt Watt Watt Watt 

M 112 104 113 115 

SD 22 18 19 19 
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